Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.123-132
ISSN 2219-7184; Copyright ©ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

λ - Core of a Sequence and Related Inequalities

Meltem Kaya ${ }^{1}$ and Hasan Furkan ${ }^{2}$
${ }^{1,2}$ Kahramanmaraş Sütçü İmam Üniversitesi, Fen Edebiyat Fakültesi 46100-Kahramanmaraş, Türkiye
${ }^{1}$ E-mail: meltemkaya55@hotmail.com
${ }^{2}$ E-mail: hasanfurkan@ksu.edu.tr; hasanfurkan@hotmail.com

(Received: 7-3-14 / Accepted: 12-4-14)

Abstract

The sequence spaces c^{λ} and $c s^{\lambda}$ have recently been introduced in [13] and [9], respectively, as the sets of all sequences whose Λ - transforms are in the spaces c and cs, respectively. The main purpose of this study is to introduce the new type cores, $\mathcal{K}_{\Lambda}-$ core and $S_{\Lambda}-$ core, of a real valued sequence and also determine necessary and sufficient conditions for a matrix A to satisfy $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq$ $\mathcal{K}-\operatorname{core}(x), \mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x), \mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq s t-\operatorname{core}(x)$, and $S_{\Lambda}-\operatorname{core}(A x) \subseteq \mathcal{K}-\operatorname{core}(x), S_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x), S_{\Lambda}-\operatorname{core}(A x) \subseteq$ st $-\operatorname{core}(x)$, for all $x \in \ell_{\infty}$.

Keywords: Matrix transformatios, core of a sequence, Knopp's core theorem, invariant means, inequalities.

1 Introduction

Let E be a subset of $N=\{0,1,2, \ldots\}$. The natural density δ of E is defined by $\delta(E)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in E\}|$, where the vertical bars indicate the number of elements in the enclosed set. The sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number ℓ if for every $\varepsilon, \delta\left\{k:\left|x_{k}-\ell\right| \geq \varepsilon\right\}=0$, [7]. In this case, we write $s t-\lim x=\ell$. By st and $s t_{0}$, we denote the sets of statistically convergent and statistically null sequences. Fridy and Orhan [7] have introduced the notions of the statistically boundedness, statistical-limit superior ($s t-\lim \sup$) and inferior ($s t-\lim \inf$).

Let ℓ_{∞} and c be the Banach spaces of bounded and convergent sequences with the usual supremum norm respectively. Let σ be a one-to-one mapping
from N into itself and T be an operator on ℓ_{∞} defined by $T x=x_{\sigma(k)}$. Then a continuous linear functional Φ on ℓ_{∞} is said to be an invariant mean or a σ-mean if and only if (i) $\Phi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq$ 0 for all k, (ii) $\Phi(e)=1$, where $e=(1,1,1, \ldots)$, (iii) $\Phi(x)=\Phi(T x)$ for all $x \in$ ℓ_{∞}.

Throughout this paper we consider the mapping σ having no finite orbits, that is, $\sigma^{p}(k) \neq k$ for all positive integers $k \geq 0$ and $p \geq 1$, where $\sigma^{p}(k)$ is $p t h$ iterate of σ at k. Thus, a σ - mean extends the limit functional on c in the sense that $\Phi(x)=\lim x$ for all $x \in c$, [14]. Consequently, $c \subset V_{\sigma}$, where V_{σ} is the set of bounded sequences all of whose σ - means are equal. In the case $\sigma(k)=k+1$, a σ-mean often called a Banach limit and V_{σ} reduces to the set f of almost convergent sequences introduced by Lorentz [10]. The reader can refer to Raimi [16] for invariant means.

$$
V_{\sigma}=\left\{x \in \ell_{\infty}: \lim _{p} t_{p n}(x)=s \text { uniformly in } n, s=\sigma-\lim x\right\}
$$

where

$$
t_{p n}(x)=\frac{x_{n}+T x_{n}+\ldots+T^{p} x_{n}}{p+1}, \quad t_{-1, n}(x)=0
$$

We say that a bounded sequence $x=\left(x_{k}\right)$ is σ-convergent if and only if $x \in V_{\sigma}$. By $V_{0 \sigma}$, we denote the space of $\sigma-$ null sequences. It is well known [16] that $x \in \ell_{\infty}$ if and only if $(T x-x) \in V_{0 \sigma}$ and $V_{\sigma}=V_{0 \sigma} \oplus R e$.

Let $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers and $x=\left(x_{k}\right)$ be a real number sequence. Then $A x=\left((A x)_{n}\right)=\left(\sum_{k} a_{n k} x_{k}\right)$ denotes the A-transform of x. If X and Y are two sequence spaces, then we use $(X: Y)$ to denote the set of all matrices A such that $A x$ exists and $A x \in Y$ for all $x \in X$. Troughout, \sum_{k} will denote the summation from $k=1$ to ∞.

If X and Y are equipped with the limits $X-\lim$ and $Y-\lim$, respectively, $A=\left(a_{n k}\right) \in(X: Y)$ and $Y-\lim _{n}(A x)_{n}=X-\lim _{k} x_{k}$ for all $x=\left(x_{k}\right) \in X$, then we say A regularly transforms X into Y and write $A=\left(a_{n k}\right) \in(X: Y)_{\text {reg }}$. Let $\lambda=\left(\lambda_{k}\right)$ be a strictly increasing sequence of positive reals tending to infinity; that is $0<\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots, \quad \lim _{k \rightarrow \infty} \lambda_{k}=\infty$. We define the matrix $\Lambda=\left(\lambda_{n k}\right)$ of weighted mean relative to the sequence λ by

$$
\lambda_{n k}= \begin{cases}\frac{\lambda_{k}-\lambda_{k-1}}{\lambda_{n}}, & 0 \leq k \leq n \\ 0, & k>n,\end{cases}
$$

for all $k, n \in N$. With a direct calculation we derive the equality

$$
(\Lambda x)_{n}=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) x_{k} ; \quad(n \in N) .
$$

Let us consider the following functionals defined on ℓ_{∞} :

$$
\begin{aligned}
l(x) & =\liminf _{k \rightarrow \infty} x_{k}, \quad L(x)=\limsup _{k \rightarrow \infty} x_{k}, \\
q_{\sigma}(x) & =\limsup _{p \rightarrow \infty} \sup _{n \in N} \frac{1}{p+1} \sum_{i=0}^{p} x_{\sigma^{i}(n)} \\
W(x) & =\inf _{z \in Z} L(x+z) .
\end{aligned}
$$

Knopp's core (or \mathcal{K}-core) [3] and σ-core [12] of a real bounded sequence x were defined by the closed intervals $[l(x), L(x)]$ and $\left[-q_{\sigma}(-x), q_{\sigma}(x)\right]$, respectively, and also the inequalities $q_{\sigma}(A x) \leq L(x)(\sigma$-core of $A x \subseteq \mathcal{K}$-core of $x)$, $q_{\sigma}(A x) \leq q_{\sigma}(x)$ (σ-core of $A x \subseteq \sigma$-core of $\left.x\right)$, for all $x \in \ell_{\infty}$, was studied. Furthermore, we have that $q_{\sigma}(x)=W(x)$ for all $x \in \ell_{\infty}$ [12]. Several researchers studied on σ-core, (see $[2,4-6,8,11,15]$). Also, the textbook [1] containing the chapter titled "Core of a Sequence", reviewed the Knopp core, σ-core, \mathcal{I}-core, $\mathcal{F}_{\mathcal{B}}$-core.

Recently, Fridy and Orhan [7] introduced the notions of statistical boundedness, statistical limit superior (or briefly $s t-\lim \sup$) and statistical limit inferior (or briefly st-liminf), defined the statistical core (or briefly st-core) of a statistically bounded sequence is the closed interval [st-lim inf $x, s t-\lim \sup x]$ and also determined necessary and sufficient conditions for a matrix A to yield $\mathcal{K}-\operatorname{core}(A x) \subseteq s t-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$.

2 The Lemmas

In this section, we prove some lemmas which are needed in proving our main results and need the following lemma due to Das [6] for the proof of next theorem. In what follows we only consider that the inequality $\liminf _{n \rightarrow \infty}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)>1$ holds.

Lemma 2.1 Let $\|C\|=\left\|\left(c_{m k}(p)\right)\right\|<\infty$ and $\lim _{m} \sup _{p}\left|c_{m k}(p)\right|=0$. Then, there is a $y=\left(y_{k}\right) \in \ell_{\infty}$ such that $\|y\| \leq 1$ and

$$
\limsup \sup _{p} \sum_{k} c_{m k}(p) y_{k}=\limsup \sup _{p} \sum_{k}\left|c_{m k}(p)\right| .
$$

Lemma 2.2 [13] The inclusions $c_{0}^{\lambda} \subset c^{\lambda} \subset \ell_{\infty}^{\lambda}$ strictly hold.
Corollary 2.3 [13] The equalities $c_{0}^{\lambda}=c_{0}, c^{\lambda}=c$ and $\ell_{\infty}^{\lambda}=\ell_{\infty}$ hold if and only if $\liminf _{n \rightarrow \infty}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)>1$.

Lemma 2.4 [9] The inclusions $c s^{\lambda} \subset c_{0}^{\lambda}$ and $b s^{\lambda} \subset \ell_{\infty}^{\lambda}$ strictly hold.

Lemma 2.5 Let $\|\Lambda\|<\infty$. Then, $A \in\left(\ell_{\infty}: c^{\lambda}\right)$ if and only if

$$
\begin{gather*}
\|A\|=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, \tag{1}\\
\lim _{m} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}=\alpha_{k} \quad \text { for each } k, \tag{2}\\
\lim _{m} \sum_{k}\left|\frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right)-\alpha_{k}\right|=0 . \tag{3}
\end{gather*}
$$

Following is a result of Lemma 2.5.
Lemma 2.6 Let $\|\Lambda\|<\infty$. Then, $A \in\left(\ell_{\infty}: c_{0}^{\lambda}\right)$ if and only if the conditions (1) and (3) of Lemma 2.5 hold with $\alpha_{k}=0$ for all $k \in N$.

Lemma 2.7 Let $\|\Lambda\|<\infty$. Then, $A \in\left(c: c^{\lambda}\right)_{\text {reg }}$ if and only if the conditions (1) and (2) of Lemma 2.5 hold with $\alpha_{k}=0$ for all $k \in N$ and

$$
\begin{equation*}
\lim _{m} \sum_{k} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}=1 \tag{4}
\end{equation*}
$$

Lemma 2.8 Let $\|\Lambda\|<\infty$. Then, $A \in\left(V_{\sigma}: c^{\lambda}\right)_{\text {reg }}$ if and only if

$$
\begin{gather*}
A \in\left(c: c^{\lambda}\right)_{\text {reg }} \tag{5}\\
A(T-I) \in\left(\ell_{\infty}: c_{0}^{\lambda}\right) \tag{6}
\end{gather*}
$$

Lemma 2.9 Let $\|\Lambda\|<\infty$. Then, $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$ if and only if the condition (5) holds, and

$$
\begin{equation*}
\lim _{m} \sum_{k \in E}\left|\frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\right|=0 \tag{7}
\end{equation*}
$$

for every $E \subseteq N$ with $\delta(E)=0$.
Proof. Suppose first that $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$. Then, (5) follows from the fact that $c \subset s t \cap \ell_{\infty}$. Now, for a given $x \in \ell_{\infty}$ and a subset E of N with $\delta(E)=0$, let us define a sequence $y=\left(y_{k}\right)$ by

$$
y_{k}= \begin{cases}x_{k}, & k \in E \\ 0, & k \notin E\end{cases}
$$

By our assumption, since $y \in s t_{0} \cap \ell_{\infty}$, we have $A y \in c_{0}^{\lambda}$. On the other hand, since $A y=\sum_{k \in E} a_{n k} x_{k}$, the matrix $D=\left(d_{n k}\right)$ defined by

$$
d_{n k}= \begin{cases}a_{n k}, & k \in E \\ 0, & k \notin E\end{cases}
$$

for all n, must be in $\left(\ell_{\infty}: c_{0}^{\lambda}\right)$. Thus, the necessity of (7) follows from Lemma 2.6.

Conversely, let (5) and (7) hold and let x be any sequence in $s t \cap \ell_{\infty}$ with st $-\lim x=\ell$. Write $E=\left\{k:\left|x_{k}-\ell\right| \geq \varepsilon\right\}$ for any given $\varepsilon>0$, so that $\delta(E)=0$. Since $A \in\left(c: c^{\lambda}\right)_{\text {reg }}$, we have

$$
\begin{aligned}
\lim _{m} \sum_{k} \sum_{n=0}^{m} \lambda_{m n} a_{n k} x_{k} & =\lim _{m}\left(\sum_{k} \sum_{n=0}^{m} \lambda_{m n} a_{n k}\left(x_{k}-\ell\right)+\ell \sum_{k} \sum_{n=0}^{m} \lambda_{m n} a_{n k}\right) \\
& =\lim _{m} \sum_{k} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\left(x_{k}-\ell\right)+\ell .
\end{aligned}
$$

On the other hand,

$$
\left|\sum_{k} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\left(x_{k}-\ell\right)\right| \leq\|x\| \sum_{k \in E} \frac{1}{\lambda_{m}}\left|\sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\right|+\varepsilon\|\Lambda\|\|A\|,
$$

the condition (7) implies that

$$
\begin{equation*}
\lim _{m} \sum_{k} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\left(x_{k}-\ell\right)=0 \tag{8}
\end{equation*}
$$

Hence, $\lim \Lambda(A x)=s t-\lim x$; that is, $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$, which completes the proof.

Lemma 2.10 Let $\|\Lambda\|<\infty$. Then, $A \in\left(\ell_{\infty}: c s^{\lambda}\right)$ if and only if the condition (1) of the Lemma 2.5 holds and

$$
\begin{gather*}
\lim _{m} \sum_{n=0}^{m} \frac{1}{\lambda_{n}} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) a_{i k}=\alpha_{k} \text { for each } k \tag{9}\\
\lim _{m} \sum_{k}\left|\sum_{n=0}^{m} \frac{1}{\lambda_{n}} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) a_{i k}-\alpha_{k}\right|=0 \tag{10}
\end{gather*}
$$

Lemma 2.11 Let $\|\Lambda\|<\infty$. Then, $A \in\left(\ell_{\infty}: c s_{0}^{\lambda}\right)$ if and only if the conditions (1) and (10) hold with $\alpha_{k}=0$ for all $k \in N$.

Lemma 2.12 Let $\|\Lambda\|<\infty$. Then, $A \in\left(c: c s^{\lambda}\right)_{\text {reg }}$ if and only if the conditions (1) and (9) hold with $\alpha_{k}=0$ for all $k \in N$ and

$$
\begin{equation*}
\lim _{m} \sum_{k} \sum_{n=0}^{m} \frac{1}{\lambda_{n}} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) a_{i k}=1 . \tag{11}
\end{equation*}
$$

Lemma 2.13 Let $\|\Lambda\|<\infty$. Then, $A \in\left(V_{\sigma}: c s^{\lambda}\right)_{\text {reg }}$ if and only if

$$
\begin{gather*}
A \in\left(c, c s^{\lambda}\right)_{\text {reg }} \tag{12}\\
A(T-I) \in\left(\ell_{\infty}, c s_{0}^{\lambda}\right) . \tag{13}
\end{gather*}
$$

Lemma 2.14 Let $\|\Lambda\|<\infty$. Then, $A \in\left(s t \cap \ell_{\infty}: c s^{\lambda}\right)_{\text {reg }}$ if and only if the condition (12) holds, and

$$
\begin{equation*}
\lim _{m} \sum_{k \in E}\left|\sum_{n=0}^{m} \frac{1}{\lambda_{n}} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) a_{i k}\right|=0 \tag{14}
\end{equation*}
$$

for every $E \subseteq N$ with $\delta(E)=0$.

$3 \mathcal{K}_{\Lambda}$-Core

In this section, we define the concept of \mathcal{K}_{Λ}-core and give some core theorems related to the space c^{λ}.

Definition 3.1 Let $x \in \ell_{\infty}$. Then, $\mathcal{K}_{\Lambda}-$ core of x is defined by the closed interval $\left[-L_{\Lambda}(-x), L_{\Lambda}(x)\right]$, where

$$
\begin{equation*}
L_{\Lambda}(x)=\limsup _{m} \frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) x_{n} . \tag{15}
\end{equation*}
$$

From the definition, it is easy to see that $\mathcal{K}_{\Lambda}-\operatorname{core}(x)=\{\ell\}$ if and only if $\lim \Lambda_{m}(x)=\ell$, that is, $x \in c^{\lambda}$.

Theorem 3.2 Let $\|\Lambda\|<\infty$. Then, $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq \mathcal{K}-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ if and only if $A \in\left(c: c^{\lambda}\right)_{\text {reg }}$ and

$$
\begin{equation*}
\lim _{m} \sum_{k} \frac{1}{\lambda_{m}}\left|\sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k}\right|=1 \tag{16}
\end{equation*}
$$

Proof. Suppose first that $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq \mathcal{K}-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$. In this case, $L_{\Lambda}(A x) \leq L(x)$ for all $x \in \ell_{\infty}$. Then, one can easily see that

$$
l(x) \leq-L_{\Lambda}(-A x) \leq L_{\Lambda}(A x) \leq L(x)
$$

If $x \in c$, then $l(x)=L(x)=\lim x$ and hence $-L_{\Lambda}(-A x)=L_{\Lambda}(A x)=$ $\lim \Lambda(A x)=\lim x$. This means that $A \in\left(c: c^{\lambda}\right)_{\text {reg }}$.

Now, let us define $C=\left(c_{m k}\right)$ by

$$
\begin{equation*}
c_{m k}=\frac{1}{\lambda_{m}} \sum_{n=0}^{m}\left(\lambda_{n}-\lambda_{n-1}\right) a_{n k} \tag{17}
\end{equation*}
$$

for all $k, m \in N$. Then, it is easy to see that the conditions of Lemma 2.1 are satisfied by the matrix C. Hence, there is a $y \in \ell_{\infty}$ such that $\|y\| \leq 1$ and

$$
\limsup _{m} \sum_{k} c_{m k} y_{k}=\limsup _{m} \sum_{k}\left|c_{m k}\right| \text {. }
$$

Therefore, by using the hypothesis, we can write

$$
\begin{aligned}
1 & \leq \liminf _{m} \sum_{k}\left|c_{m k}\right| \leq \underset{m}{\limsup } \sum_{k}\left|c_{m k}\right| \\
& =\limsup \sum_{k} c_{m k} y_{k}=L_{\Lambda}(A y) \leq L(y) \leq\|y\| \leq 1
\end{aligned}
$$

This gives the necessity of (16).
Conversely, suppose that $A \in\left(c: c^{\lambda}\right)_{\text {reg }}$ and (16) holds for all $x \in \ell_{\infty}$. For any real number z, we write $z^{+}:=\max \{z, 0\}, z^{-}:=\max \{-z, 0\},|z|=$ $z^{+}+z^{-}, z=z^{+}-z^{-}$and $|z|-z=2 z^{-}$. Thus, for any given $\varepsilon>0$, there is a $k_{0} \in N$ such that $x_{k}<L(x)+\varepsilon$ for all $k>k_{0}$. Now, we can write

$$
\begin{aligned}
\sum_{k} c_{m k} x_{k} & =\sum_{k<k_{0}} c_{m k} x_{k}+\sum_{k \geq k_{0}}\left(c_{m k}\right)^{+} x_{k}-\sum_{k \geq k_{0}}\left(c_{m k}\right)^{-} x_{k} \\
& \leq\|x\| \sum_{k<k_{0}}\left|c_{m k}\right|+(L(x)+\varepsilon) \sum_{k}\left|c_{m k}\right|+\|x\| \sum_{k}\left[\left|c_{m k}\right|-c_{m k}\right]
\end{aligned}
$$

Therefore, by applying the operator $\lim \sup _{m}$ to the last inequality and using hypothesis, we have $L_{\Lambda}(A x) \leq L(x)+\varepsilon$. Hence, the proof is completed, since ε is arbitrary and $x \in \ell_{\infty}$.

Theorem 3.3 Let $\|\Lambda\|<\infty$. Then, $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ if and only if $A \in\left(V_{\sigma}: c^{\lambda}\right)_{\text {reg }}$ and (16) hold.

Proof. Let $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$. Then, since $L_{\Lambda}(A x) \leq q_{\sigma}(x)$ and $q_{\sigma}(x) \leq L(x)$ for all $x \in \ell_{\infty}$, the necessity of (16) follows from Theorem 3.2.

Also, we can write that

$$
-q_{\sigma}(-x) \leq-L_{\Lambda}(-A x) \leq L_{\Lambda}(A x) \leq q_{\sigma}(x)
$$

i.e.,

$$
\sigma-\liminf x \leq-L_{\Lambda}(-A x) \leq L_{\Lambda}(A x) \leq \sigma-\lim \sup x
$$

If x is chosen in V_{σ}, then $\sigma-\lim \inf x=\sigma-\lim \sup x=\sigma-\lim x$. Therefore, we have from the last inequality that $-L_{\Lambda}(-A x)=L_{\Lambda}(A x)=\lim \Lambda(A x)=$ $\sigma-\lim x$ and so, $A \in\left(V_{\sigma}: c^{\lambda}\right)_{\text {reg }}$.

Conversely, suppose that $A \in\left(V_{\sigma}: c^{\lambda}\right)_{\text {reg }}$ and (16) holds. In this case, since $c \subset V_{\sigma}$, by using Theorem 3.2, we have $L_{\Lambda}(A x) \leq L(x)$ for all $x \in \ell_{\infty}$.

$$
\begin{equation*}
\inf _{z \in V_{0 \sigma}} L_{\Lambda}(A x+A z) \leq \inf _{z \in V_{0 \sigma}} L(x+z)=W(x) \tag{18}
\end{equation*}
$$

On the other hand, since $A z \in c_{0}^{\lambda}$ for $z \in V_{0 \sigma}$, we can write that

$$
\begin{equation*}
\inf _{z \in V_{0 \sigma}} L_{\Lambda}(A x+A z) \geq L_{\Lambda}(A x)+\inf _{z \in V_{0 \sigma}} L_{\Lambda}(A z)=L_{\Lambda}(A x) \tag{19}
\end{equation*}
$$

Thus, combining the statements (18) and (19), we obtain that $L_{\Lambda}(A x) \leq W(x)$ for all $x \in \ell_{\infty}$ which completes the proof, since $q_{\sigma}(x)=W(x)$, [12].

Theorem 3.4 Let $\|\Lambda\|<\infty$. Then, $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq$ st-core (x) for all $x \in \ell_{\infty}$ if and only if $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$ and (16) hold.

Proof. Assume that $\mathcal{K}_{\Lambda}-\operatorname{core}(A x) \subseteq$ st $-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$. Then, $L_{\Lambda}(A x) \leq \beta(x)$ for all $x \in \ell_{\infty}$ where $\beta(x)=s t-\lim \sup x$. Hence, since $\beta(x)=s t-\limsup x \leq L(x)$ for all $x \in \ell_{\infty}$ (see [7]), we obtain (16) from Theorem 3.2. Furthermore, we can write that

$$
-\beta(-x) \leq-L_{\Lambda}(-A x) \leq L_{\Lambda}(A x) \leq \beta(x)
$$

i.e.,

$$
s t-\liminf x \leq-L_{\Lambda}(-A x) \leq L_{\Lambda}(A x) \leq s t-\lim \sup x
$$

If $x \in s t \cap \ell_{\infty}$, then $s t-\lim \inf x=s t-\lim \sup x=s t-\lim x$. Thus, the last inequality implies that st $-\lim x=-L_{\Lambda}(-A x)=L_{\Lambda}(A x)=\lim \Lambda(A x)$, that is, $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$.

Conversely, assume that $A \in\left(s t \cap \ell_{\infty}: c^{\lambda}\right)_{\text {reg }}$ and (16) hold. If $x \in \ell_{\infty}$, then $\beta(x)$ is finite. Let E be a subset of N defined by $E=\left\{k: x_{k}>\beta(x)+\varepsilon\right\}$ for any given $\varepsilon>0$. Then it is obvious that $\delta(E)=0$ and $x_{k} \leq \beta(x)+\varepsilon$ if $k \notin E$. Now, we can write that

$$
\begin{aligned}
& \sum_{k} c_{m k} x_{k}= \sum_{k<k_{0}} c_{m k} x_{k}+\sum_{k \geq k_{0}} c_{m k} x_{k}=\sum_{k<k_{0}} c_{m k} x_{k}+\sum_{k \geq k_{0}} c_{m k}^{+} x_{k}-\sum_{k \geq k_{0}} c_{m k}^{-} x_{k} \\
& \leq\|x\| \sum_{k<k_{0}}\left|c_{m k}\right|+\sum_{\substack{k \geq k_{0} \\
k \notin E}} c_{m k}^{+} x_{k}+\sum_{\substack{k \geq k_{0} \\
k \in E}} c_{m k}^{+} x_{k}+\|x\| \sum_{k \geq k_{0}}\left(\left|c_{m k}\right|-c_{m k}\right) \\
& \leq\|x\| \sum_{k<k_{0}}\left|c_{m k}\right|+(\beta(x)+\varepsilon) \sum_{\substack{k \geq k_{0} \\
k \notin E}}\left|c_{m k}\right|+\|x\| \sum_{\substack{k \geq k_{0} \\
k \in E}}\left|c_{m k}\right| \\
&+\|x\| \sum_{k \geq k_{0}}\left[\left|c_{m k}\right|-c_{m k}\right],
\end{aligned}
$$

where $C=\left(c_{m k}\right)$ is defined by (17). By applying the operator $\lim \sup _{m}$ to the last inequality and using hypothesis, it follows that $L_{\Lambda}(A x) \leq \beta(x)+\varepsilon$. This completes the proof, since ε is arbitrary.

$4 \quad S_{\Lambda}$-Core

In this section, the concept of S_{Λ}-core for $x \in \ell_{\infty}$ is defined and necessary and sufficient conditions for a matrix A to satisfy $S_{\Lambda}-\operatorname{core}(A x) \subseteq \mathcal{K}-\operatorname{core}(x)$, $S_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x)$ and $S_{\Lambda}-\operatorname{core}(A x) \subseteq s t-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ are determined.

Definition 4.1 Let $x \in \ell_{\infty}$. Then, S_{Λ}-core of x is defined by the closed interval $\left[-M^{*}(-x), M^{*}(x)\right]$, where

$$
M^{*}(x)=\limsup _{m \rightarrow \infty} \sum_{n=0}^{m} \frac{1}{\lambda} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) x_{i} .
$$

From the definition, it is easy to see that $S_{\Lambda}-\operatorname{core}(x)=\ell$ if and only if $\lim _{m} \sum_{n=0}^{m}(\Lambda x)_{n}=\ell$, that is, $x \in c s^{\lambda}$.

Theorem 4.2 Let $\|\Lambda\|<\infty$. Then, $S_{\Lambda}-\operatorname{core}(A x) \subseteq \mathcal{K}-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ if and only if $A \in\left(c: c s^{\lambda}\right)_{\text {reg }}$ and

$$
\begin{equation*}
\lim _{m} \sum_{k}\left|\sum_{n=0}^{m} \frac{1}{\lambda_{n}} \sum_{i=0}^{n}\left(\lambda_{i}-\lambda_{i-1}\right) a_{i k}\right|=1 . \tag{20}
\end{equation*}
$$

Theorem 4.3 Let $\|\Lambda\|<\infty$. Then, $S_{\Lambda}-\operatorname{core}(A x) \subseteq \sigma-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ if and only if $A \in\left(V_{\sigma}: c s^{\lambda}\right)_{\text {reg }}$ and (20) hold.

Theorem 4.4 Let $\|\Lambda\|<\infty$. Then, $S_{\Lambda}-\operatorname{core}(A x) \subseteq$ st $-\operatorname{core}(x)$ for all $x \in \ell_{\infty}$ if and only if $A \in\left(s t \cap \ell_{\infty}: c s^{\lambda}\right)_{\text {reg }}$ and (20) hold.

Since Theorem 4.2, 4.3 and 4.4 can be proved similarly with Theorem 3.2, 3.3 and 3.4 , proofs of their are trivial.

Acknowledgements: We have benefited a lot from the referees reports. So, we thank the reviewers for their careful reading and making some useful comments which improved the presentation of the paper.

References

[1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-Books, Monographs, İstanbul, (2012).
[2] B. Choudhary, An extension of Knopp's core theorem, J. Math. Anal. Appl., 132(1988), 226-233.
[3] R.G. Cooke, Infinite Matrices and Sequence Spaces, Macmillian, New York, (1950).
[4] H. Çoşkun, C. Çakan and Mursaleen, On the statistical and σ-core, Studia Math., 154(1) (2003), 29-35.
[5] H. Çoşkun and C. Çakan, Infinite matrices and σ-core, Demonstratio Math., 34(2001), 825-830.
[6] G. Das, Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica, 15(1987), 89-106.
[7] J. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125(1997), 3625-3631.
[8] K. Kayaduman and H. Çoşkun, On the $\sigma^{(A)}$-summability and $\sigma^{(A)}$-core, Demonstratio Math., 40(4) (2007), 859-867.
[9] M. Kaya and H. Furkan, On the spaces of λ-convergent and bounded series, (under Comminication).
[10] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.
[11] I.J. Maddox, Some analogues of Knopp's core theorem, Int. J. Math. Math. Sci., 2(1979), 605-614.
[12] S.L. Mishra, B. Satapathy and N. Rath, Invariant means and σ-core, J. Indian Math. Soc., 60(1994), 151-158.
[13] M. Mursaleen and A.K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math., 8(2) (2010), 311-329.
[14] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford Ser., 2(34)(133) (1983), 77-86.
[15] C. Orhan, Sublinear functionals and Knopp's core theorem, Int. J. Math. Math. Sci., 3(1990), 461-468.
[16] R. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1963), 81-94.

