Gen. Math. Notes, Vol. 20, No. 2, February 2014, pp. 136-141
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

A Formula for Tetranacci-Like Sequence

Bijendra Singh ${ }^{1}$, Pooja Bhadouria ${ }^{2}$, Omprakash Sikhwal ${ }^{3}$ and Kiran Sisodiya ${ }^{4}$
${ }^{1,2,4}$ School of Studies in Mathematics, Vikram University Ujjain, (M.P.), India
${ }^{3}$ Department of Mathematics, Mandsaur Institute of Technology
Mandsaur, (M.P.), India
${ }^{1}$ E-mail: bijendrasingh@yahoo.com
${ }^{2}$ Email: pooja.kajal@yahoo.co.in
${ }^{3}$ Email: opbhsikhwal@rediffmail.com
${ }^{4}$ Email: kiran.sisodiya@yahoo.com

(Received: 16-11-13 / Accepted: 13-12-13)

Abstract

Many papers are concerning a variety of generalizations of the Fibonacci sequence. In this paper, we define a Tetranacci-Like sequence in terms of first four terms and then present the general formula for $n^{\text {th }}$ term of the TetranacciLike sequence with derivation.

Keywords: Tetranacci sequence, Tetranacci-Like sequence, Tetranacci numbers.

1 Introduction

Many sequences have been studied for many years now. Arithmetic, Geometric, Harmonic, Fibonacci and Lucas sequences have been very well-defined in Mathematical Journals. On the other hand, Fibonacci-Like sequence, TribonacciLike sequence received little more attention from mathematicians.

Fibonacci sequence is a sequence obtained by adding two preceding terms with the initial conditions 0 and 1 . Similarly, Tribonacci sequence is obtained by adding three preceding terms starting with 0,0 and 1 . Moreover, Fibonacci-Like sequence and Tribonacci-Like sequence defined by the same pattern but the sequences start with two and three arbitrary terms respectively.

Various properties of Fibonacci-Like sequence have been presented in the paper of B. Singh [2]. In [3], Natividad derived a formula in solving a Fibonacci-like sequence using the Binet's formula and Bueno [1] gives the formula for the $\mathrm{k}^{\text {th }}$ term of Natividad's Fibonacci-Like sequence. Also, Natividad [4] established a formula in solving the $\mathrm{n}^{\text {th }}$ term of the Tribonacci-Like sequence.

In this paper, we will derive a general formula to finding the $\mathrm{n}^{\text {th }}$ term of the Tetranacci-Like sequence using its first four terms and tetranacci numbers.

The Tetranacci sequence $\left\{M_{n}\right\}$ [5], [6] defined by the recurrence relation

$$
\begin{equation*}
M_{n}=M_{n-1}+M_{n-2}+M_{n-3}+M_{n-4} \text { for } n \geq 4 \tag{1.1}
\end{equation*}
$$

where $M_{0}=M_{1}=0, M_{2}=M_{3}=1$.
First few terms of the Tetranacci sequence are as:
Table 1: The first 15 terms of Tetranacci Numbers

$\mathrm{n}^{\text {th }}$ term	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tetranacci Numbers	0	0	1	1	2	4	8	15	29	56	108	208	401	773	1490

When the first four terms of the Tetranacci sequence become arbitrary, it is known as Tetranacci-Like sequence.

2 Main Results

The Tetranacci-Like sequence is a sequence with the arbitrary initial terms or we can say that Tetranacci-Like sequence start at any desired numbers.

Let the first four terms of Tetranacci-Like sequence be Q_{1}, Q_{2}, Q_{3} and Q_{4}. Then we shall derive a general formula for Q_{n} given the first four terms.

The sequence $Q_{1}, Q_{2}, Q_{3}, Q_{4}, \ldots, Q_{n}$ is known as generalized Tetranacci sequence (or Tetranacci-Like sequence), if

$$
\begin{equation*}
Q_{n}=Q_{n-4}+Q_{n-3}+Q_{n-2}+Q_{n-1} \tag{1.2}
\end{equation*}
$$

To find the general formula for $\mathrm{n}^{\text {th }}$ term of the Tetranacci-Like sequence, we follow a specific pattern.

From (1.2), we derive some of the equations as

$$
\begin{aligned}
& Q_{5}=Q_{1}+Q_{2}+Q_{3}+Q_{4} \\
& Q_{6}=Q_{1}+2 Q_{2}+2 Q_{3}+2 Q_{4} \\
& Q_{7}=2 Q_{1}+3 Q_{2}+4 Q_{3}+4 Q_{4} \\
& Q_{8}=4 Q_{1}+6 Q_{2}+7 Q_{3}+8 Q_{4} \\
& Q_{9}=8 Q_{1}+12 Q_{2}+14 Q_{3}+15 Q_{4} \\
& Q_{10}=15 Q_{1}+23 Q_{2}+27 Q_{3}+29 Q_{4} \\
& Q_{11}=29 Q_{1}+44 Q_{2}+52 Q_{3}+56 Q_{4}
\end{aligned}
$$

Now we write all the numerical coefficients of Q_{1}, Q_{2}, Q_{3} and Q_{4} in tabular form that were shown in Table 2.

Table 2: Coefficients of Q_{1}, Q_{2}, Q_{3} and Q_{4} of $\mathrm{n}^{\text {th }}$ term of Tetranacci-Like sequence

Number of terms	$n^{\text {th }}$ term of TetranacciLike sequence	Coefficients			
		Q_{1}	Q_{2}	Q_{3}	Q_{4}
1	Q_{5}	1	1	1	1
2	Q_{6}	1	2	2	2
3	Q_{7}	2	3	4	4
4	Q_{8}	4	6	7	8
5	Q_{9}	8	12	14	15
6	Q_{10}	15	23	27	29
7	Q_{11}	29	44	52	56
-
.					
n	Q_{n}	$(n-2)$	$(n-2)+(n-3)$	$(n-2)+(n-3)+(n-4)$	$(n-1)$

After a keen observation of Table 1 and Table 2, we state the following theorem.
Theorem 1: For any real numbers Q_{1}, Q_{2}, Q_{3} and Q_{4}, the formula for finding the $n^{\text {th }}$ term of the Tetranacci-Like sequence is

$$
\begin{equation*}
Q_{n}=M_{n-2} Q_{1}+\left(M_{n-2}+M_{n-3}\right) Q_{2}+\left(M_{n-2}+M_{n-3}+M_{n-4}\right) Q_{3}+M_{n-1} Q_{4} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{n}=\mathrm{n}^{\text {th }} \text { term of Tetranacci-Like sequence } \\
& Q_{1}=\text { first term } \\
& Q_{2}=\text { second term } \\
& Q_{3}=\text { third term } \\
& Q_{4}=\text { fourth term } \\
& M_{n-1}, M_{n-2}, M_{n-3}, M_{n-4}=\text { corresponding tetranacci numbers. }
\end{aligned}
$$

Proof: We shall prove above theorem by the Principle of Mathematical Induction method for $n \geq 5$.

First we take $n=5$, then we get

$$
\begin{aligned}
& Q_{5}=M_{3} Q_{1}+\left(M_{3}+M_{2}\right) Q_{2}+\left(M_{3}+M_{2}+M_{1}\right) Q_{3}+M_{4} Q_{4} \\
& Q_{5}=(1) Q_{1}+(1+0) Q_{2}+(1+0+0) Q_{3}+(1) Q_{4} \\
& Q_{5}=Q_{1}+Q_{2}+Q_{3}+Q_{4}
\end{aligned}
$$

which is true. (by definition of Tetranacci-Like sequence)
Now, we assume that the theorem is true for some integer k (>5), i.e.

$$
\begin{equation*}
P(k): Q_{k}=M_{k-2} Q_{1}+\left(M_{k-2}+M_{k-3}\right) Q_{2}+\left(M_{k-2}+M_{k-3}+M_{k-4}\right) Q_{3}+M_{k-1} Q_{4} \tag{1.4}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true, i.e.

$$
\begin{equation*}
P(k+1): Q_{k+1}=M_{k-1} Q_{1}+\left(M_{k-1}+M_{k-2}\right) Q_{2}+\left(M_{k-1}+M_{k-2}+M_{k-3}\right) Q_{3}+M_{k} Q_{4} \tag{1.5}
\end{equation*}
$$

To verify above equation, we shall add Q_{k-1}, Q_{k-2} and Q_{k-3} on both side of $\mathrm{P}(\mathrm{k})$, then eq.(1.4) becomes

$$
\begin{align*}
Q_{k}+Q_{k-1}+Q_{k-2}+Q_{k-3} & =M_{k-2} Q_{1}+\left(M_{k-2}+M_{k-3}\right) Q_{2}+\left(M_{k-2}+M_{k-3}+M_{k-4}\right) Q_{3} \\
& +M_{k-1} Q_{4}+Q_{k-1}+Q_{k-2}+Q_{k-3} \tag{1.6}
\end{align*}
$$

By equation (1.4), we have

$$
\begin{aligned}
& Q_{k-1}=M_{k-3} Q_{1}+\left(M_{k-3}+M_{k-4}\right) Q_{2}+\left(M_{k-3}+M_{k-4}+M_{k-5}\right) Q_{3}+M_{k-2} Q_{4} \\
& Q_{k-2}=M_{k-4} Q_{1}+\left(M_{k-4}+M_{k-5}\right) Q_{2}+\left(M_{k-4}+M_{k-5}+M_{k-6}\right) Q_{3}+M_{k-3} Q_{4} \\
& Q_{k-3}=M_{k-5} Q_{1}+\left(M_{k-5}+M_{k-6}\right) Q_{2}+\left(M_{k-5}+M_{k-6}+M_{k-7}\right) Q_{3}+M_{k-4} Q_{4}
\end{aligned}
$$

Use above in eq. (1.6), we obtain

$$
\begin{align*}
& Q_{k}+Q_{k-1}+Q_{k-2}+Q_{k-3} \\
& =M_{k-2} Q_{1}+\left(M_{k-2}+M_{k-3}\right) Q_{2}+\left(M_{k-2}+M_{k-3}+M_{k-4}\right) Q_{3}+M_{k-1} Q_{4} \\
& M_{k-3} Q_{1}+\left(M_{k-3}+M_{k-4}\right) Q_{2}+\left(M_{k-3}+M_{k-4}+M_{k-5}\right) Q_{3}+M_{k-2} Q_{4} \\
& M_{k-4} Q_{1}+\left(M_{k-4}+M_{k-5}\right) Q_{2}+\left(M_{k-4}+M_{k-5}+M_{k-6}\right) Q_{3}+M_{k-3} Q_{4} \\
& M_{k-5} Q_{1}+\left(M_{k-5}+M_{k-6}\right) Q_{2}+\left(M_{k-5}+M_{k-6}+M_{k-7}\right) Q_{3}+M_{k-4} Q_{4} \\
& Q_{k+1}=\left(M_{k-2}+M_{k-3}+M_{k-4}+M_{k-5}\right) Q_{1}+\left[\left(M_{k-2}+M_{k-3}+M_{k-4}+M_{k-5}\right)+\right. \\
& \left.\quad\left(M_{k-3}+M_{k-4}+M_{k-5}+M_{k-6}\right)\right] Q_{2}+\left[\left(M_{k-2}+M_{k-3}+M_{k-4}+M_{k-5}\right)+\right. \\
& \left.\quad\left(M_{k-3}+M_{k-4}+M_{k-5}+M_{k-6}\right)+\left(M_{k-4}+M_{k-5}+M_{k-6}+M_{k-7}\right)\right] Q_{3}+ \\
& \quad\left(M_{k-1}+M_{k-2}+M_{k-3}+M_{k-4}\right) Q_{4} \tag{1.7}
\end{align*}
$$

Now by the definition of Tetranacci sequence eq. (1.7) becomes

$$
Q_{k+1}=M_{k-1} Q_{1}+\left[M_{k-1}+M_{k-2}\right] Q_{2}+\left[M_{k-1}+M_{k-2}+M_{k-3}\right] Q_{3}+M_{k} Q_{4}
$$

Thus by the Mathematical Induction $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true. Hence the theorem is verified.

3 Conclusion

In this paper, we have introduced Tetranacci-Like sequence using its first four terms and Tetranacci numbers and derived the general formula of $\mathrm{n}^{\text {th }}$ term of the Tetranacci-Like sequence. The method of Mathematical Induction has been used.

Acknowledgement

The authors would like to thanks the anonymous referee for carefully reading the paper and for their comments.

References

[1] A.C.F. Bueno, Solving the $\mathrm{k}^{\text {th }}$ term of Natividad's Fibonacci-like sequence, International Journal of Mathematics and Scientific Computing, 3(1) (2013), 8.
[2] B. Singh, O.P. Sikhwal and S. Bhatanagar, Fibonacci-Like sequence and its properties, Int. J. Contemp. Math. Sciences, 5(18) (2010), 859-868.
[3] L.R. Natividad, Deriving a formula in solving Fibonacci-like sequence, International Journal of Mathematics and Scientific Computing, 1(1) (2011), 19-21.
[4] L.R. Natividad and P.B. Policarpio, A novel formula in solving Tribonacci-like sequence, Gen. Math. Notes, 17(1) (2013), 82-87.
[5] M.E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quarterly, 30(1) (1992), 9-19.
[6] M.E. Waddill, Some properties of the Tetranacci sequence, Modulo M, August 30(3) (1992), 232-238.

