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Abstract 
Many papers are concerning a variety of generalizations of the Fibonacci 
sequence. In this paper, we define a Tetranacci-Like sequence in terms of first 
four terms and then present the general formula for nth term of the Tetranacci-
Like sequence with derivation. 
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1 Introduction 
 
Many sequences have been studied for many years now. Arithmetic, Geometric, 
Harmonic, Fibonacci and Lucas sequences have been very well-defined in 
Mathematical Journals. On the other hand, Fibonacci-Like sequence, Tribonacci-
Like sequence received little more attention from mathematicians. 
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Fibonacci sequence is a sequence obtained by adding two preceding terms with 
the initial conditions 0 and 1. Similarly, Tribonacci sequence is obtained by 
adding three preceding terms starting with 0, 0 and 1. Moreover, Fibonacci-Like 
sequence and Tribonacci-Like sequence defined by the same pattern but the 
sequences start with two and three arbitrary terms respectively. 
 
Various properties of Fibonacci-Like sequence have been presented in the paper 
of B. Singh [2]. In [3], Natividad derived a formula in solving a Fibonacci-like 
sequence using the Binet’s formula and Bueno [1] gives the formula for the kth 
term of Natividad’s Fibonacci-Like sequence. Also, Natividad [4] established a 
formula in solving the nth term of the Tribonacci-Like sequence. 
 
In this paper, we will derive a general formula to finding the nth term of the 
Tetranacci-Like sequence using its first four terms and tetranacci numbers. 
 
The Tetranacci sequence { }nM  [5], [6] defined by the recurrence relation 

  

1 2 3 4 4,n n n n nM M M M M for n− − − −= + + + ≥       (1.1) 

 
where 0 1 2 30, 1.M M M M= = = =  

 
First few terms of the Tetranacci sequence are as: 
 

Table 1: The first 15 terms of Tetranacci Numbers 
 
nth term 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Tetranacci 

Numbers 

0 0 1 1 2 4 8 15 29 56 108 208 401 773 1490 

 
When the first four terms of the Tetranacci sequence become arbitrary, it is known 
as Tetranacci-Like sequence. 
 

2 Main Results 
 
The Tetranacci-Like sequence is a sequence with the arbitrary initial terms or we 
can say that Tetranacci-Like sequence start at any desired numbers. 
 
Let the first four terms of Tetranacci-Like sequence be 1 2 3 4, , .Q Q Q and Q Then 

we shall derive a general formula for nQ  given the first four terms.  

 
The sequence 1 2 3 4, , , ,..., nQ Q Q Q Q  is known as generalized Tetranacci 

sequence (or Tetranacci-Like sequence), if  
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 4 3 2 1n n n n nQ Q Q Q Q− − − −= + + +          (1.2) 

 
To find the general formula for nth term of the Tetranacci-Like sequence, we 
follow a specific pattern.   
 
From (1.2), we derive some of the equations as 
 

5 1 2 3 4

6 1 2 3 4

7 1 2 3 4

8 1 2 3 4

9 1 2 3 4

10 1 2 3 4

11 1 2 3 4

2 2 2

2 3 4 4

4 6 7 8

8 12 14 15

15 23 27 29

29 44 52 56

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

= + + +
= + + +
= + + +
= + + +
= + + +
= + + +
= + + +

 

 
Now we write all the numerical coefficients of 1 2 3 4, ,Q Q Q and Q in tabular 

form that were shown in Table 2.  
 

Table 2: Coefficients of 1 2 3 4, , andQ Q Q Q of nth term of Tetranacci-Like 

sequence      
  

Number 
of terms 

nth term of 
Tetranacci-

Like 
sequence 

Coefficients 

  Q1 Q2 Q3 Q4 
1 
2 
3 
4 
5 
6 
7 
. 
. 
. 
n 

Q5 

Q6 

Q7 

Q8 

Q9 

Q10 

Q11 

. 

. 

. 

nQ  

1 
1 
2 
4 
8 
15 
29 
. 
. 
. 
( 2)n−
 

1 
2 
3 
6 
12 
23 
44 
. 
. 
. 
( 2) ( 3)n n− + −
 

1 
2 
4 
7 
14 
27 
52 
. 
. 
. 
( 2) ( 3) ( 4)n n n− + − + −
 

1 
2 
4 
8 
15 
29 
56 
. 
. 
. 
( 1)n −
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After a keen observation of Table 1 and Table 2, we state the following theorem.  
 
Theorem 1: For any real numbers1 2 3 4, ,Q Q Q and Q, the formula for finding 

the nth term of the Tetranacci-Like sequence is  
 

2 1 2 3 2 2 3 4 3 1 4( ) ( )n n n n n n n nQ M Q M M Q M M M Q M Q− − − − − − −= + + + + + + , 
              (1.3) 

 
where 

th

1

2

3

4

1 2 3 4

n term of sequence

first term

second term

third t

T

erm

fourth te

e

rm

, , , corresponding tetranacci numbers.

tranacci-Liken

n n n n

Q

Q

Q

Q

Q

M M M M− − − −

=
=
=
=
=

=

 

 
Proof: We shall prove above theorem by the Principle of Mathematical Induction 
method for 5.n ≥  
 
First we take 5,n = then we get 
 
 5 3 1 3 2 2 3 2 1 3 4 4( ) ( )Q M Q M M Q M M M Q M Q= + + + + + +  

 5 1 2 3 4(1) (1 0) (1 0 0) (1)Q Q Q Q Q= + + + + + +  

 5 1 2 3 4Q Q Q Q Q= + + + , 
 
which is true. (by definition of Tetranacci-Like sequence) 
 
Now, we assume that the theorem is true for some integer k (>5), i.e. 
 

( ) : ( ) ( )1 2 3 42 2 3 2 3 4 1P k Q M Q M M Q M M M Q M Qk k k k k k k k= + + + + + +− − − − − − −  
              

    (1.4)  
 
We shall now prove that P(k+1) is true whenever P(k) is true, i.e. 
 

( 1) : ( ) ( )1 2 3 41 1 1 2 1 2 3P k Q M Q M M Q M M M Q M Qk k k k k k k k+ = + + + + + ++ − − − − − −  

          
    (1.5) 
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To verify above equation, we shall add 1 2,k kQ Q− −  and 3kQ −  on both side of 

P(k), then eq.(1.4) becomes 
 

( ) ( )1 2 31 2 3 2 2 3 2 3 4

41 1 2 3

Q Q Q Q M Q M M Q M M M Qk k k k k k k k k k

M Q Q Q Qk k k k

+ + + = + + + + +− − − − − − − − −

+ + + +− − − −

              

(1.6) 
 
By equation (1.4), we have 
 

( ) ( )1 2 3 41 3 3 4 3 4 5 2Q M Q M M Q M M M Q M Qk k k k k k k k= + + + + + +− − − − − − − −  
 

( ) ( )1 2 3 42 4 4 5 4 5 6 3Q M Q M M Q M M M Q M Qk k k k k k k k= + + + + + +− − − − − − − −  
 

( ) ( )1 2 3 43 5 5 6 5 6 7 4Q M Q M M Q M M M Q M Qk k k k k k k k= + + + + + +− − − − − − − −  

 
Use above in eq. (1.6), we obtain 
 

1 2 3

2 1 2 3 2 2 3 4 3 1 4

3 1 3 4 2 3 4 5 3 2 4

4 1 4 5 2 4 5 6 3 3 4

5 1 5 6 2 5 6 7 3 4

( ) ( )

( ) ( )

( ) ( )

( ) ( )

k k k k

k k k k k k k

k k k k k k k

k k k k k k k

k k k k k k k

Q Q Q Q

M Q M M Q M M M Q M Q

M Q M M Q M M M Q M Q

M Q M M Q M M M Q M Q

M Q M M Q M M M Q M

− − −

− − − − − − −

− − − − − − −

− − − − − − −

− − − − − − −

+ + +
= + + + + + +

+ + + + + +
+ + + + + +
+ + + + + + 4Q  

 

1 2 3 4 5 1 2 3 4 5

3 4 5 6 2 2 3 4 5

3 4 5 6 4 5 6 7 3

1 2 3 4 4

( ) [( )

( )] [( )

( ) ( )]

( )

k k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k

Q M M M M Q M M M M

M M M M Q M M M M

M M M M M M M M Q

M M M M Q

+ − − − − − − − −

− − − − − − − −

− − − − − − − −

− − − −

= + + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + +

              (1.7) 
 
Now by the definition of Tetranacci sequence eq. (1.7) becomes 
 

1 1 1 1 2 2 1 2 3 3 4[ ] [ ]k k k k k k k kQ M Q M M Q M M M Q M Q+ − − − − − −= + + + + + +  

 
Thus by the Mathematical Induction P(k+1) is true, whenever P(k) is true. Hence 
the theorem is verified. 
 
 
 
 



A Formula for Tetranacci-Like Sequence…                                                        141 

 

 

3 Conclusion 
 
In this paper, we have introduced Tetranacci-Like sequence using its first four 
terms and Tetranacci numbers and derived the general formula of nth term of the 
Tetranacci-Like sequence. The method of Mathematical Induction has been used. 
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