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Abstract. We use the theory of nonabelian derived functors to prove that
certain Baer invariants of a group G are torsion when G has torsion second
integral homology. We use this result to show that if such a group has
torsion-free abelianisation then the Lie algebra formed from the quotients of
the lower central series of G is isomorphic to the free Lie algebra on Gab.
We end the paper with some related remarks about precrossed modules and
partial Lie algebras.
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1. Introduction

The lower central series of a group G is defined by setting γ1G = G and
γn+1G = [γnG,G] for n > 1. The quotients of this series form a Lie algebra
(over Z)

ΓG =
⊕
n>1

γnG/γn+1G,

where the Lie bracket is induced by the commutator maps γmG × γnG →
γm+nG, (x, y) 7→ [x, y] = xyx−1y−1.

Also associated to the group G is the free Lie algebra L(Gab) on the abelian
group Gab = G/γ2G. This is defined, up to isomorphism, by the following
universal property: there is an additive homomorphism ι : Gab → L(Gab) such
that, for any other Lie algebra M and additive homomorphism α : Gab → M ,
there exists a unique Lie homomorphism α : L(Gab) → M making the triangle

Gab
ι //

α

$$HHHHHHHHH
L(Gab)

α

²²
M

commute. The existence of L(Gab) follows from general considerations, and the
universal property implies that ι must be injective.

The canonical inclusion φ : Gab → ΓG induces a (surjective) homomorphism
φ : L(Gab) ³ ΓG. A result of Magnus [10] and Witt [13] asserts that φ is an
isomorphism when G is a free group. In this paper we shall prove the following.
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Theorem 1. If the second integral homology H2(G,Z) is a torsion group then
ker φ lies in the torsion subgroup of the additive group of L(Gab). In particular
φ : L(Gab) ³ ΓG is an isomorphism under the additional assumption that Gab

is torsion free.

A variant of this theorem was proved by Strebel [12]. His proof involves
the Poincaré-Birkhoff-Witt theorem and techniques from classical homological
algebra. Although Theorem 1 could be deduced from Strebel’s work, we shall
give an alternative proof involving the theory of nonabelian derived functors
developed by Hvedri Inassaridze [6] and others. We shall derive the theorem
from the following result on the Baer invariants

M (n)(G) =
R ∩ γn+1F

γn+1(R,F )
, n > 1,

which are defined in terms of a free presentation G ∼= F/R. Here F is a free
group with normal subgroup R, γ1(R,F ) = R and γn+1(R, F ) = [γn(R,F ), F ]
for n > 1. The invariants M (n)(G) are abelian groups and are independent
of the choice of free presentation (cf. [9]). Note that Hopf’s formula states
M (1)(G) ∼= H2(G,Z).

Theorem 2. If M (1)(G) is a torsion group then M (n)(G) is a torsion group
for all n > 1.

We end the paper with some related remarks about the partial Lie algebra
formed from the lower Peiffer central series of a precrossed module.

2. The Proof of Theorem 1

For all n > 1 a normal inclusion N 6 G gives rise to a natural five term exact
sequence (cf. [8])

M (n)(G) → M (n)(G/N) → N/γn+1(N, G) → G/γn+1G → G/Nγn+1G → 1 .

On taking N = γ2G we obtain the exact sequence

M (n)(G)
λ−→ M (n)(Gab) → γn+1G/γn+2G → 0 . (1)

It is explained in [3] that there is a natural isomorphism of abelian groups

L(Gab) ∼=
⊕
n>1

M (n)(Gab) . (2)

When G = F is a free group this isomorphism is precisely the Magnus-Witt iso-
morphism. The isomorphism is obtained for arbitrary G by describing
L((F/R)ab) as a quotient of L(Fab). We can combine (1) and (2) to obtain
an exact sequence

⊕
n>1

M (n)(G)
⊕λ−→ L(Gab)

φ−→ ΓG → 1.

The first assertion of Theorem 1 follows from this sequence and Theorem 2.
The second assertion then follows from the following claim applied to A = Gab.
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Claim 1. If A is a torsion-free abelian group, then the additive group of the free
Lie algebra L(A) is torsion-free.

To prove the claim suppose that A is a torsion-free abelian group. Let T (A) =
⊕n>1(⊗nA) denote the tensor algebra on A. Thus T (A) is an associative algebra
(over Z) formed by taking the direct sum of iterated tensor products of the
abelian group A. Since the tensor product of torsion-free groups is torsion-free,
the abelian group underlying T (A) is torsion-free. The Poincaré-Birkhoff-Witt
theorem for Z-modules [5] implies that the free Lie algebra L(A) imbeds into
T (A). This proves the claim.

3. The Proof of Theorem 2

Recall that a free simplicial resolution of G consists of a simplicial group
F∗ = {Fm}m>0 with π0(F∗) ∼= G, πm(F∗) = 0 for m > 1, and with the Fm free
groups whose bases are preserved by the boundary and degeneracy morphisms
dm

i : Fm → Fm−1, sm
i : Fm → Fm+1, 0 6 i 6 m. In this context the homotopy

groups of F∗ can be defined as πm(F∗) = ker(∂m)/im(∂m+1) where ∂m : ∩m
i=1

ker dm
i −→ ∩m−1

i=1 ker dm−1
i is the restriction of dm

0 : Fm → Fm−1. In other words,
πm(F∗) is the mth homology group of the Moore complex

N(F∗) : · · ·N(F∗)m
∂m−→ N(F∗)m−1 → · · · → N(F∗)0 → 1

with N(F∗)m = ∩m
i=1 ker dm

i .
Given a functor T : (Groups) → (Groups), we define its left derived functors

as
LT

m(G) = πm(T (F∗)), m > 0.

The groups LT
m(G) are independent of the choice of free simplicial resolution.

For more details see for instance [6].
We shall consider the derived functors of the functor

τn : (Groups) → (Groups), G 7→ G/γn+1G

for n > 1. In [4] it was observed that there are natural isomorphisms

Lτn
0 (G) ∼= τnG = G/γn+1G ,

Lτn
1 (G) ∼= M (n)(G) .

Let F∗ be a free simplicial resolution of G. The short exact sequence of simplicial
groups

1 → γn+1(F∗) → F∗ → τn(F∗) → 1

gives rise to a long exact sequence of homotopy groups part of which is

π1(F∗) → π1(τn(F∗)) → π0(γn+1(F∗)) → π0(F∗) → π0(τn(F∗)) → 1 .

Using the various isomorphisms we can rewrite this as an exact sequence

0 → M (n)(G) → π0(γn+1(F∗)) → G → τn(G) → 1

from which we obtain the natural isomorphism

M (n)(G) ∼= π0(γn+1(F∗)) (3)
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The short exact sequence of simplicial groups

1 → γn+2(F∗) → γn+1(F∗) → γn+1(F∗)/γn+2(F∗) → 1

and (3) yield the exact sequence

π1(γn+1(F∗)/γn+2(F∗)) → M (n+1)(G) → M (n)(G) . (4)

Theorem 2 follows by induction from (4) and the following.

Claim 2. If M (1)(G) is a torsion group, then so too is π1(γn+1(F∗)/γn+2(F∗))
for n > 1.

To prove the claim we introduce the functors

Γn : (Groups) → (Groups), G 7→ γnG/γn+1G, n > 1.

Thus, as an abelian group, ΓG is equal to
⊕

n>1 ΓnG . Define Ln(Gab) to be
the preimage of ΓnG under the canonical surjection L(Gab) ³ ΓG. The result
of Magnus and Witt gives a natural isomorphism Ln(Fab) ∼= ΓnF for any free
group F .

An abelian group is torsion if and only if it is trivial when tensored by the
rationals. Tensoring the Lie algebra L(Fab) by the rationals yields a Lie algebra
L(Fab)⊗Q over Q. Let L(Fab ⊗Q) denote the free lie algebra (over Q) on the
vector space Fab ⊗ Q. By verifying the appropriate universal property we see
that there is a natural isomorphism L(Fab)⊗Q ∼= L(Fab⊗Q). Let Ln(Fab⊗Q)
denote the vector subspace of L(Fab ⊗Q) generated by the canonical image of
Ln(Fab). So Ln(Fab ⊗Q) ∼= Ln(Fab)⊗Q.

We have

π1(γn+1(F∗)/γn+2(F∗))⊗Q = π1( Γn+1(F∗) )⊗Q
∼= π1( Ln+1((F∗)ab) )⊗Q
= H1( N( Ln+1((F∗)ab)) ) )⊗Q
∼= H1( N( Ln+1((F∗)ab) )⊗Q ) (5)
∼= H1( N( Ln+1((F∗)ab)⊗Q ) ) (6)
= π1( Ln+1((F∗)ab)⊗Q )
∼= π1( Ln+1((F∗)ab ⊗Q) ).

Isomorphism (5) follows from the Universal Coefficient Theorem for chain com-
plexes of free abelian groups (see for instance [11]). Isomorphism (6) follows
from the Dold-Kan theorem [7] (which expresses a simplicial abelain group A∗ in
terms of its Moore complex N(A∗)) and the fact that tensor products commute
with direct sums.

By the Universal Coefficient Theorem, π1((F∗)ab ⊗ Q) ∼= π1((F∗)ab) ⊗ Q ∼=
M (1)(G)⊗Q. Suppose that M (1) is a torsion group. Then M (1)(G)⊗Q = 0 and
in low dimensions (6 2) the simplicial abelian group (F∗)ab ⊗Q coincides with
a free simplicial resolution of the vector space Gab⊗Q. Since vector spaces are
‘free objects’, the simplicial group (F∗)ab ⊗Q admits a contracting homotopy
in low dimensions. Therefore π1(Ln+1((F∗)ab⊗Q)) = 0. This proves the claim.
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4. Peiffer Commutators and Partial Lie Algebras

The isomorphism of Magnus and Witt has been generalised by H. J. Baues
and D. Conduché [1]. In the generalisation free groups are replaced by ‘free
precrossed modules’ and Lie algebras are replaced by “partial Lie algebras”.
We suspect that Theorem 1 might also admit a generalisation in this direction.

Recall that a precrossed module is a homomorphism of groups ∂ : M → P
with an action of P on M satisfying ∂(pm) = p(∂m)p−1 for all m ∈ M, p ∈ P .
An element in M of the form

mm′m−1(∂mm′)−1

with m,m′ ∈ M is called a Peiffer commutator and denoted by 〈m,m′〉. A
precrossed module is called a crossed module if all Peiffer commutators are
trivial. For any subgroup N in M let us denote by 〈N, M〉 the subgroup of M
generated by those Peiffer commutators with either m ∈ N or m′ ∈ N . The
lower Peiffer central series is then defined by setting M1 = M and Mn+1 =
〈Mn,M〉 for n > 1. Each term Mn is a normal subgroup of M closed under the
action of P . For n > 2 the quotient group Mn/Mn+1 is abelian. It is natural to
set C = (M/M2)ab and form the direct sum

ΓM = C ⊕
⊕
n>2

Mn/Mn+1 .

The Peiffer commutator map Mm ×Mn → Mm+n, (m,m′) 7→ 〈m,m′〉 induces
a bilinear mapping [−,−] : ΓM × ΓM → ΓM . The structure (ΓM, [−,−]) is
not in general a Lie algebra. It is however the motivating example of what is
called a ‘partial Lie algebra’ in [1]. The main result in [1] asserts that ΓM is
a free partial Lie algebra if ∂ : M → P is a free precrossed module with P a
free group. The Magnus-Witt isomorphism corresponds to the case when P is
the trivial group (for in this case the lower Peiffer central series of M coincides
with the lower central series of M considered as a group).

Integral homology groups Hm(M)P for a precrossed module were introduced
in [2] for dimensions m = 1, 2. Theorem 1 in [2] with the main result in [1]
immediately imply the following.

Proposition 1. Let ∂ : M → P be a precrossed module such that: 1) P is
a free group; 2) the induced map ∂ : M/M2 → P is a free crossed module; 3)
H2(M)P is trivial. Then ΓM is a free partial Lie algebra.

This proposition with P equal to the trivial group is a special case of The-
orem 1 (since in this case: hypothesis (2) asserts that Mab is a free abelian
group; H2(M)1 is the second integral homology of the group M ; and ΓM is
a Lie algebra). It would be interesting to know whether Proposition 1 can be
generalized in the direction of Theorem 1 when P is not trivial.
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