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A NOTE ON CONVEXLY INDEPENDENT SUBSETS OF AN
INFINITE SET OF POINTS

A. KHARAZISHVILI

Abstract. We consider convexly independent subsets of a given infinite set
of points in the plane (Euclidean space) and evaluate the cardinality of such
subsets. It is demonstrated, in particular, that situations are essentially
different for countable and uncountable point sets.
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Let E be a vector space (over R) and let X be a subset of E. We recall that
X is said to be convexly independent in E if, for each point x ∈ X, the relation
x 6∈ conv(X \ {x}) is valid, where conv(·) denotes, as usual, the operation of
taking convex hulls of subsets of E.

In their famous paper [1] Erdös and Szekeres proved that, for any natural
number n ≥ 3, there exists a smallest natural number N(n) possessing the
following property: every set of at least N(n) points in general position in the
plane contains a subset of n points which are convexly independent, i.e. are the
vertices of a convex polygon (n-gon). In addition, Erdös and Szekeres posed
the problem to determine the precise value of N(n) and, in connection with this
problem, conjectured that N(n) = 2n−2 + 1.

The above-mentioned intriguing problem was then investigated by many
mathematicians. However, it is still far from being solved. An extensive survey
about this problem and closely related questions of combinatorial geometry can
be found in [2] where a large list of references is also presented. Here we would
like to discuss some infinite version of the Erdös–Szekeres problem. The main
attention will be paid to infinite sets of points which are either countable or of
cardinality continuum.

Recall that the basic technical tool utilized by Erdös and Szekeres in [1] is
the classical combinatorial theorem of Ramsey [3]. By applying this theorem,
one easily gets an upper bound for N(n). The same method successfully works
for point sets lying in Euclidean spaces of higher dimension (see, e.g., [2]).

We need here only an infinite version of the Ramsey theorem, which is for-
mulated as follows. Let i be a nonzero natural number, A be an arbitrary
infinite set, Fi(A) denote the family of all i-element subsets of A and let
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{F1,F2, . . . ,Fk} be a finite covering of Fi(A). Then there exist a natural num-
ber r ≤ k and an infinite subset B of A, such that Fi(B) ⊂ Fr.

It is well known that this infinite version of the Ramsey theorem implies its
finite version (e.g., with the aid of the existence of a nontrivial ultrafilter on the
set ω of all natural numbers). By applying the above-mentioned infinite version
of the Ramsey theorem, the following result can easily be obtained.

Theorem 1. Let m ≥ 2 be a natural number and let A be an infinite subset
of the Euclidean space Rm, such that card(A ∩ l) < ω for all straight lines l
lying in Rm. Then there exists an infinite convexly independent set B ⊂ A. In
particular, if card(A) = ω, then we have card(B) = card(A).

Proof. The assumptions of the theorem imply that there are affine linear mani-
folds L in Rm satisfying the relation card(A∩L) ≥ ω. Let L′ be such a manifold
whose dimension is minimal. Observe that dim(L′) > 1 and every hyperplane
H ⊂ L′ has the property that card(H ∩ A) < ω. By using an easy induction,
one can define an infinite set A′ ⊂ A ∩ L′ of points in general position in L′.
Now, applying to A′ the above-mentioned infinite version of the Ramsey the-
orem (namely, for i = dim(L′) + 2 and k = 2), we get the required infinite
convexly independent set B ⊂ A′ ⊂ A.

Remark 1. It should be noticed that the use of the Ramsey theorem for
obtaining the assertion of Theorem 1 is not necessary. Indeed, let us first
consider the case of the Euclidean plane R2. Suppose that A is an infinite
subset of R2 such that card(A∩ l) < ω for any straight line l lying in R2. Then
A contains an infinite countable subset A′ of points in general position. Only
three cases are possible:

1) there exist a ray p ⊂ R2 and an infinite set {an : n < ω} ⊂ A′, such that
{an : n < ω} ∩ p = ∅, the sequence of points {an : n < ω} converges to the
end-point o of p and the rays oan (n < ω) converge to p;

2) there exist a ray p ⊂ R2 and an infinite set {an : n < ω} ⊂ A′, such that

{an : n < ω} ∩ p = ∅, lim
n→∞ ||an|| = +∞, lim

n→∞ dist(an, p) = 0;

3) there exist a ray p ⊂ R2 and an infinite set {an : n < ω} ⊂ A′, such that

{an : n < ω} ∩ p = ∅, lim
n→∞ ||an|| = +∞, lim

n→∞ dist(an, p) = +∞
and the rays oan (n < ω) converge to p, where o is the end-point of p.

In each of these cases, it is not difficult to define (by induction) a polygonal
convex curve P with infinitely many sides, whose all vertices belong to the set
{an : n < ω} (hence to the set A, as well). In the first case, P can be chosen
in such a way that the lengths of its sides will tend to zero. In the second and
third cases, P can be chosen so that the lengths of its sides will tend to infinity.

Suppose now that A is an infinite subset of the Euclidean space Rm, where
m > 2, and suppose that card(A ∩ l) < ω for all straight lines l lying in Rm.
Again, there exists an infinite countable set A′ ⊂ A of points in general position
in some affine linear submanifold of Rm. Without loss of generality, we may
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assume that the above-mentioned manifold coincides with Rm. Further, since
A′ is countable, we can find a plane L in Rm such that the orthogonal projection
of Rm onto L, restricted to A′, is injective and transforms A′ to a set of points
in general position in L. As we already know, the latter set contains an infinite
convexly independent subset. Now, one can readily verify that the preimage,
with respect to the above-mentioned projection, of this subset will be a required
infinite convexly independent subset of A′ (hence of A, as well).

It would be interesting to investigate the question whether it is possible to
derive the Erdös–Szekeres result directly from Theorem 1 (without using the
finite version of the Ramsey theorem).

Let us discuss the case when uncountable point sets in the plane R2 are under
consideration and examine an analogue of the Erdös-Szekeres problem for those
sets. Let A be an uncountable subset of the plane. Assuming that all the
points of A are in general position, a natural question arises: does there exist
an uncountable convexly independent subset of A? We shall demonstrate below
that, in general, the existence of such a subset of A cannot be guaranteed.

Let α denote the least ordinal number of cardinality continuum. Consider the
family of all convex curves in R2. Obviously, we can represent this family in the
form of a transfinite sequence {Cξ : ξ < α}. By using the method of transfinite
induction, let us construct a family {aξ : ξ < ω} of points in general position
in the plane. Suppose that, for an ordinal ξ < α, the partial family of points
{aζ : ζ < ξ} has already been defined. Take the curves {Cζ : ζ < ξ}. Since
every Cζ is convex, the family of all those straight lines whose intersection with
Cζ contains more than two elements, is at most countable. Hence there exists a
straight line lξ ⊂ R2 such that card(lξ ∩Cζ) ≤ 2 for all ordinals ζ < ξ. Clearly,
we can find a point aξ ∈ lξ not belonging to ∪{Cζ : ζ < ξ} ∪ {aζ : ζ < ξ}.
Moreover, slightly modifying the above argument, we can even choose a point
aξ in such a way that the set of points {aζ : ζ ≤ ξ} is in general position in the
plane.

Proceeding in this manner, we are able to construct the required family of
points {aξ : ξ < α}. Finally, we put

A = {aξ : ξ < α}.
Then the following statement is true for A.

Theorem 2. The set A possesses these three properties:
1) A is in general position in R2;
2) A is of cardinality continuum;
3) no subset of A of cardinality continuum is convexly independent.

Proof. The properties 1) and 2) follow immediately from our construction. Let
us check the validity of 3). Suppose to the contrary that some set B ⊂ A of
cardinality continuum is convexly independent and put

B′ = cl(conv(B)), C ′ = bd(B′).
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Then B′ is a closed convex subset of R2 with nonempty interior and C ′, being
the boundary of B′, is a convex curve. Notice that all points of B must belong to
C ′. This fact can easily be deduced e.g. from the well-known Steinitz theorem
[4] which says that a point x belongs to the interior of the convex hull of a set
X ⊂ Rm if and only if there exists a set Y ⊂ X with card(Y ) ≤ 2m, such that
x ∈ int(conv(Y )). Consequently, we must have

card(A ∩ C ′) ≥ card(B) = card(α) = 2ω.

On the other hand, there exists an ordinal ξ < α such that Cξ = C ′. Taking
into account the definition of A, we may write

A ∩ Cξ ⊂ {aζ : ζ ≤ ξ}
and, hence,

card(A ∩ C ′) = card(A ∩ Cξ) ≤ card(ξ) + ω < 2ω.

The contradiction obtained finishes the proof.

Remark 2. It should be observed that we were able to construct the set A
of Theorem 2 because of a nice structure of convex curves lying in the plane
R2. More precisely, all convex curves in the plane turn out to be so thin in R2

that any family {Ci : i ∈ I} of such curves, with card(I) < 2ω, does not form a
covering of R2. Indeed, this moment is crucial for the transfinite construction
above. Notice that for more general classes of curves (lying in the plane) the
situation can be significantly different. Namely, there are models of set theory
in which the existence of a family {Si : i ∈ I} of homeomorphic images of [0, 1],
satisfying the relations

card(I) < 2ω, ∪{Si : i ∈ I} = R2,

is possible (see, e.g., [5]). In this situation, no construction analogous to that
above can be carried out.

Remark 3. Theorem 2 admits a direct generalization to the case of the Eu-
clidean space Rm where m ≥ 2. In other words, there exists a set A ⊂ Rm of
cardinality continuum, whose points are in general position in Rm, but no subset
of A of the same cardinality is convexly independent. The proof of this result is
analogous to the argument presented in the proof of Theorem 2 (however, some
insignificant technical details occur in the case of Rm).

Remark 4. In various questions of measure theory and set-theoretic topology
similar constructions are well known for obtaining those sets which almost avoid
the members of a given family of sets (cf., e.g., [6]). In most situations, the given
family of sets forms an ideal of subsets of an original space (for example, the
ideal of all measure zero sets in a measure space or the ideal of all first category
sets in a Baire topological space). As a rule, the corresponding transfinite
constructions need some additional set-theoretical axioms (in this connection,
see [6] where, assuming the Continuum Hypothesis, the classical constructions
of so-called Luzin sets and Sierpiński sets are discussed in detail).
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