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HYPERCONVEX SPACES AND FIXED POINTS

RAVI P. AGARWAL AND DONAL O’REGAN

Abstract. New fixed point results for a very general class of maps on hy-
perconvex spaces are given. Our theory relies on the fact that hyperconvex
compact spaces are absolute retracts. Also maps on k-CAR sets are dis-
cussed.
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1. Introduction

In Section 2 new fixed point results are presented for multivalued maps in
hyperconvex spaces. This notion was introduced by Aronszajn and Panitch-
pakdi [4] and recently many papers on fixed point theory in these spaces have
appeared in the literature (see [5–8, 10] and the references therein). Using a
recent fixed point result of Agarwal, O’Regan and Park [3] we are able to es-
tablish a new and very general fixed point theorem in hyperconvex spaces. In
particular we show if X is a hyperconvex compact space and F ∈ Uk

c (X, X)
(defined below), then F has a fixed point. The class Uk

c is very general and
contains for example Aronszajn, acyclic, O’Neill, admissible and permissible
maps. The proof of the above fixed point is elementary and relies on the fact [4]
that a hyperconvex compact space is an absolute retract. Also in Section 2 we
replace the compactness of the space with the compactness (or condensingness)
of the map. In Section 3 we present new fixed point theory for maps defined on
k-CAR sets, and our result extend those in [1].

For the remainder of this section we present some definitions and known
results which will be needed throughout this paper. Let X and Y be Hausdorff
topological vector spaces. Given a class X of maps, X (X, Y ) denotes the set
of maps F : X → 2Y (nonempty subsets of Y ) belonging to X , and Xc the
set of finite compositions of maps in X . We let

F(X ) = {Z : Fix F 6= ∅ for all F ∈ X (Z, Z)} .

A class U of maps is defined by the following properties:
(i) U contains the class C of single valued continuous functions;
(ii) each F ∈ Uc is upper semicontinuous and compact valued; and
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(iii) for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the interme-
diate spaces of composites are suitably chosen for each U .

Definition 1.1. F ∈ Uk
c (X, Y ) if for any compact subset K of X, there is

a G ∈ Uc(K, Y ) with G(x) ⊆ F (x) for each x ∈ K.

Recall a space Z is called an absolute retract (written Z ∈ AR) if Z is
metrizable and for any metrizable W and A ⊆ W closed each f : A → Z
extends over W to a map f : W → Z. The following fixed point result of
Agarwal, O’Regan and Park [3] will be needed in Section 2.

Theorem 1.1. Let X ∈ AR be a topological vector space and F ∈ Uk
c (X, X)

a compact map. Then F has a fixed point.

Let (E, d) be a pseudometric space. For S ⊆ E, let B(S, ε) = {x ∈ E :
d(x, S) ≤ ε}, ε > 0, where d(x, S) = infy∈Y d(x, y). The measure of noncom-
pactness of the set M ⊆ E is defined by α(M) = inf Q(M) where

Q(M) = {ε > 0 : M ⊆ B(A, ε) for some finite subset A of E} .

Let E be a locally convex Hausdorff topological vector space, and let P be
a defining system of seminorms on E. Suppose F : S → 2E; here S ⊆ E.
The map F is said to be a countably P -concentrative mapping if F (S) is
bounded, and for p ∈ P for each countably bounded subset X of S we
have αp(F (X)) ≤ αp(X), and for p ∈ P for each countably bounded non-p-
precompact subset X of S (i.e. X is not precompact in the pseudonormed
space (E, p)) we have αp(F (X)) < αp(X); here αp( . ) denotes the measure of
noncompactness in the pseudonormed space (E, p).

The following fixed point result of Agarwal and O’Regan [2] will be needed
in Section 3.

Theorem 1.2. Let Ω be a nonempty, closed, convex subset of a Fréchet
space E (P is a defining system of seminorms). Suppose F ∈ Uk

c (Ω, Ω) is a
countably P -concentrative mapping. Then F has a fixed point in Ω.

Finally, for completeness, we also give the definition of countably condens-
ing maps. Let X be a metric space and PB(X) the bounded subsets of X.
The Kuratowskii measure of noncompactness is the map α : PB(X) → [0,∞)
defined by

α(A) = inf {ε > 0 : A ⊆ ∪n
i=1 Xi and diam (Xi) ≤ ε} ;

here A ∈ PB(X). Let S be a nonempty subset of X and let H : S → 2X . H
is called (i). condensing if α(H(Ω)) ≤ α(Ω) for all bounded sets Ω of S and
α(H(Ω)) < α(Ω) for all bounded sets Ω of S with α(Ω) 6= 0, (ii). countably
condensing if α(H(Ω)) ≤ α(Ω) for all countably bounded sets Ω of S and
α(H(Ω)) < α(Ω) for all countably bounded sets Ω of S with α(Ω) 6= 0, (iii).
k-set contractive (k ≥ 0) if α(H(Ω)) ≤ k α(Ω) for all bounded sets Ω of S,
and (iv). countably k-set contractive (k ≥ 0) if α(H(Ω)) ≤ k α(Ω) for all
countably bounded sets Ω of S.
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2. Hyperconvex Spaces

A metric space (X, d) is hyperconvex if ∩α B(xα, rα) 6= ∅ for any collection
{B(xα, rα)} of closed balls in X for which d(xα, xβ) ≤ rα + rβ. Fixed point
theorems in hyperconvex spaces have been presented in [5–8, 10]. We begin by
presenting a fixed point result which enables us to improve considerably most
results in the literature. The class of maps we consider is very general and
contains for example acyclic, approachable and permissible maps [9].

Theorem 2.1. Let X be a hyperconvex compact topological vector space and
F ∈ Uk

c (X, X). Then F has a fixed point.

Proof. Since X is hyperconvex and compact then X ∈ AR (see [4 pp. 422]).
Now Theorem 1.1 guarantees that F has a fixed point.

Remark 2.1. It is possible to remove the assumption that X is a topological
vector space in Theorem 2.1 if F : X → X is a continuous single valued map.
The idea in this case is to apply the Generalized Schauder Theorem (i.e., if
Y ∈ AR and f : Y → Y is a continuous compact map then f has a fixed
point) instead of Theorem 1.1.

It is also possible to remove the assumption that X is a topological vector
space in Theorem 2.1 for certain classes of multivalued maps if we use Theorem
2.2 below instead of Theorem 1.1. Let Z and W be Hausdorff topological
spaces. A class of maps R(Z, W ) is said to be admissible if

(i) R contains the class C;
and

(ii) each F ∈ Rc is upper semicontinuous and closed valued.
The same reasoning as in [3] establishes the following result.

Theorem 2.2. Let R be an admissible class of maps, X ∈ AR and F ∈
Rc(X, X) a compact map. If Bn = {x ∈ Rn : ‖x‖ ≤ 1} is in F(Rc) for all
n ≥ 1, then F has a fixed point.

This immediately yields the following result for hyperconvex spaces.

Theorem 2.3. Let R be an admissible class of maps, X a hyperconvex
compact space and F ∈ Rc(X, X) with Bn ∈ F(Rc) for all n ≥ 1. Then F
has a fixed point.

We next replace the compactness of the space with the compactness (or con-
densingness) of the map. Indeed the argument to establish this is now standard
(see [6, 7]) but for completeness we include it here. We first however need the
following concepts. A mapping of metric spaces e : X → E is called a hy-
perconvex hull of X if E is hyperconvex, e is an isometric embedding, and
no hyperconvex proper subspace of E contains e(X). A function f ∈ C(X)
(continuous functions from X to R) is an extremal function over X if for all
x, y ∈ X we have f(x) + f(y) ≥ d(x, y) and f is pointwise minimal (i.e. if
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g is another function with the same property such that g(x) ≤ f(x) for all
x ∈ X then g = f). We let

εX = {f ∈ C(X) : f is extremal};
we refer the reader to [6] for a discussion of the above ideas.

Theorem 2.4. Let X be a hyperconvex, bounded metric topological vector
space and let F ∈ Uk

c (X,X) be condensing. Then F has a fixed point.

Proof. Fix x0 ∈ X, and let

Ω = {A : x0 ∈ A, A ⊆ X, A hyperconvex and F (A) ⊆ A}.
Note X ∈ Ω so Ω 6= ∅. We may now apply Zorn’s Lemma since it is immediate
from [5, Theorem 7] (or [6, Theorem 3]) that every chain in Ω has a lower
bound. As a result there exists a minimal element Y of Ω. Now [6, Lemma
4] guarantees that there exists a subset B of X isometric to ε (F (Y ) ∪ {x0})
with B hyperconvex and F (Y ) ∪ {x0} ⊆ B ⊆ Y . This immediately implies
F (B) ⊆ F (Y ) ⊆ B, and so x0 ∈ B with B hyperconvex, F (B) ⊆ B and
B ⊆ Y . As a result B = Y . Next notice

α(Y ) = α(B) = α(ε (F (Y ) ∪ {x0})). (2.1)

Also [6, Corollary, p. 135] yields

α(ε (F (Y ) ∪ {x0})) = α(F (Y ) ∪ {x0})
and this together with (2.1) gives

α(Y ) = α(F (Y )).

Now since F is condensing we have that Y is compact. In fact since hypercon-
vex spaces are closed [4] we have Y compact. Thus Y is a compact hyperconvex
space with F (Y ) ⊆ Y . In addition since Uc is closed under compositions we
have F |Y ∈ Uk

c (Y, Y ). Now Theorem 2.1 establishes the result.

Remark 2.2. X a topological vector space can be removed in Theorem 2.4
if we are in the situations described after Theorem 2.1.

3. k-CAR Sets

Throughout this section E will be a Fréchet space.

Definition 3.1. A closed subset A of E is said to be k-CAR (k ≥ 0) if
there exists a continuous k-set contractive retraction R from co (A) to A; here
co (A) denotes the closed convex hull of A.

Remark 3.1. It is well known [4, 5, 8] that a hyperconvex subset A of a
Banach space is a 1-CAR set (in fact the retraction R is nonexpansive).

Definition 3.2. A closed subset A of E is said to be countably k-CAR
(k ≥ 0) if there exists a continuous countable k-set contractive retraction R
from co (A) to A.
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Our first results extends [1, Theorem 2.2] to a wider class of maps which
include acyclic, O’Neill and permissible maps (see [9]).

Theorem 3.1. Let E be a Fréchet space and C a nonempty closed count-
able k-CAR ( 0 ≤ k ≤ 1) subset of E. Suppose F ∈ Uk

c (C,C) is a countably
condensing map with F (C) bounded. Then F has a fixed point in C.

Proof. Let R : co (C) → C be the continuous countable k-set contractive
retraction which is guaranteed since C is a countable k-CAR set. Notice since
Uk

c is closed under compositions that G = F R ∈ Uk
c (co (C), co (C)); note in

fact that G(co (C)) ⊆ C. It is easy to check that G is countably condensing
and G(co (C)) is bounded. Now Theorem 1.2 guarantees that there exists
x ∈ co (C) with x ∈ G (x). In fact since G(co (C)) ⊆ C we must have x ∈ C
and as a result x ∈ F R(x) = F (x).

Remark 3.2. Of course it is possible to replace C countably k-CAR and F
countably condensing in Theorem 3.1 with any conditions which guarantee that
the map G = F R is countably P -concentrative.

Essentially the same reasoning as in Theorem 3.1 yields the following result.

Theorem 3.2. Let E be a Fréchet space and C a nonempty closed count-
able k-CAR ( k ≥ 0) subset of E. Suppose F ∈ Uk

c (C, C) is a countably β-set
contractive (β ≥ 0) map with F (C) bounded and k β < 1. Then F has a fixed
point in C.

Next we establish two nonlinear alternatives of Leray–Schauder type for
countably k-CAR sets.

Theorem 3.3. Let E be a Fréchet space, C a closed countable k-CAR
( 0 ≤ k ≤ 1) subset of E, U an open subset of E with 0 ∈ U and U ⊆ C
convex. Suppose F ∈ Uk

c (U,C) is a countably condensing map with F (U)
bounded and

x 6∈ λF x for all x ∈ ∂U and λ ∈ (0, 1); (3.1)

here ∂U denotes the boundary of U in C. Then F has a fixed point in U .

Proof. Let r : E → U be given by

r(x) =
x

max{1, µ(x)} ,

where µ is the Minkowski functional on U i.e. µ(x) = inf{α > 0 : x ∈ α U}.
We know that r : E → U is a 1-set contractive map. Now let H = F r. Clearly
H ∈ Uk

c (C,C) and it is easy to see that H is a countably condensing map with
H(C) bounded. Now Theorem 3.1 guarantees that there exists x ∈ C with
x ∈ F r(x). With z = r(x) we have z ∈ r(F (z)) and so z = r(w) for some
w ∈ F (z). There are two cases to consider, namely w ∈ U or w ∈ C \U . If
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w ∈ C \U then since z = r(w) = w
µ(w)

we have µ(z) = 1, so z ∈ ∂EU = ∂U

since intC U = U , and thus

z ∈ λF (z) with λ =
1

µ(w)
∈ (0, 1) and z ∈ ∂U.

This contradicts (3.1). Thus w ∈ U so z = w ∈ F (z) and z ∈ U .

Remark 3.3. A remark similar to Remark 3.2 holds for Theorem 3.3.

If we use Theorem 3.2 instead of Theorem 3.1 we have the following result.

Theorem 3.4. Let E be a Fréchet space, C a closed countable k-CAR
( k ≥ 0) subset of E, U an open subset of E with 0 ∈ U and U ⊆ C convex.
Suppose F ∈ Uk

c (U, C) is countably β-set contractive (β ≥ 0) with F (U)
bounded, k β < 1 and (3.1) holding. Then F has a fixed point in U .

We now introduce the notion of an essential map in this situation. For our
next two theorems let E be a Fréchet space, C a closed countable k-CAR
( k ≥ 0) subset of E, U an open subset of E with 0 ∈ U and U ⊆ C convex.
We will assume 0 ≤ k ≤ 1.

Definition 3.3. D(U, C) denotes the set of countably condensing maps
F ∈ Uk

c (U,C) with F (U) bounded.

Remark 3.4. It is also possible to discuss countably β-set contractive maps
F ∈ Uk

c (U, C) with F (U) bounded when k ≥ 0 and k β < 1. We leave the
details to the reader.

Definition 3.4. We let F ∈ D∂U(U,C) if F ∈ D(U, C) with x /∈ F (x)
for x ∈ ∂U (the boundary of U in C).

Definition 3.5. A map F ∈ D∂U(U,C) is essential in D∂U(U,C) if for
every G ∈ D∂U(U,C) with G|∂U = F |∂U there exists x ∈ U with x ∈ G (x).

Theorem 3.5 (Normalization). Let E, C and U be as above. Then the
zero map is essential in D∂U(U, C).

Proof. Let θ ∈ D∂U(U, C) with θ|∂U = {0}. We must show there exists x ∈ U
with x ∈ θ(x). Let r and µ be as in Theorem 3.3 and let G = θ r. Clearly
G ∈ Uk

c (C,C) is a countably condensing map so Theorem 3.1 guarantees that
there exists x ∈ C with x ∈ θ r(x). With z = r(x) ∈ U we have z ∈ r θ(z)
and so z = r(w) for some w ∈ θ (z). If z ∈ ∂U then µ(z) = 1 and so

1 = µ(z) =
µ(w)

max{1, µ(w)} since r(w) =
w

max{1, µ(w)} .

Consequently µ(w) ≥ 1 and so z = w
µ(w)

∈ λ θ(z) = {0} (here λ = 1
µ(w)

) since

θ|∂U = {0}, a contradiction since 0 ∈ U . Thus z ∈ U so µ(z) < 1 and so

1 > µ(z) =
µ(w)

max{1, µ(w)} .
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Thus µ(w) < 1 and as a result r(w) = w, so z ∈ U with z = r(w) = w ∈ θ(z) .
(Alternatively one could show, as in Theorem 3.3, that w ∈ U so z ∈ F (z)
with z ∈ U , of course as above it is easy to see that z /∈ ∂U .)

Next we obtain a generalization of Theorem 3.3.

Theorem 3.6 (Homotopy). Let E, C and U be as above and suppose
F ∈ D(U, C) with

x 6∈ λF x for all x ∈ ∂U and λ ∈ (0, 1] (3.2)

holding. Then F is essential in D∂U(U, C).

Proof. Let θ ∈ D∂U(U,C) with θ|∂U = F |∂U . We must show there exists
x ∈ U with x ∈ θ (x). Notice (3.2) together with θ|∂U = F |∂U guarantees that

x 6∈ λ θ x for all x ∈ ∂U and λ ∈ (0, 1]. (3.3)

Now Theorem 3.2 (applied to θ) guarantees that θ has a fixed point in U (in
fact in U from (3.3) with λ = 1).
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