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WEIGHTED EXPONENTIAL INEQUALITIES

H. P. HEINIG, R. KERMAN, AND M. KRBEC

Abstract. Necessary and sufficient conditions on weight pairs are found for
the validity of a class of weighted exponential inequalities involving certain
classical operators. Among the operators considered are the Hardy averaging
operator and its variants in one and two dimensions, as well as the Laplace
transform. Discrete analogues yield characterizations of weighted forms of
Carleman’s inequality.
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1. Introduction

It is well known ([10], [3]) that for nonnegative locally integrable functions u,
v, and f defined on R+ and 1 < p < ∞, the inequality

∞∫

0

u(x)

(
1

x

x∫

0

f(t)1/p dt

)p

dx ≤ Bp
pp(p′)p−1

∞∫

0

v(x)f(x) dx (1.1)

holds, if and only if

Bp
p ≡ sup

s>0

( ∞∫

s

x−pu(x) dx

)( s∫

0

v(x)1−p′ dx

)p−1

< ∞.

Here and throughout, p′ denotes the conjugate index of p defined by p′ = p/(p−
1). Moreover, the inequality (1.1), as well as those in the sequel, are interpreted
in the sense that, if the right side is finite, so is the left side, and the inequality
holds.

Now, if we assume f is positive a.e., then, since

lim
p→∞

(
1

x

x∫

0

f(t)1/p dt

)p

= exp

(
1

x

x∫

0

log f(t) dt

)
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(cf. [15], p. 344; 5c) it follows from Fatou’s lemma and (1.1) that

∞∫

0

u(x) exp

(
1

x

x∫

0

log f(t) dt

)
dx ≤ lim inf

p→∞

∞∫

0

u(x)

(
1

x

x∫

0

f(t)1/p dt

)p

dx

≤ C

∞∫

0

v(x)f(x) dx, (1.2)

provided lim
p→∞Bp

pp(p′)p−1 = C. This limit exists if u(x) = v(x) = xλ, λ ≥ 0, and

also if u(x) = v(x) is non-increasing. However, such a result for more general
weights seems not to be known.

In this paper we consider the operator K defined by

(Kf)(x) =

∞∫

0

k(x, y)f(y) dy, f > 0,

where k(x, y) ≥ 0 satisfies certain mild restrictions. Conditions on positive, lo-
cally integrable weights u, v are given for which a weighted exponential inequal-
ity of the form (1.4) below holds. Here, locally integrable refers to integrating
on intervals (a, b), 0 < a < b < ∞. For a number of operators, specifically, the
Laplace transform and the general averaging operator

(Pβf)(x) = βx−β

x∫

0

tβ−1f(t) dt, β > 0, (1.3)

we characterize the weight functions u and v for which the exponential inequality

( ∞∫

0

u(x)(exp(K log f)(x))q dx

)1/q

≤ C

( ∞∫

0

v(x)f(x)p dx

)1/p

(1.4)

holds, where 0 < p ≤ q < ∞ or 0 < q < p < ∞, p > 1 (Theorem 2.2). The basic
result of Heinig, Kerman and Krbec was given in [7], where some of the specific
cases were announced and then generalized for the wide range of parameters p
and q as above in [8]. The original result in [6] has in fact triggerred a number
of papers, for example [11], [12]. In particular, in [11], the inequality (1.4) was
obtained for β = 1 and 0 < p ≤ q < ∞. A survey of earlier results can be found
in [7]; we recall here various generalizations of Carleman’s inequality in [9], [6],
[5], [16].

Note that in the sequel all functions are assumed to be measurable, χE denotes
the characteristic function of a set E and constants C may be different at
different occurrences.
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2. Exponential Integral Inequalities

Let K be defined by

(Kf)(x) =

∞∫

0

k(x, y)f(y) dy

where f is a positive function and k(x, y) ≥ 0 satisfies

(i) k(λxλy) = λ−1k(x, y), λ > 0 (k is homogeneous of degree −1);

(ii)
∞∫
0

k(1, t) dt = 1;

(iii) exp

(
−

∞∫
0

k(1, t) log t dt

)
= A, for some constant A.

Theorem 2.1. Suppose K is the integral operator defined above with kernel
K satisfying (i), (ii) and (iii). Let u and v be positive weight functions and set

w(x) = u(x) (exp[(K log 1/v)(x)])q/p .

Given exponents p, q > 0, there holds
( ∞∫

0

u(x) (exp[(K log f)(x)])q dx

)1/q

≤ C

( ∞∫

0

v(x)f(x)p dx

)1/p

. (2.1)

with C > 0 independent of f > 0 if
(a)

sup
y>0

∞∫

0

[
yk(x, y)

x

]q/p

w(x) dx < ∞ (2.2)

when 0 < p ≤ q; and
(b)

∞∫

0

[ ∞∫

0

yk(x, y)

x
w(x) dx

]r

dy < ∞, where 1/r = 1− q/p, (2.3)

when 0 < q < p.

Proof. Let s > 0 and g = (vfp)1/s. Then (2.1) is equivalent to

( ∞∫

0

w(x) (exp[(K log g)(x)])qs/p dx

)p/(qs)

≤ C

( ∞∫

0

g(x)s dx

)1/s

. (2.4)

The change of variable y = xt, the conditions (i)–(iii) and finally Jensen’s
inequality yield for the left side of (2.4),

( ∞∫

0

w(x) (exp [(K log g)(x)])qs/p dx

)p/(qs)
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=

( ∞∫

0

w(x)

(
exp

[ ∞∫

0

k(1, t) log g(xt)

]
dt

)qs/p

dx

)p/(qs)

= A

( ∞∫

0

w(x)

(
exp

[ ∞∫

0

k(1, t) log tg(xt)

]
dt

)qs/p

dx

)p/(qs)

≤ A

( ∞∫

0

w(x)

( ∞∫

0

k(1, t)t log g(xt) dt

)qs/p

dx

)p/(qs)

.

Setting y = xt in the last inner integral and invoking (2.4) again, we have that
(2.1) is a consequence of

( ∞∫

0

w(x)[(K̃g)(x)]qs/p dx

)p/(qs)

≤ C

( ∞∫

0

g(x)s dx

)1/s

, (2.5)

where K̃ is the integral operator with the kernel k̃(x, y) = yk(x, y)/x. According
to [2], Lemma 2.3 (a), one has (2.5) with s = 1 when 0 < p ≤ q if and only if

sup
y>0

∞∫

0

[k̃(x, y)]q/pw(x) dx = sup
y>0

∞∫

0

[
yk(x, y)

x

]q/p

w(x) dx < ∞,

and (2.5) with s = p/q when 0 < q < p if and only if

∞∫

0

( ∞∫

0

k̃(x, y)w(x) dx

)r

dy =

∞∫

0

( ∞∫

0

yk(x, y)

x
w(x) dx

)r

dy < ∞,

where 1/r = 1− q/p (by the duality counterpart to [2], Lemma 2.3 (b)).

The next result yields a complete characterization of the weights in (2.1) for
the operator Pβ with the kernel kβ(x, y) = βx−βyβ−1χ(0,x), x, y > 0, defined by
(1.3).

Theorem 2.2. Let β > 0 and suppose u, v are positive locally integrable
functions on (0,∞) with

∫ a
0 tβ−1v(t)−1 dt < ∞ for all a > 0. Set w(x) =

u(x) (exp[Pβ log(1/v)(x)])q/p. Then, a necessary and sufficient condition that
the inequality

( ∞∫

0

u(x) (exp[(Pβ log f)(x)])q dx

)1/q

≤ C

( ∞∫

0

v(x)f(x)p dx

)1/p

(2.6)

holds with C > 0 independent of f > 0 is
(a)

sup
y>0

∞∫

y

(
yβ

xβ+1

)q/p

w(x) dx < ∞, (2.7)

when 0 < p ≤ q < ∞; and
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(b)

∞∫

0

( ∞∫

y

yβw(x)

xβ+1
dx

)r

dy < ∞, 1/r = 1− q/p, (2.8)

when 0 < q < p < ∞.

Proof. In view of the preceding theorem we need only prove the necessity. Sup-
pose first that (2.5) – which is equivalent to (2.6) – holds with 0 < p ≤ q,

K̃ = Pβ, and s = 1. Given fixed y > 0, define

h(t) = e1−1/ββtβ−1y−βχ(0,y)(t) + βt1−βyβχ(y,∞)(t), t > 0.

Then, for x > y,

(Pβ log h)(x) = βx−β

y∫

0

tβ−1 log
(
e1−1/ββy−βtβ−1

)
dt

+ βx−β

x∫

y

tβ−1 log
(
yβt1−β

)
dt

= − 2

β

(
y

x

)β

− (1− β) log x + β log y + 1 +
1

β
+ log β.

Substituting this in (2.6) and restricting the integral on the left side to (y,∞),
we obtain

C1

∞∫

y

(
yβw(x)

xβ+1

)q/p

dx

≤ C1

( ∞∫

y

w(x)q/p exp

[
− 2

β

q

p
(yx)β

]
exp

[
−q

p
(1 + β) log x

]

exp

[
q

p
β log y

]
dx

)p/q

≤ C

∞∫

0

h(x) dx = C
(
1 + e1−1/β

)
,

where C1 = β exp(1 + 1/β) > 0, so that (2.7) holds.
Now, let wn(t) = w(t)χ(1/n,n)(t) and define h by

hn(t) = tβqr/p

( ∞∫

t

wn(s)

sβ+1
ds

)qr/p

.

Then

(Pβ log hn)(y) = βy−β

y∫

0

xβ−1 log


xβqr/p

( ∞∫

x

wn(t)

tβ+1
dt

)qr/p

 dx
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=
β2qr

p
y−β

y∫

0

xβ−1 log x dx +
βqr

p
y−β

y∫

0

xβ−1 log

[ ∞∫

x

wn(t)

tβ+1
dt

]
dx

≥ β2qr

p
y−β

(
yβ

β
log y − yβ

β2

)
+

βqr

p
log

[ ∞∫

y

wn(x)

xβ+1
dx

]
y−β

y∫

0

xβ−1 dx

≥ log yβqr/p − qr

p
+ log




( ∞∫

y

wn(x)

xβ+1
dx

)qr/p

 .

Substituting in the equivalent formulation of (2.6) in which f is replaced by
v−1/ph and v by w exp[(q/p)Pβ log v], we get

e−qr/p

∞∫

0

wn(y)yβqr/p

( ∞∫

y

wn(x)

xβ+1
dx

)qr/p

≤ C

( ∞∫

0

(
yβ

∞∫

y

wn(x)

xβ+1
dx

)r

dy

)q/p

.

Now, qr/p = r − 1 and βqr/p + β = βr, so the left side of (2.5) equals

−e−qr/p

r

∞∫

0

yβqr/p+β+1 d

dy

( ∞∫

y

wn(x)

xβ+1
dx

)r

dy

=
e−qr/p

r

(
βqr

p
+ β

) ∞∫

0

(
yβ

∞∫

y

wn(x)

xβ+1
dx

)r

dy

Hence,

∞∫

0

(
yβ

∞∫

y

wn(x)

xβ+1
dx

)r

dy ≤
(

reqr/p

(βqr/p) + β
· C

)(q/p)−1

,

and, letting n →∞, (2.8) follows by Fatou’s lemma.

Remark 2.3. a) For q = p = 1, Theorem 2.2 a) was given in [7]. The special
case β = 1 in Theorems 2.2. a) and b) was proved in [11] and [12], respectively.
The proof of the sufficiency of the respective conditions use arguments different
from ours.

b) If (u, v) = (xδ, xγ), δ, γ ∈ R where q(1 + γ) = p(1 + δ), 0 < p ≤ q < ∞,
then (2.6) holds. This follows at once if one observes that w(x) = eqγ/(βp)xδ+qγ/p

and (see (2.7))

sup
s>0

saβ/p

( ∞∫

s

tδ−qγ/p−q(1+aβ)/p dt

)1/q

< ∞.

But this supremum is finite if q(1 + γ) = p(1 + δ) and p(δ + 1) < q(1 + γ + aβ),
which is clearly the case.
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A result similar to that of Theorem 2.2 holds also for the operator Qβ defined
by

(Qβf)(x) = βxβ

∞∫

x

y−β−1f(y) dy, β > 0.

Corollary 2.4. Let u, v and f be as in Theorem 2.2, and

w̃(x) = x−2u(1/x)
(
exp

[
Pβ(t2/v(1/t))

])q/p

Then the inequality (2.6) with Pβ replaced by Qβ is satisfied in the range 0 <
p ≤ q < ∞, if and only if (2.7), with w replaced by w̃, holds.

In the case 0 < q < p < ∞, (2.6) with Pβ replaced by Qβ holds, if and only
if, (2.8) with w replaced by w̃ is satisfied.

Proof. Observe that the change of variable y = 1/t in the definition of Qβ shows

that (Qβf)(x) = (Pβ f̃)(1/x), where f̃(x) = f(1/x). Hence Theorem 2.2 and
some obvious changes of variables yields

( ∞∫

0

u(x) (exp[Qβ log f(x)])q dx

)1/q

=

( ∞∫

0

u(x)
(
exp[Pβ log f̃(1/x)]

)q
dx

)1/q

and
( ∞∫

0

x−2u(1/x)
(
exp[Pβ log f̃(x)]

)q
dx

)1/q

≤ C

( ∞∫

0

x−2v(1/x)f̃(x)p dx

)1/p

= C

( ∞∫

0

v(x)f(x)p dx

)1/p

,

and we are done.

When p = q = 1 and β = 1, the following equivalent statements hold for
P = P1:

Proposition 2.5. Let u, v and f be positive functions and set

w(x) = u(x) exp(P log(1/v))(x), x > 0.

Then, the following statements are equivalent:
∞∫

0

u(x) exp(P log f)(x) dx ≤ C1

∞∫

0

v(x)f(x) dx; (2.9)

(Pw)(x) + α−1(Qαw)(x) ≤ C2; (2.10)

Pw ∈ L∞; (2.11)
∞∫

0

w(x)(Pf 1/p)p(x) dx ≤ C3

∞∫

0

f(x) dx, p > 1, (2.12)

where C3 remains bounded as p →∞.
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For the proof see [7].
In our next result we consider the Laplace transform L defined by

(Lf)(x) =

∞∫

0

e−xyf(y) dy, x > 0.

A characterization of the weights for which (2.9) holds is given next. Our result
generalizes Theorem 7 of [6].

Theorem 2.6. Let u, v and f be positive functions. Then

∞∫

0

u(x) exp
[
1

x
(L log f)(1/x)

]
dx ≤ C

∞∫

0

v(x)f(x) dx (2.13)

if and only if

sup
t>0

t

∞∫

0

e−txw(1/x) dx < ∞, (2.14)

where w(x) = u(x) exp

[
x−1

x∫
0

e−y/x log(1/v(y)) dy

]
.

Proof. Let k(x, y) = x−1e−y/x, then x−1(Lf)(x−1) = (Kf)(x) satisfies the con-

ditions of Theorem 2.1 (observe that
∞∫
0

e−y log y dy exists, so (iii) is satisfied)

whence the sufficiency part follows.
Conversely, if g = vf , then (2.13) is equivalent to

∞∫

0

w(x) exp(K log g)(x) dx ≤ C

∞∫

0

g(x) dx (2.15)

where (Kh)(x) = (1/x)(Lh)(1/x). Now, let g(x) = gt(x) = t−1e−x/t, t > 0
fixed. Then, (K log gt)(x) = −(x/t)− log t and substituting this into (2.15) we
obtain that

(Kw)(t) = t−1

∞∫

0

w(x)e−x/t dx ≤ C.

Next, define K1 by

(K1h)(x) = x

∞∫

0

e−x/yy−2h(y) dy.

Then,

(K1(Kw))(x) ≤ (K1C)(x) = Cx

∞∫

0

e−x/yy−2 dy = C.
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The proof will be complete if we can show that there exists a constant C1 > 0
such that (K1w)(x) ≤ C1(K1(Kw))(x). But,

(K1(Kw))(x) = x

∞∫

0

e−x/y(Kw)(y)
dy

y2

= x

∞∫

0

e−x/yy−3

( ∞∫

0

e−t/yw(t) dt

)
dy

= x

∞∫

0

w(t)

( ∞∫

0

e−(x+t)/yy−3 dy

)
dt

= x

∞∫

0

w(t)

( ∞∫

0

e−(x+t)ss ds

)
dt

= x

∞∫

0

w(t) dt

t2(1 + x/t)2

≥ e

4
x

∞∫

0

w(t)

t2
e−x/t dt

=
e

4
(K1w)(x).

Here the last inequality follows from e−s ≤ 4e−1/(1 + s)2, s > 0.

The characterizations of the weights for the averaging operator between
weighted Lp–spaces in higher dimensions are known only in two dimensions
(cf. [13]). By contrast, the corresponding characterization of weights for the
exponential inequality of the averaging operator in higher dimensions carries
over from the one dimensional case in a straightforward manner.

Below we give the two dimensional result only. However the higher dimen-
sional results carries over in the same way.

We shall write x = (x1, x2), R2
+ = (0,∞) × (0,∞), dx = dx1dx2, with the

two dimensional averaging operator being given by

(P 2f)(x) =
1

x1x2

x1∫

0

x2∫

0

f(y) dy.

Theorem 2.7. Let u, v and f be positive functions on R2
+. Then

∫

R2
+

u(x) exp(P 2 log f)(x) dx ≤ C
∫

R2
+

v(x)f(x) dx (2.16)

if and only if for any α1, α2 > 0,

sup
y1>0,y2>0

yα1
1 yα2

2

∞∫

y1

∞∫

y2

x
−(1+α1)
1 x

−(1+α2)
2 w(x) dx = A < ∞ (2.17)
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where w(x) = u(x) exp(P 2 log(1/v))(x).

Proof. The argument that (2.17) is sufficient for (2.16) follows well known lines.
Thus, let g = fv. Then (2.16) is equivalent to

∫

R2
+

w(x) exp(P 2 log g)(x) dx ≤ C
∫

R2
+

g(x) dx (2.18)

and an obvious substitution gives

∫

R2
+

w(x) exp

( 1∫

0

1∫

0

log g(x1t1, x2t2) dt

)
dx ≤ C

∫

R2
+

g(x) dx.

But for α1 > 0, α2 > 0,

e−(α1+α2) = exp

1∫

0

1∫

0

log (tα1
1 tα2

2 ) dt

and the left side of (2.18) becomes

eα1+α2

∫

R2
+

w(x) exp

( 1∫

0

1∫

0

log(tα1
1 tα2

2 g(x1t1, x2t2)) dt

)
dx

≤ eα1+α2

∫

R2
+

w(x)

1∫

0

1∫

0

tα1
1 tα2

2 g(x1t1, x2t2) dt dx,

by Jensen’s inequality. Changing variables (twice) and interchanging the order
of integration the latter is equal to

eα1+α2

∫

R2
+

g(y)


yα1

1 yα2
2

∞∫

y1

∞∫

y2

w(x)x
−(1+α1)
1 x

−(1+α2)
2 dx


 dy,

so that (2.17) yields (2.18) with C = eα1+α2A.
We now show that (2.16) implies (2.17).
For fixed t1 > 0, t2 > 0 substitute

g(x) =t−1
1 t−1

2 χ(0,t1)χ(0,t2)(x2) + t−1
1 χ(0,t1)(x1)

e−(1+α2)tα2
2

x1+α2
2

χ(t2,∞)(x2)

+ t−1
2 χ(0,t2)(x2)

e−(1+α1)tα1
1

x1+α1
1

χ(t1,∞)(x1)

+
e−(2+α1+α2)tα1

1 tα2
2

x1+α1
1 x1+α2

2

χ(t1,∞)(x1)χ(t2,∞)(x2)

in (2.16). The right side of (2.16) is

C
[
1 + e−1−α2/α2 + e−1−α1/α1 + e−2−α1−α2/(α1α2)

]
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Let us write the left side in the form

∫

R2
+

=

t1∫

0

t2∫

0

+

t1∫

0

∞∫

t2

+

∞∫

t1

t2∫

0

+

∞∫

t1

∞∫

t2

≡ I1 + I2 + I3 + I4.

Each integral is positive, so, if we show that

I4 = tα1
1 tα2

2

∞∫

t1

∞∫

t2

w(x)x
−(1+α1)
1 x

−(1+α2)
2 dx,

the result will follow. We have

I4 =

∞∫

t1

∞∫

t2

w(x) exp


 1

x1x2

( t1∫

0

t2∫

0

+

t1∫

0

x2∫

t2

+

x1∫

t1

t2∫

0

+

x1∫

t1

x2∫

t2

)
log g(y) dy


 dx

=

∞∫

t1

∞∫

t2

w(x) exp
[

t1t2
x1x2

log(t−1
1 t−1

2 )
]

exp


 t1
x1x2

x2∫

t2

log

(
t−1
1 e−(1+α2)tα2

2

y1+α2
2

)
dy2




exp

[
t2

x1x2

x1∫

t1

log

(
t−1
2 e−(1+α1)tα1

1

y1+α1
1

)
dy1

]

exp

[
1

x1x2

x1∫

t1

x2∫

t2

log

(
e−(2+α1+α2)tα1

1 tα2
2

y1+α1
1 y1+α2

2

)
dy

]
dx

=

∞∫

t1

∞∫

t2

w(x)E1(x)E2(x)E3(x)E4(x) dx.

Clearly,

E1(x) = exp
[
− t1t2

x1x2

log t1 − t1t2
x1x2

log t2

]
.

An elementary calculation shows that

E2(x) = exp
[
− t1

x1

log t1 +
t1t2
x1x2

log t1 +
α2t1
x1

log t2

+
t1t2
x1x2

log t2 − (1 + α2)t1
x1

log x2

]

so that

E1(x)E2(x) = exp

[
− t1

x1

log t1 +
α2t1
x1

log t2 − (1 + α2)t1
x1

log x2

]
.
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Further calculation – elementary again, but rather tedious so we omit details –
yields

E3(x) = exp
[
− t2

x2

log t2 +
t1t2
x1x2

log t2 +
α1t2
x2

log t1

+
t1t2
x1x2

log t1 − (1 + α1)t2
x2

log x1

]
,

E4(x) =
tα1
1 tα2

2

x1+α1
1 x1+α2

2

exp
[
−α1t2

x2

log t1 +
t1
x1

log t1 − t1t2
x1x2

log t1 +
t2
x2

log t2

−α1t1
x1

log t2 − t1t2
x1x2

log t2 +
(1 + α1)t2

x2

log x1 +
(1 + α2)t1

x1

log x2

]

and

E3(x)E4(x) =
tα1
1 tα2

2

x1+α1
1 x1+α2

2

exp

[
t1
x1

log t1 − α2t1
x1

log t2 +
(1 + α2)t1

x1

log x2

]
,

thus

E1(x)E2(x)E3(x)E4(x) =
tα1
1 tα2

2

x1+α1
1 x1+α2

2

.

This proves the theorem.

3. The Discrete case

It is not unexpected that integral estimates have corresponding discrete ana-
logues. In this section we give discrete versions of Theorem 2.2 (with β = 1) and
Theorem 2.7, which yield two–weight generalizations of a weighted Carleman
inequality.

Theorem 3.1. Let {un}∞n=1, {vn}∞n=1, {an}∞n=1 be sequences of positive num-
bers and set

wn =

(
un exp

[
1

n

n∑

k=1

log(1/vk)

])q/p

, n = 1, 2, . . . .

(i) If 0 < p ≤ q < ∞, then there is a constant C > 0 such that the inequality

( ∞∑

n=1

un(a1a2 . . . an)q/n

)1/q

≤ C

( ∞∑

n=1

vnap
n

)1/p

(3.1)

if and only if for any a > 0

sup
m≥1

ma/p

( ∞∑
n=m

wn

n(1+a)q/p

)1/q

< ∞. (3.2)
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(ii) If 1 < q < p < ∞, then the inequality (3.1) holds, provided the condition
∞∑

m=1

(
∞∑

n=m
n−q(a+1)wn

)r/q

m(a+1/q′)r < ∞ is satisfied, where a > 0 and

1/r = 1/q − 1/p.

Proof. (i) Let bp
n = vna

p
n, n = 1, 2 . . . . Then, (3.1) is equivalent to

( ∞∑

n=1

wn

(
exp

[
1

n

n∑

k=1

log bk

])q)1/q

≤ C

( ∞∑

n=1

bp
n

)1/p

. (3.3)

For any p > 0, if we write γ = p/α where α > 1, then, 0 < p = γα ≤ q < ∞,
or 1 < α ≤ q/γ. With ck = bγ

k the inequality (3.3) is equivalent to
( ∞∑

n=1

wn

(
exp

[
1

n

n∑

k=1

log ck

])q/γ)γ/q

≤ Cγ

( ∞∑

n=1

cα
n

)1/α

. (3.4)

To prove (3.4) define f(t) = ck, if k−1 < t ≤ k, k = 1, 2 . . . , and zero otherwise.

Then, since
1∫
0

log y dy = −1, Jensen’s inequality shows that the left side of (3.4)

is
( ∞∑

n=1

wn

(
exp

[
1

n

n∑

k=1

k∫

k−1

log f(t) dt

])q/γ)γ/q

=

( ∞∑

n=1

wn

(
exp

[
1

n

n∫

0

log f(t) dt

])q/γ)γ/q

=

( ∞∑

n=1

wn

(
exp

[ 1∫

0

log f(ny) dy

])q/γ)γ/q

(t = ny)

= e

( ∞∑

n=1

wn

(
exp

[ 1∫

0

log(yf(ny)) dy

])q/γ)γ/q

≤ e

( ∞∑

n=1

wn

( 1∫

0

yf(ny) dy

)q/γ)γ/q

= e

( ∞∑

n=1

wnn
−2q/γ

( n∫

0

f(t) dt

)q/γ)γ/q

= e

( ∞∑

n=1

wn

n2q/γ

(
n∑

k=1

kck

)q/γ)γ/q

.

Applying the discrete version of the weighted Hardy inequality (cf. [1], [4]), the
last expression is dominated by

( ∞∑

n=1

k−α (kαcα
k )

)1/α

=

( ∞∑

n=1

cα
k

)1/α
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provided in case 0 < p ≤ q < ∞

sup
m≥1

( ∞∑
n=m

wn

n2q/γ

)γ/q( ∞∑
n=m

k−α(1−α′)
)γ/q′

= sup
m≥1

m1+1/α′
( ∞∑

n=m

wn

n2qα/p

)p/(qα)

=


sup

m≥1
m(2α/p)−(1/p)

( ∞∑
n=m

wn

n2qα/p

)1/q



p/α

< ∞.

But with a = 2α− 1 > 0 this becomes (3.2).
(ii) In case 1 < q < p < ∞ we see that (just as in the previous case) the left

side of (3.3) is not larger than

e

( ∞∑

n=1

wnn
−q(α+1)

(
n∑

k=1

kαbk

)q)1/q

, α > 0,

and again by the discrete form of Hardy’s inequality ([15], [16]) this is dominated
by

( ∞∑

k=1

k−αp (kαbk)
p

)1/p

=

( ∞∑

k=1

bp
k

)1/p

whenever

∞∑

m=1

( ∞∑
n=m

wn

nq(α+1)

)r/q( ∞∑

n=1

nαp′
)r/q′

mαp′ < ∞.

But since

(αp′ + 1)
r

q′
+ αp′ = r

(
αp′

q′
+

1

q′
+

αp′

q
− αp′

p

)

= r

(
αp′ +

1

q′
− αp′ + α

)
= r

(
α +

1

q′

)
,

this is the condition given in (ii) with a = α.
To prove necessity of part (i) let bp

n = 1/k if n ≤ k and e−1−αn−α−1kα if
n > k, α > 0 and k fixed, n = 1, . . . , in (3.3) Clearly the right side of (3.3) is
finite in this case and we can write the left side in the form

(
k∑

n=1

+
∞∑

n=k+1

)1/q

= (S1 + S2)
1/q.

Now,

S1 =
k∑

n=1

wn


exp

[
1

n

n∑

j=1

log(k − 1/p)

]


q

= k−q/p
k∑

n=1

wn
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and

S2 =
∞∑

n=k+1

wn


exp

[
1

n

k∑

j=1

log(1/k)

]


q/p 
exp

[
1

n

n∑

j=k+1

log

(
e−(1+α)kα

jα+1

])


q/p

=
∞∑

n=k+1

wn

(
exp

[−k

n
log k

])q/p (
exp

[
n− k − 1

n
log

(
e−(1+α)kα

)])q/p

×

×
(

exp

[
−α + 1

n

n∑

j=k+1

log j

])q/p

.

But the Mean Value Theorem shows that

n∑

j=k+1

log j =
n+1∑

j=k+2

j log(j − 1)−
n∑

j=k+1

j log j

=
n∑

j=k+1

j[log(j − 1)− log j]− (k + 1) log k + (n + 1) log n

=
n∑

j=k+1

−j

c′j
+ (n + 1) log n− (k + 1) log k

m where j − 1 ≤ c′j ≤ j. Hence

n∑

j=k+1

log j ≤
n∑

j=k+1

(−1) + (n + 1) log n− (k + 1) log k

so

S2 ≥
∞∑

n=k+1

wn

(
exp

[
−k

n
log k

])q/p (
e−(1+α)kα

)q/p

×
(

exp

[
k + 1

n
(1 + α)

])q/p (
exp

[
−α(k + 1)

n
log k

])q/p

× exp

[
−(α + 1)

n
(−n + k + 1 + (n + 1) log n− (k + 1) log k)

]

= e−(1+α)q/pkαq/p
∞∑

n=k+1

wn

(
exp

[
−k

n
log k

])q/p (
exp

[
−α(k + 1)

n
log k

])q/p

×
(
exp

[
−(α + 1)

(
n + 1

n

)
log n

])q/p
(

exp

[
(α + 1)

α(k + 1)

n
log k

])q/p

×
(
eα+1

)q/p
(

exp

[
−(α + 1)

(
k + 1

n

)])q/p

≥ e−(1+α)q/pkαq/p
∞∑

n=k+1

wnn
−(α+1)q/p

(
exp

[
1

n
log

(
k

nα+1

)])q/p
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since
k + 1

n
≤ 1. But, since, for k ≥ 1 (n ≥ 2),

1

n
log

(
k

nα+1

)
≥ −α + 1

n
log n ≥ −α + 1

n
log 2,

it follows that
(

exp

[
1

n
log

k

nα+1

])q/p

= exp

[
q

p

(
1

n
log

k

nα+1

)]

≥ 2−q(α+1)/(2p).

Therefore

S2 ≥ e−(1+α)q/p2−q(α+1)/(2p)kαq/p
∞∑

n=k+1

wnn
−(α+1)q/p,

and so

(S1 + S2)
1/q ≥ e−(1+α)/p2−(α+1)/(2p)

(
k−q/pwk + kαq/p

∞∑

n=k

wnn−(α+1)q/p

−kαq/pwkk
−(α+1)q/p

)1/q

= e−(1+α)/p2−(α+1)/(2p)

(
kαq/p

∞∑

n=k

wn

n(α+1)q/p

)1/q

.

This implies condition (3.2) with a = α and completes the proof of the theo-
rem.

Remark 3.2. i) If un = vn = 1, then wn = 1, n = 1, 2, . . . , and condition (3.2)
is satisfied only if p = q, so in this case (3.1) reduces to Carleman’s inequality
(with C = e).

ii) If p = q = 1 and

sup
m≥1

ma
∞∑

n=m

wn

n(1+α)
= A,

then the constant C in (3.1) satisfies

w−(1+a)/2A(1 + 3e−(1+a)/(2a)) ≤ C ≤ eaA.

The previous result with p = q = 1 has a higher dimensional analogue. We
state here the two dimensional case and only sketch the proof. Details can be
found in authors’ preprint [8].

Theorem 3.3. For n,m ∈ N let {un,m}, {vn,m}, {an,m} be double sequences
of positive numbers and

wn,m = un,m exp

(
1

nm

∑

1≤k≤n
1≤j≤m

log 1/vk,j

)
.
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Then,

∑

n,m≥1

un,m

( ∏

1≤k≤n
1≤j≤m

aj,k

)1/(nm)

≤ C
∑

n,m≥1

vn,man,m (3.5)

if and only if for some α1 > 0, α2 > 0,

sup
k≥1
j≥1

kα1jα2
∑

n≥k
m≥j

n−α1−1m−α2−1wn,m ≡ A < ∞. (3.6)

For the proof observe that the substitution bn,m = an,mvn,m allows us to write
(3.5) in the equivalent form

∑

n,m≥1

wn,m exp

(
1

nm

∑

1≤k≤n
1≤j≤m

log bj,k

)
≤ C

∑

n,m≥1

bn,m. (3.7)

Now, let f(s, t) = bj,k if k − 1 < t ≤ k, j − 1 < s ≤ j, k, j = 1, 2 . . . , and zero
otherwise. Since

e−α1−α2 = exp

1∫

0

1∫

0

log (tα1
1 tα2

2 ) dt1dt2,

the left side of (3.7) takes the form

∑

n,m≥1

wn,m exp

(
1

nm

∑

1≤k≤n
1≤j≤m

k∫

k−1

j∫

j−1

log f(s, t) dsdt

)

and this is the case dealt with in the previous theorem.
For the converse we substitute into (3.7) bn,m defined by

bn,m =





k−1j−1 if n ≤ k, m ≤ j,

k−1e−1−α2jα2m−α2−1 if n ≤ k, j > m,

j−1e−1−α1kα1n−α1−1 if n > k, j ≤ m,

e−2−α1−α2kα1jα2n−α1−1m−α2−1 if n > k, j ≥ m,

where k, j are fixed. Then, after some calculation one obtains (3.6).
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