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A CONTACT PROBLEM OF THE INTERACTION OF
A SEMI-FINITE INCLUSION WITH A PLATE

N. SHAVLAKADZE

Abstract. A piecewise-homogeneous plane made up of twodifferent
materials and reinforced by an elastic unclusion is considered on a
semi-finite section where the different materials join. Vertical and
horizontal forces are applied to the inclusion which haz a variable
thichness and a variable elasticity modulus.

Under certain conditions the problem is reduced to integrodiffer-
ential equations of third order. The solution is constructed effectively
by applying the methods of theory of analytic functions to a boundary
value problem of the Carleman type for a strip. Asymptotic estimates
of normal contact stress are obtained.

We shall consider an elastic composite plate by which we understand an
unbounded elastic medium composed of two half-planes y > 0 and y < 0
having different elastic constants (E+, µ+ and E−, µ−). It is assumed that
the plate is subjected to plane deformation and, on the semi-axis (0,∞),
is strengthened by an inclusion of variable thickness h0(x), with elasticity
modulus E0(x) and Poisson’s ratio ν0.

Contact problems of the interaction of an elastic body with thin elastic
elements in the form of stringers and inclusions as well as relevant biblio-
graphic references are given in the monographs [1–4].

The inclusion is assumed to be a thin plate subjected to the action of
vertical and horizontal forces of intensities p0(x) and τ0(x), respectively,
while the plate is assumed to be free from action (p0(x), τ0(x) are the con-
tinuous functions on the semi-axis). The stress field undergoes discontinuity
when passing across the semi-axis, while the stress and displacement fields
do not become discontinuous when passing across the remaining part of the
Ox-axis.
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The principal equilibrium equations (0, x)-part of the inclusion are

E1(x)
du1

dx
=

x
∫

0

[τ(t)− τ0(t)]dt,

d2

dx2 D1(x)
d2v1

dx2 = p(x)− p0(x), x > 0,

(1)

where

τ(x) ≡ τ−(x)− τ+x, E1(x) =
E0(x)h0(x)

1− ν2
0

,

p(x) ≡ p−(x)− p+(x), D1(x) =
E0(x)h3

0(x)
12(1− ν2

0)
,

p±(x) and τ±(x) are respectively the unknown normal and tangential con-
tact stresses on the upper and the lower inclusion banks; u1 and v1 are
respectively the horizontal and vertical displacements of inclusion points
(τ(x) ≡ 0, p(x) ≡ 0, for x < 0).

The inclusion equilibrium conditions

∞
∫

0

[τ(t)− τ0(t)]dt = 0,

∞
∫

0

[p(t)− p0(t)]dt = 0,

∞
∫

0

t[p(t)− p0(t)]dt = 0

(2)

are obtained assuming that the end cross-sections of the inclusion are free
from of external forces.

The deformation of the inclusion is assumed to be compatible with that
of the elastic composite plate with a defect on the semi-axis x > 0. By
virtue of the results of [3], [5], to construct discontinuous solutions of the
biharmonic equation we write horizontal and vertical deformations of the
0x-axis as

u′(x) = −Ap(x) +
B
π

∞
∫

0

τ(t)dt
t− x

,

v′(x) = Aτ(x) +
B
π

∞
∫

0

p(t)dt
t− x

,

x > 0, (3)
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where

A =
a+b−(b+ + a−)− a−b+(b− + a+)

2c
,

B =
a+b−(b+ + a−) + a−b+(b− + a+)

2c
,

c = 4(c+ + c−)2 − [(c− − c+)− (d− − d+)]2, a± = 3c± − d±,

b± = c± + d±, c± =
1− µ2

±
E±

, d± =
µ±(1 + µ±)

E±
.

Using the conditions of contact between the inclusion and the plate

u′(x) = u′1(x),

v′(x) = v′1(x)

and substituting formulas (3) into (1), we obtain a system of integrodiffer-
ential equations

−Aψ′′(x) +
B
π

∞
∫

0

ϕ′(t)dt
t− x

=
ϕ(x)
E1(x)

− f1(x)
E1(x)

,

Aϕ′(x) +
B
π

∞
∫

0

ψ′′′(t)dt
t− x

=
ψ(x)
D1(x)

− f2(x)
D1(x)

,

x > 0, (4)

where

ϕ(x) =

x
∫

0

τ(t)dt, ψ(x) =

x
∫

0

dt

t
∫

0

p(τ)dτ

f1(x) =

x
∫

0

τ0(t)dt, f2(x) =

x
∫

0

dt

t
∫

0

p0(τ)dτ.

The unknown functions are to satisfy the conditions

ϕ(0) = 0, ϕ(∞) = T0,
ψ(0) = 0, ψ(∞) = M0,

ψ′(0) = 0, ψ′(∞) = P0,

where T0 =
∫∞
0 τ0(t)dt, P0 =

∫∞
0 p0(t)dt, M0 =

∫∞
0 tp0(t)dt.
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If the plate is homogeneous A = 0, system (4) splits into two independent
equations

B
π

∞
∫

0

ϕ′(t)dt
t− x

=
ϕ(x)
E1(x)

− f1(x)
E1(x)

, (5)

x > 0.

B
π

∞
∫

0

ψ′′′(t)dt
t− x

=
ψ(t)

D1(x)
− f2(x)

D1(x)
, (6)

In the case p0(x) = 0, i.e., when the inclusion undergoes only tension,
we obtain equation (5) considered in [6], while for τ0(x) = 0, i.e., when
the inclusion is bent under the action of vertical forces p0(x), we have one
integrodifferential equation (6).

Let us consider equation (6) under the boundary conditions

ψ(0) = 0, ψ(∞) = M0,

ψ′(0) = 0, ψ′(∞) = P0.

After introducing the notation g(x) = ψ(x) − f2(x), equation (6) takes
the form

g(x)− B
π

D1(x)

∞
∫

0

g′′′(t)dt
t− x

=
BD1(x)

π

∞
∫

0

p′0(t)dt
t− x

, x > 0, B > 0, (7)

provided that g(0) = g(∞) = 0, g′(0) = g′(∞) = 0.
Let the bending rigidity of the inclusion change according to the law

D1(x) = h0xn (h0 = const > 0, n ≥ 0 is any real number). A solution
of equation (7) will be sought for in the class of functions whose second
derivative may have nonintegrable singularities at the integration interval
ends (i.e., in the class of functions of the type g′′(x) = x−3/2g̃0(x), where
g̃0(x) is a function satisfying the Hölder condition on the semi-axis x >
0), while the corresponding integrals will be understood in the regularized
sense [7]. The latter circumstance is important for the problem posed to be
correct, since for this class the energy integral of the bent plate converges like
the nonproper one, which enables one to investigate the solution uniqueness
of the problem posed. Let us assume that the principal vector and the
principal moment of external forces acting on the inclusion be equal to zero
and that p0(0) = 0, |p0(x)| < c

x2+δ , x →∞, δ > 0.
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By change of the variables x = eξ, t = eζ in equation (7) we have

g0(ξ)−
h0B
π

enξ

∞
∫

−∞

[g′′′0 (ζ)− 3g′′0 (ζ) + 2g′0(ζ)]e−3ζdζ
1− eξ−ζ =

=
Bh0

π
enξ

∞
∫

−∞

p̃′0(ζ)dζ
eζ − eξ , −∞ < ξ < ∞,

where g0(ξ) = g0(eξ), p̃0(ξ) = p0(eξ).
Rewrite this equation as

g0(ξ)e−kξ − h0B
π

∞
∫

∞

[g′′′0 (ζ)− 3g′′0 (ζ) + 2g′0(ζ)]e−3(ξ−ζ)dζ
1− eξ−ζ =

= e3ξ Bh0

π

∞
∫

−∞

p̃′0(ζ)dζ
eζ − eξ , −∞ < ξ < ∞, (8)

where k = n− 3, g0(±∞) = 0, g′0(±∞) = 0.
If we consider the case with k as a positive integer, i.e., n > 3, and

perform the Fourier transform of both sides of equation (8), then we obtain

Ψ(s + ik) + λs coth πs (is + 1)(is + 2)Ψ(s) = F (s), −∞ < s < ∞, (9)

where λ = Bh0√
2π

, Ψ(s) is the Fourier transform of the function g0(ξ) we are
seeking for, while F (s) is the Fourier transform of the right-hand side of
equation (8) whose representation implies that F (s) is analytically extend-
able in a strip −1 < Im x ≤ 2 and, for sufficiently large |s|, has the form
F (s) = O(1/|s|3+ε), where ε is an arbitrarily small positive integer.

In equation (8), for ξ = ζ the integral is understood in a sense of the
Cauchy principal value, while the Fourier transform means a generalized
transform.

The problem is posed as follows: find a function Ψ(z) which is analytic in
a strip, continuously extendable on the strip boundary, vanishes at infinity
and satisfies condition (9).

The problem coefficient can be written as

s coth πs (s− i)(s− 2i) =

= −is cothπs tanh
πs
2k

sinh π
2k (s + ik)

sinh π
2ks

s− i
s + 2i

2s + ik
2s− ik

(s2 + 4)
2s− ik
2s + ik

.

The function G0(s) ≡ coth πs tanh πs
2k

s−i
s+2i

2s+ik
2s−ik is continuous on the en-

tire exis and G0(∞) = G0(−∞) = 1. It is easy to verify that Ind G0(s) = 0
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and the branch of the function ln G0(s) that vanishes at infinity is integrable
on the entire axis.

As shown in [8, 9], the function G0(s) can be represented as

G0(s) =
χ0(s + ik)

χ0(s)
, −∞ < s < ∞, (10)

where

χ0(z) = exp
{ 1

2ki

∞
∫

−∞

coth
π
k

(t− z) ln G0(t)dt
}

, 0 < Im z < k.

The function s2 + 4 can be written as

s2 + 4 =
χ1(s + ik)

χ1(s)
, (11)

where χ1(z) = K
−2iz−k

k
Γ
(

2−iz
k

)

Γ
(

k+2+iz
k

) , and the number λ as

λ =
χ2(s + ik)

χ2(s)
(12)

where χ2(z) = exp(−iz ln k
√

λ), 0 < Im z < k.
If we substitute (10), (11) and (12) into condition (9) and introduce the

notation

χ3(z) =
χ0(z)χ1(z)χ2(z) sinh πz

2k

z(z − ik/2)
,

we obtain

Ψ(s + ik)
χ3(s + ik)

− Ψ(s)(k − is)
χ3(s)

=
F (s)

χ3(s + ik)
, −∞ < s < ∞. (13)

The function k − is can be represented as

k − is =
χ4(s + ik)

χ4(s)
,

where χ(z) = K−iz/kΓ
(k−iz

k

)

, 0 < Im z < k.
If we introduce one more notation

χ(z) = χ3(z)χ4(z),

then condition (13) takes the form

Ψ(s + ik)
χ(s + ik)

− Ψ(s)
χ(s)

=
F (s)

χ(s + ik)
, −∞ < s < ∞. (14)
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The function χ(z) is holomorphic in a strip 0 < Im z < k except for the
point z = ik/2 at which it has a pole of first order. Let us investigate its
behavir for large |z|.

The functions χ0(z) and χ2(z) are bounded throughout the entire strip,
while for sufficiently large |z| the functions χ1(z) and χ4(z) admit estimates
χ1(z) = O

(

|t|2τ/k−1
)

, χ4(z) = O
(

|t|1/2+τ/k
)

e−
π
2k |t|, z = t + iτ , 0 ≤ τ ≤ k.

Hence it follows that for sufficiently large |z| the function χ(z) admits an
estimate

|χ(z)| = O
(

|t|3τ/k−5/2), 0 ≤ τ ≤ k. (15)

Thus the function Ψ(z)
χ(z) is holomorphic in the strip and the solution of

problem (15) can be represented as

Ψ(z)=
χ(z) cosh π

k z
2ik

∞
∫

−∞

F (t)dt
χ(t + ik) cosh π

k t sinh π
k (t− z)

, 0< Im z<k. (16)

By virtue of formulas analogous to Sokhotskii–Plemelj ones, representa-
tion (16) yields

Ψ(t0)=
χ(t0)F (t0)
2χ(t0 + ik)

+
χ(t0) cosh π

k t0
2ik

∞
∫

−∞

F (t)dt
χ(t + ik) cosh π

k t sinh π
k (t− t0)

,

Ψ(t0+ik)=−F (t0)
2

+
χ(t0+ik) cosh π

k t0
2ik

∞
∫

−∞

F (t)dt
χ(t+ik) cosh π

k t sinh π
k (t−t0)

.

Taking into account (15) and the behavior of F (t) for large |t|, by the
latter formulas we conclude that for 0 < Im z < k the function Ψ(z) repre-
sented by (16) vanishes at infinity with order greater than three.

Condition (9) implies that for 0 < k ≤ 2 the function Ψ(z) is analytically
continuable in the strip 0 < Im z ≤ 2.

For k > 2, using the formula g′′(x) = g′′0 (ln x)−g′0(ln x)
x2 and recalling the

nature of Ψ(z), by the Cauchy formula and the inverse Fourier transform
we obtain

g′0(ln x)=
−i√
2π

∞
∫

−∞

tΨ(t)e−it ln xdt=−−ixk
√

2π

∞
∫

−∞

(t+ik)Ψ(t+ik)e−it ln xdt,

g′′0 (ln x)=
1√
2π

∞
∫

−∞

t2Ψ(t)e−it ln xdt=
xk
√

2π

∞
∫

−∞

(t+ik)2Ψ(t+ik)e−it ln xdt,
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while the contact force we are seeking behaves in the neighborhood of the
point x = 0 in the manner as follows:

p(x)− p0(x) ≡ g′′(x) = xk−2g̃(x), k > 2,

where g̃(x) is a continuous function on the semi-axis x > 0.
For 0 < k ≤ 2, recalling that Ψ(z) is analytically continuable in the strip

0 < Im z ≤ 2, by the Cauchy formula we obtain as above g′′(x) = O(1) in
the neighborhood of x = 0.

Now let us consider the case with k < 0, i.e., with 0 ≤ n < 3. Condition
(9) takes the form

Ψ(s− ip) + λs cothπs (is + 1)(is + 2)Ψ(s) = F (s), −∞ < s < ∞,(9′)

where p = −k, p > 0.
The problem is formulated as follows: find a function which is analytic

in the strip −p < Im z < p except for a finite number of points lying in the
strip 0 < Im z < p at which this function may have poles, is continuously
extendable on the strip boundary, vanishes at infinity and satisfies (9′).

Obviously, if we can find a function which is holomorphic in the strip
−p < Im z < 0, continuous on the strip boundary and satisfies condition
(9′), then the function

Ψ1(z) =











Ψ(z), −p < Im z < 0,

F (z)−Ψ(z − ip)
λz coth πz (iz + 1)(iz + 2)

, 0 < Im z < p,

with poles at the points z = im/2, m = 1, 3, . . . , will be a solution of the
problem under consideration.

After writing the coefficient of problem (9′) in the form

s cothπs(s− i)(s− 2i) =

= is coth πs tanh
πs
2p

sinh π(s−ip)
2p

sinh πs
2p

s− i
s + 2i

2s + ip
2s− ip

(s2 + 4)
2s− ip
2s + ip

,

the function ˜G0(s) ≡ coth πs tanh πs
2p

s−i
s+2i

2s+ip
2s−ip can be represented as

˜G0(s) =
χ̃0(s− ip)

χ̃0(s)
, −∞ < s < ∞, (10′)

where

χ̃0(z) = exp
{

− 1
2pi

∞
∫

−∞

ln ˜G0(t) coth
π(t− z)

p
dt

}

, 0 < Im z < p.
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The function s2 + 4 has a representation

s2 + 4 =
χ̃1(s)

χ̃1(s− ip)
, (11′)

where χ̃1(z) = P
−2iz+p

p
Γ
(

2+p−iz
p

)

Γ
(

2+iz
p

) , and the number λ is represented as

λ =
χ̃2(s)

χ̃2(s− ip)
, −∞ < s < ∞, (12′)

where χ̃2(z) = exp(−iz ln p
√

λ), −p < Im z < 0.
On substituting (10′), (11′) and (12′) into condition (9′) and introducing

the notation

χ̃3(z) =
χ̃0(z) sinh πz

2p

zχ̃1(z)χ̃2(z)
(z + ip/2),

we obtain

Ψ(s− ip)
χ̃3(s− ip)

− Ψ(s)(p + is)
χ̃3(s)

=
F (s)

χ̃3(s− ip)
, −∞ < s < ∞. (13′)

The function p + is is represented as

p + is =
χ̃4(s− ip)

χ̃4(s)
,

where χ̃4(z) = P iz/pΓ
(p+iz

p

)

, −p < Im z < 0. If we introduce the notation

χ̃(z) = χ̃3(z)χ̃4(z),

then condition (13′) can be rewritten as

Ψ(s− iz)
χ̃(s− ip)

− Ψ(s)
χ̃(s)

=
F (s)

χ̃(s− ip)
, −∞ < s < ∞. (14′)

The function χ̃(z) is holomorphic in the strip −p < Im z < 0, the func-
tions χ̃0(z) and χ̃2(z) are bounded throughout the strip, for sufficiently large
|z| the functions χ̃1(z) and χ̃4(z) admit the estimates χ̃1(z) = O

(

|t|2τ/p+1
)

,
χ̃4(z) = O

(

|t|1/2−τ/p
)

e−
π
2p |t|, z = t + iτ , and for large |z| the function χ̃(z)

admits an estimate

|χ̃(z)| = O(|t|−3τ/p−1/2), −p ≤ τ ≤ 0. (15′)

The function Ψ(z)
χ̃(z)

is holomorphic in the strip −p < Im z < 0 except for

the point z = −ip/2 at which it may have a pole of first order, and the
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solution of the boundary value problem (14′) is given by the formula

Ψ(z) =
χ̃(z) cosh π

p z

2ip

∞
∫

−∞

F (t)dt
χ̃(t− ip) cosh π

p t sinh π
p (t− z)

+

+C0 tanh
π
p

zχ̃(z) + C1χ̃(z), −p < Im z < 0, (16′)

where C0 and C1 are any constants.
Condition (9’) implies that the function Ψ(z) is analytically continuable

in the strip −3 < Im z < 0. On choosing constants such that C0 = C1 = 0,
the function Ψ(z) given by (16′) will be vanishable at infinity with order
greater than three. The unknown function Ψ1(z) has poles at the points
z = i/2, 3i/2 and vanishes at infinity with its order unchanged.

Similarly to the above, using the Cauchy formula and the theorem of
residues in the neighborhood of the point x = 0, we obtain the representa-
tion g′′(x) = x−3/2g̃1(x), where g̃1(x) is continuous on the semi-axis x ≥ 0.

The results obtained can be formulated as

Theorem 1. If the function p0(x) is integrable and bounded on the semi-

axis x ≥ 0 and, moreover, p0(0)=0, p0(x)=O(x−2−δ) (x→∞),
∞
∫

0
p0(t)dt=

0,
∞
∫

0
tp0(t)dt = 0, then in the neighborhood of the point x = 0 the normal

contact stress p(x) admits an estimate

p(x) = p0(x) +











xn−5p̃(x) for n > 5,
O(1) for 3 < n ≤ 5,
x−3/2p̃1(x) for 0 ≤ n < 3,

where p̃(x) and p̃1(x) are continuous functions on the semi-axis x ≥ 0.

Remark. For n = 3 condition (9) or (9′) takes the form

Ψ(s)[1 + λs coth πs (is + 1)(is + 2)] = F (s), −∞ < s < ∞. (9′′)

By considering the equation

1 + λs coth πs (is + 1)(is + 2) = 0 (10′′)

we can prove that it has no complex root s0 = α + iβ, where α ≥ 0,
0 ≤ β ≤ 1/2.
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Indeed, after isolating the real and the imaginary part from equation
(10′′) we obtain the system of equations

1 +
λ(P sin 2πβ −Q sinh 2πα)

2(sin2 πβ + sinh2 πα)
= 0,

Q sin 2πβ + P sinh 2πα
sin2 πβ + sinh2 πα

= 0,
(11′′)

where

P = β(β − 1)(β − 2) + 2α2(1− β),

Q = 6αβ − 3αβ2 − 2α + α3.

Let system (11′′) have a solution (α0, β0), where α0 ≥ 0, 0 ≤ β0 ≤
1/2. After finding from the second equation of system (11′′) sinh 2πα0 =
−Q

P sin 2πβ0 and substituting into the first equation, we obtain

1 +
λ(P 2 + Q2) sin 2πβ0

2P (sin2 πβ0 + sinh2 πα0)
= 0.

Since P > 0 and sin 2πβ0 ≥ 0 for 0 ≤ β0 ≤ 1/2, the latter equality does not
hold.

Thus we have proved

Theorem 2. In the conditions of Theorem 1 and for n = 3, the normal
contact stress admits, in the neighborhood of the point x = 0, a representa-
tion

p(x) = p0(x) + O(x−3/2+δ0),

where δ0 > 0.
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