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THERMOELASTIC EQUILIBRIUM OF BODIES IN
GENERALIZED CYLINDRICAL COORDINATES

N. KHOMASURIDZE

Abstract. Using the method of separation of variables, an exact so-
lution is constructed for some boundary value and boundary-contact
problems of thermoelastic equilibrium of one- and multilayer bodies
bounded by the coordinate surfaces of generalized cylindrical coor-
dinates ρ, α, z. ρ, α are the orthogonal coordinates on the plane
and z is the linear coordinate. The body, occupying the domain
Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 < z < z1}, is subjected to the
action of a stationary thermal field and surface disturbances (such as
stresses, displacements, or their combinations) for z = 0 and z = z1.
Special type homogeneous conditions are given on the remainder of
the surface. The elastic body is assumed to be transversally isotropic
with the plane of isotropy z = const and nonhomogeneous along z.
The same assumption is made for the layers of the multilayer body
which contact along z = const.

INTRODUCTION

Boundary value problems of elastic equilibrium of a homogeneous isotro-
pic layer which are related to the problems considered in this paper were
previously investigated by Lamé and Clapeyron. In the subsequent studies,
the solutions obtained by these authors were simplified and generalized. A
sufficiently complete bibliography on this topic is given in [1], [2].

In all the mentioned papers, solutions of the problem were constructed by
means of double integral transformation formulas mostly for a homogeneous
layer in the absence of thermal disturbance. In this paper, using the method
of separation of variables and double series, we construct solutions of static
boundary value and boundary-contact problems of thermoelasticity [3] for
the linear coordinate parallelepiped Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 <
z < z1}, where ρ, α, z are the generalized cylindrical coordinates (ρ, α are
the orthogonal coordinates on the plane and z is a linear coordinate). In
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addition to thermal disturbance, either stresses or displacements or their
combinations are given for z = 0 and z = z1. Special type homogeneous
boundary conditions are given on the lateral surfaces (ρ = ρ0, ρ = ρ1, α =
α0, α = α1). If a multilayer body is considered, then its layers contact along
the planes z = const. An elastic body or the layers of a multilayer body
consist of a transtropic (transversally isotropic) material which is specially
non-homogeneous along z (z = const is the plane of isotropy).

It follows from the above discussion that in this paper the problem of
elastic equilibrium of an infinite layer is generalized (despite special type
homogeneous boundary conditions given on the lateral surfaces of the body)
and solved by a simple method. The simplification is achieved by 1) trans-
forming the thermal problem and constructing a general solution for the
considered class of three-dimensional boundary value problems of thermo-
elasticity; 2) replacing the classical conditions on the boundary and contact
surfaces by the equivalent ones; 3) using a double series instead of a double
integral transformation. In conclusive Remarks 1 and 2, solutions of some
nontrivial problems of thermoelasticity are given.

The effectiveness of the solutions can be characterized as follows.
Using the method of separation of variables, in the domain Ω = {ρ0 <

ρ < ρ1, α0 < α < α1, 0 < z < z1} we can constuct an effective solution of
the basic boundary value problems for the Laplace equation, with the zero
conditions for ρ = ρj and α = αj , where j = 0, 1. Then, likewise effectively,
in the same domain Ω and by the same method we can find a thermoelastic
equilibrium of the considered bodies.

To conclude the introduction, note that the Lamé coefficients of the sys-
tem ρ, α, z [2] are

hρ = hα = h =

√

(∂z
∂ρ

)2
+

(∂y
∂ρ

)2
, hz = 1,

and that

∂x
∂ρ

− ∂y
∂α

= 0,
∂x
∂α

+
∂y
∂ρ

= 0,
∂
∂ρ

( 1
h

∂h
∂ρ

)

+
∂
∂α

( 1
h

∂h
∂α

)

= 0,

where x, y are the Cartesian coordinates.

§ 1. Equations of State, Boundary Conditions, a General
Solution, the Uniqueness of a Solution

1.1. If the thermal field does not depend on time and no mass force is
given, then the elastic equilibrium of a transtropic body which is nonho-
mogeneous along z can be described in terms of the generalized cylindrical
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coordinates by the known equations [3,4]. In particular, the equilibrium
equations have the form

∂
∂ρ

(hRρ) +
1
h

∂
∂α

(h2Rα) + h2 ∂Rz

∂z
− ∂h

∂ρ
Aα = 0,

∂
∂α

(hAα) + h2 ∂Az

∂z
+

1
h

∂
∂ρ

(h2Aρ)−
∂h
∂α

Rρ = 0,

h2 ∂Zz

∂z
+

∂
∂ρ

(hZρ) +
∂
∂α

(hZα) = 0.































(1)

where Rρ, Aα, Zz are normal stresses; Rα = Aρ, Rz = Zρ, Az = Zα are
tangential stresses. As for the physical law, it is written in the form

Rρ =c1eρρ+(c1 − 2c5)eαα+c3ezz−k10T =
c1

h2

(∂(hu)
∂ρ

+
∂(hv)
∂α

)

−

− 2c5

( 1
h

∂v
∂α

+
1
h2

∂h
∂ρ

u
)

+ c3
∂w
∂z

− k10T,

Aα =c1eαα+(c1 − 2c5)eρρ+c3ezz−k10T =
c1

h2

(∂(hu)
∂ρ

+
∂(hv)
∂α

)

−

− 2c5

( 1
h

∂u
∂ρ

+
1
h2

∂h
∂α

v
)

+ c3
∂w
∂z

− k10T,

Zz = c2ezz + c3(eρρ + eαα)− k20T =
c3

h2

(∂(hu)
∂ρ

+
∂(hv)
∂α

)

+

+ c2
∂w
∂z

− k20T, Aρ = c5eαρ = c5

[ ∂
∂ρ

( v
h

)

+
∂
∂α

(u
h

)]

,

Zρ = c4ezρ = c4

(∂u
∂z

+
1
h

∂w
∂ρ

)

, Zα = c4ezα = c4

( 1
h

∂w
∂α

+
∂v
∂z

)

,







































































































(2)

where u, v, w are the components of the displacement vector ~U along the tan-
gents to the coordinate lines ρ, α, z; eρ,ρ, eαα, ezz, ezρ = eρz, ezα = eαz, eαρ =
eρα are deformations; cj = cj(z) (j = 1, 2, . . . , 5) are the elastic char-
acteristics (for their expression in terms of the technical characteristics
E1, E2, v1, v2, µ see [5]); k10 = [2(c1 − c5)k1 + c3k2], k20 = (2c3k1 + c2k2);
k1 = k1(z) and k2 = k2(z) are the coefficients of linear thermal expansion in
the plane of isotropy and along z; T is the elastic body temperature defined
by the equation

∆2T +
1
λ1

∂
∂z

(

λ2
∂T
∂z

)

= 0 (3)

with the corresponding boundary conditions. Here λ1 = λ1(z) and λ2 =
λ1(z) are the heat conduction coefficients in the plane of isotropy and along
z [3]; ∆2 = 1

h2

( ∂2

∂ρ2 + ∂2

∂α2

)

; in the case of circular cylindrical coordinates
r, α, z we have h = r and the operation ∂

∂ρ is replaced by the operation τ ∂
∂r .
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Using (1) and (2), we can obtain the following system with respect to
D,Zρ, Zα,K, u, v, w:

a)
∂
∂z

(c3

c1
D +

c1c2 − c2
3

c1

∂w
∂z

)

+
1
h2

[ ∂
∂ρ

(hZρ) +
∂
∂α

(hZα)
]

=

=
∂
∂z

(c1k20 − c3k10

c1
T

)

,

b)
∂D
∂ρ

− ∂K
∂α

+
∂(hZρ)

∂z
= 0, c)

∂D
∂α

+
∂(hZα)

∂z
+

∂K
∂ρ

= 0,

d)
1
h2

[∂(Zα)
∂ρ

− ∂(hZp)
∂α

]

− c4
∂
∂z

(K
c5

)

= 0,



















































(4)

a)
1
h2

[∂(hu)
∂ρ

+
∂(hv)
∂α

]

+
c3

c1

∂w
∂z

− k10

c1
T =

D
c1

,

b)
∂(hu)

∂z
+

∂w
∂ρ

=
hZρ

c4
,

c)
∂w
∂α

+
∂(hu)

∂z
=

hZα

c4
, d)

∂(hv)
∂ρ

− ∂(hu)
∂α

=
h2K
c5

.



































(5)

By virtue of (5) it is easy to verify that equality (4d) is the identity.
Next, we shall consider thermoelastic equilibrium of the curvilinear coor-

dinate parallelepiped (CCP) occupying the domain Ω = {ρ0 < ρ < ρ1, α0 <
α < α1, 0 < z < z1}. We shall use boundary conditions of the form

for ρ = ρj : a)
∂T
∂ρ

= 0, u = 0, K = 0, Zρ = 0, or

b) T = 0, D = 0, v = o, w = 0.







(6)

for α = αj : a)
∂T
∂α

= 0, v = 0, Zα = 0, K = 0, or

b) T = 0, D = 0, w = o, u = 0.







(7)

for z = zj : a) T = τj(ρ, α) or b)
∂T
∂z

= τ̃j(ρ, α), or

c)
∂T
∂z

+ ΘjT = τ̃j(ρ, α).











(8)

for z = zj : a) Zz = Fj1(ρ, α), hZρ = Fj2(ρ, α), hZα = Fj3(ρ, α) or

b) w = fj1(ρ, α), hu = fj2(ρ, α), hv = fj3(ρ, α), or

c) w = fj1(ρα), hZρ = Fj2(ρ, α), hZα = Fj3(ρα), or

d) Zz = Fj1(ρ, α), hu = fj2(ρ, α), hv = fj3(ρ, α),



















(9)

where j = 0, 1, and z0 = 0; Θj are the given constants. The conditions
imposed on the functions τj(ρ, α), τ̃j(ρα), fjl(ρ, α) and Fjl(ρ, α) (l = 1, 2, 3)



THERMOELASTIC EQUILIBRIUM OF BODIES 525

will be discussed below; we only note that that these functions are chosen
so that the compatibility conditions hold on the CCP edges.

We shall give a brief technical interpretation of the boundary conditions
(6a), (7a), (9c) for fj1 = 0 and Fjl = 0 (l = 2, 3) – conditions a1 and
(6b), (7b), (9d) for Fj1 = 0 and fjl = 0 (l = 2, 3) – conditions a2.
In the case of the conditions a1 it can be assumed that the cylindrical or

plane boundary S of the CCP is connected, respectively, with an absolutely
smooth cylindrical or plane boundary surface S of an absolutely rigid body
which is a thermal insulator.

Since the body is absolutely rigid, the normal to the S component of the
displacement vector vanishes and, since S is absolutely smooth, we have
K = 0, Zρ = 0 or K = 0, Zα = 0, or Zρ = 0, Zα = 0

In the case of the conditions a2 it is assumed that an absolutely flexible
but absolutely nontensile and noncompressible thin plate is glued onto the
cylindrical or plane boundary surface S of the CCP (naturally, the plate
takes the shape of S).

Since the plate is absolutely nontensile and noncompressible, we have
v = 0, w = 0 or u = 0, w = 0, or u = 0, v = 0, and since it is absolutely
flexible, we have D = 0 (the condition T = 0 for ρ = ρj and α = αj is
satisfied by other technical means).

Note that the less the curvature of the cylindrical boundary surface ρ =
ρj , the less conditions (6a), (6b) differ, respectively, from the conditions

a)
∂T
∂ρ

= 0, u = 0, Aρ = 0, Zρ = 0 and

b) T = 0, Rr = 0, v = 0, w = 0







(10)

for ρ = ρj . Conditions (6a) and (6b) are equivalent to conditions (10a) and
(10b) when ρ = ρj is a plane. A similar reasoning holds for the surface
α = αj and conditions (7).

1.2. When λ1 = const and λ2 = const, in a thermally homogeneous
medium the heat conduction equation (3) takes the form

∆2T + λ0
∂2T
∂z2 = 0, (11)

where λ0 = λ2/λ1. Now, using the method of separation of variables, the
function T in the domain Ω = {ρ < ρ0 < ρ1, α0 < α < α1, 0 < z < z1} is
written as

T = t0 + t1z +
∞
∑

n=0

∞
∑

m=0

(

ATmne−prz + BTmnepr(z−z1)
)

ψmn(ρ, α), (12)
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where t0, t1, pr = λ−0.5
0 p(m, n) ≥ 0, ATmn, BTmn are constants; ψmn(ρ, α)

is a nontrivial solution of the Sturm–Liouville problem [7]

∆2ψmn + p2ψmn = 0; (13)

for ρ = ρj : a) ψmn = 0 or b)
∂
∂ρ

ψmn = 0; (14)

for α = αj : a) ψmn = 0 or b)
∂
∂α

ψmn = 0. (15)

Conditions (14) and (15) follow from conditions (6) and (7).
For the Cartesian coordinate system, when ρ = x, α = y, h = 1, ψmn

is the product of trigonometric functions; in the case of cylindrical coor-
dinates, when ρ = r, α = α, x = r cosα, y = r sin α, h = r, ψmn
is the product of trigonometric and Bessel functions; for a cylindrical-
elliptic coordinate system, when x = c cosh ρ cosα, y = c sinh ρ sin α, h =
c
√

0, 5(cosh 2ρ− cos 2α), and c is a scale factor, ψmn is the product of
Mattieu functions; in a cylindrical-parabolic coordinate system, when x =
cρ2−α2

2 , y = ρα, h = c
√

ρ2 + α2, ψmn is the product of Weber functions
[8,9].

If the medium is thermally nonhomogeneous (λ1 = λ1(z) and λ2 =
λ2(z)), then

T = ηT0(z) +
∞
∑

n=0

∞
∑

m=0

ηTmn(z)ψmn(ρ, α),

where ηT0(z) and ηTmn(z) are solutions of the equations

d
dz

(

λ2
dηT0

dz

)

= 0 and
1
λ1

d
dz

(

λ2
dηTmn

dz

)

− ρ2ηTmn = 0.

In the generalized cylindrical coordinates, the solution of equation (11)
can be written in the form

T =
∞
∑

s=0

(p1sT1s + p2sT2s),

where

T1s = zs
[ s
2 ]

∑

q=0

λq− s
2

0 a1q

( r
z

)2q
, T2s = zs

∞
∑

q=0

λq− s
2

0 a1q(ln r − a2q)
(r

z

)2q
;

a1q =
(−1)q · s!

4qq!q!(s− 2q)!
, a2q =

1
2

[ 1
q + 1

−
q

∑

q̃=1

2q̃ + 1
q̃(q̃ + 1)

]

,
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[ s
2

]

is the integer part of the number s
2 , 0! = 1, a10 = 1, a20 = 0, 5, p1s, p2s

are arbitrary constants. The following relations hold:

T1(s−1) =
1
λ0

∂
∂z

T1s, T2(s−1) =
1
λ0

∂
∂z

T2s.

In the Cartesian coordinate system r =
√

x2 + y2; in the cylindrical
coordinate system r is one of the coordinates and thus we obtain an ax-
ially symmetric solution; in the cylindrical-elliptic coordinate system r =
c
√

0, 5(cosh 2ρ + cos 2α), where c is a scale factor; in the cylindrical-pa-
rabolic coordinate system r = 0, 5c · (ρ2 + α2); in the cylindrical-bipolar

coordinate system r = c
√

cosh ρ−cos α
cosh ρ+cos α .

Next, for a thermally homogeneous medium we assume that

T =
∂2

∂z2 T̃ , (16)

where

T̃ = T̃0 + T̃1 =
t0
2

(

z2 − λ0

2
r2

)

+
t1
6

(

z3 − 3λ0

2
zr2

)

+

+
∞
∑

n=0

∞
∑

m=0

(

ATmne−pT z + BTmnepT (z−z1)
)ψmn(ρ, α)

p2
T

. (17)

It can be easily verified that T̃ satisfies the same equation as T . In the
expression for T̃ , T̃0 is the polynomial part of T (i.e., the terms with the
coefficients t0 and t1) and T̃1 is the remaining part of T̃ .

1.3. To apply the method of separation of variables for solving the con-
sidered boundary value problems, we represent the boundary conditions (9)
as for z = zj :

a)Zz =Fj1(ρ, α), Γ1(hZρ, hZα)= F̃j2(ρ, α), Γ2(hZα, hZρ)= F̃j3(ρ, α) or

b)w=fj1(ρ, α), Γ1(hu, hv)= f̃j2(ρ, α), Γ2(hv, hu)= f̃j3(ρ, α) or

c)w=fj1(ρ,α), Γ1(hZρ,hZα)= F̃j2(ρ,α), Γ2(hZα,hZρ)= F̃j3(ρ,α) or

d)Zz =Fj1(ρ, α), Γ1(hu, hv)= f̃j2(ρ, α), Γ2(hv, hu)= f̃j3(ρ, α),
(18)

where Γ1(g1, g2) = 1
h2

(∂g1
∂ρ + ∂g2

∂α

)

,Γ2(g2, g1) = 1
h2

(∂g2
∂ρ − ∂g1

∂α

)

, g1 = hZρ

or g1 = hu, g2 = hZα or g2 = hv. It is assumed that the functions
τ̃j(ρ, α), F̃j2(ρ, α), and F̃j3(ρ, α), the functions τj(ρ, α), Fj1(ρ, α), f̃j2(ρ, α),
and f̃j3(ρ, α) with their first derivatives, the function fj1(ρ, α) with its first
and second derivatives are expanded into absolutely and uniformly converg-
ing Fourier series with respect to the eigenfunctions of problem (13), (14),
(15). The expansion with respect to functions ψmn can also be assumed
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valid, at least formally, when in equation (13) the variables are not sepa-
rated (into cylindrical-bipolar coordinates).

The equivalence of the boundary conditions (9) and (18) will be discussed
below.

The aim of this study is to construct a regular solution of the boundary
value problems (3), (4), (5), (6), (7), (8), (9) or (3), (4), (5), (6), (7), (8),
(18). For this we must define the notion of regularity.

A solution of system (4),(5) defined by the functions u, v, w will be called
regular if the functions u, v, w are three times continuously differentiable in
the domain Ω, where Ω̃ is the domain Ω with the boundaries ρ = ρj and
α = αj on the surface z = zj can be represented together with their first
and second derivatives by absolutely and uniformly converging Fourier series
with respect to the eigenfunctions of problem (13), (14), (15). Moreover, it
is assumed that the equilibrium equations hold for ρ = ρj and α = αj .

1.4. By virtue of the compatibility conditions on the CCP edges we con-
clude that the boundary conditions (9) and (18) will be equivalent if in the
domain Ω = {ρ0 < ρ < ρ1, α0 < α < α1} the boundary value problem

∂g1

∂ρ
+

∂g2

∂α
= 0,

∂g2

∂ρ
− ∂g1

∂α
= 0; (19)

for ρ = ρj : a) g2 = 0,
∂g1

∂ρ
= 0 or b) g1 = 0,

∂g2

∂ρ
= 0; (20)

for α = αj : a) g1 = 0,
∂g2

∂α
= 0 or b) g2 = 0,

∂g1

∂α
= 0 (21)

has only the trivial solution.
According to Keldysh–Sedov’s theorem [10], the boundary value problem

(19), (20), (21), except for problems (19), (20a), (21b) and (19), (20b),
(21a), has a solution

g1 = 0, g2 = 0.

The boundary value problem (19), (20a), (21b) has a solution

g1 = g10 = const, g2 = 0, (22)

while the boundary value problem (19), (20b), (21a) has a solution

g1 = 0, g2 = g20 = const. (23)

A difficulty created by the nonzero solution of problem (19), (20a), (21b)
and (19), (20b), (21a) can be overcome as follows: To the solution of the
boundary value problem (3), (4), (5), (8), (6a), (7b), (18) we add the solu-
tion

hu = 0, w = 0, hv = b1 + b2 · lz, (24)
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while to the solution of the boundary value problem (3), (4), (5), (8), (6b),
(7a), (18) we add the solution

hv = 0, w = 0, hu = b3 + b4 · lz. (25)

In (24) and (25), lz =
∫

c−1
4 dz (for c4 = const lz = c−1

4 · z); b1, b2, b3, b4 are
constants.

1.5. It follows from (4b,c,d) that

∆2K +
∂
∂z

[

c4
∂
∂z

( 1
c5

K
)]

= 0. (26)

Then the boundary conditions (6), (7) imply that on the lateral surfaces
ρ = ρj and α = αj of the CCP the function K or its normal derivative (see
equations (4b,c,d)) is equal to zero. As for the surfaces z = zj , by (18) we
have

Γ2(hZα, hZρ) = c4
∂
∂z

( 1
c5

K
)

, Γ2(hv, hu) =
1
c5

K.

Hence for the function K we obtain a classical problem of mathematical
physics which consists in defining K by equation (26) when either the func-
tion K or its normal derivative is defined on the surface of the domain of
definition of K, or K is given on one part of the surface and its normal
derivative (for c5 = c5(z)) on the other; the expression 1

c5

∂K
∂z +

( 1
c5

)′ ·K can
be given on z = zj .

Thus a general elastic field corresponding to the considered boundary
value problems can be represented as a sum (superposition) of a solenoidal
field for div ~U = 0, w = 0, T = 0 and a thermoelastic field with a plane
rotor of the displacement vector for rotz ~U = 0.

Using the method of separation of variables the function K can be written
in the form

K = b10 + b11 · lz +
∞
∑

n=1

∞
∑

m=1

Kmn(z) · ψ̄mn(ρ, α), (27)

where b10, b11 are constants and Kmn(z) is a solution of the equation

d
dz

[

c4
d
dz

( 1
c5

Kmn

)]

− p2
1 ·Kmn = 0,

where p1 = p1(m,n). ψ̄mn(ρ, α) is a solution of problem (13), (14), (15).
The function ψ̄mn(ρ, α) is conjugate to function ψmn(ρ, α) in the sense that
if ψmn|ρ=ρj = 0, then

( ∂
∂ρ ψ̄mn

)

ρ=ρj
= 0, but if

( ∂
∂ρψmn

)

ρ=ρj
= 0, then

ψ̄mn|ρ=ρj = 0, and vice versa; we have a similar situation for α = αj .
It might seem that the constants b10 and b11 in (27) are nonzero when

conditions (6b) are given for ρ = ρj and conditions (7b) for α = αj (in all
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other cases b10 and b11 are equal to zero), but in that case we also have
b10 = 0 and b11 = 0, since, as can be easily verified,

ρ1
∫

ρ0

α1
∫

α0

K · h2dρdα = 0.

Finally, for the considered class of boundary value problems of thermoe-
lasticity we obtain

K =
∞
∑

n=1

∞
∑

m=1

Kmn(z) · ψ̄mn(ρ, α). (28)

Without loss of generality the function K can be represented as

K =
∂
∂z

[

c4
∂
∂z

( 1
c5

ϕ1

)]

, (29)

where

∆2ϕ1 +
∂
∂z

[

c4
∂
∂z

( 1
c5

ϕ1

)]

= 0,

and, with (28) taken into account,

ϕ1 =
∞
∑

n=1

∞
∑

m=1

ϕ1mn(z) · ψ̄mn(ρ, α), (30)

where ϕ1mn(z) is a solution of the equation

d
dz

[

c4
d
dz

( 1
c5

ϕ1mn

)]

− p2
1 · ϕ1mn = 0.

The convenience of representation (29) will be seen in our further discus-
sion.

1.6.

Theorem 1. For the considered class of boundary value problems of
thermoelasticity, a general solution in the class of regular functions can
be represented as

hu=
∂
∂ρ

(

ϕ3+
1

2c4
ϕ2

)

+
1
c5

∂ϕ1

∂α
, hv=

∂
∂α

(

ϕ3+
1

2c4
ϕ2

)

− 1
c5

∂ϕ1

∂ρ
,

w = − ∂
∂z

(

ϕ3 +
1

2c4
ϕ2

)

+
1
c4

∂ϕ2

∂z
.















(31)
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Here

a)
∂
∂z

[

c4
∂
∂z

( 1
c5

ϕ1

)]

+ ∆2ϕ1 = 0,

b)
∂2ϕ3

∂z2 + γ1∆2ϕ3 + γ2∆2ϕ2 +
1
2

( 1
c4

)′′
· ϕ2 = γ4T,

c)
∂2ϕ2

∂z2 + γ1∆2ϕ2 + γ3∆2ϕ3 = γ5T,































(32)

where γ1 = c1c2−c3(c3+2c4)
2c2c4

, γ2 = c1c2−(c3+2c4)2

4c2c2
4

, γ3 = c1c2−c2
3

c2
,

γ4 = c2k10−(c3+2c4)k20
2c2c4

, γ5 = c2k10−c3k20
c2

.

Proof. By virtue of representation (29) we can rewrite (4b, c, d) in the form

∂D
∂ρ

+
∂
∂z

[

hZρ − c4
∂2

∂α∂z

(ϕ1

c5

)]

= 0,

∂D
∂α

+
∂
∂z

[

hZα + c4
∂2

∂ρ∂z

(ϕ1

c5

)]

= 0,

∂
∂ρ

[

hZα + c4
∂2

∂ρ∂z

(ϕ1

c5

)]

− ∂
∂α

[

hZρ − c4
∂2

∂α∂z

(ϕ1

c5

)]

= 0,



































(33)

from which it follows that there exists a function ∂
∂z ϕ2 such that

D = −∂2ϕ2

∂z2 , hZρ =
∂2ϕ2

∂ρ∂z
+ c4

∂2

∂ρ∂z

(ϕ1

c5

)

,

hZα =
∂2ϕ2

∂α∂z
− c4

∂2

∂ρ∂z

(ϕ1

c5

)

.















(34)

By substituting (34) and (29) into (5b,c,d) we obtain

∂
∂z

[

hu− ∂
∂α

(ϕ1

c5

)]

+
∂
∂ρ

[

w − 1
c4

∂ϕ2

∂z

]

= 0,

∂
∂α

[

w − 1
c4

∂ϕ2

∂z

]

+
∂
∂z

[

hv +
∂
∂ρ

(ϕ1

c5

)]

= 0,

∂
∂ρ

[

hv +
∂
∂ρ

(ϕ1

c5

)]

− ∂
∂α

[

hu− ∂
∂α

(ϕ1

c5

)]

= 0,































(35)

from which it follows that there exists a function ϕ3 such that

hu =
∂
∂ρ

(

ϕ3 +
ϕ2

2c4

)

+
1
c5

∂ϕ1

∂α
,

hv =
∂
∂α

(

ϕ3 +
ϕ2

2c4

)

− 1
c5

∂ϕ1

∂ρ
,

w = − ∂
∂z

(

ϕ3 +
ϕ2

2c4

)

+
1
c4

∂ϕ2

∂z
.































(36)
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The substitution of (34) and (36) into (4a) and (5a) gives

a)
∂
∂z

[

∆2ϕ2 −
c3

c1

∂2ϕ2

∂z2 − c1c2 − c2
3

c1

∂
∂z

(∂ϕ3

∂z
− 1

2c4

∂ϕ2

∂z
+

+
( 1

2c4

)′
ϕ2

)

− c1k20 − c3k10

c1
T

]

= 0,

b) ∆2ϕ3 +
1

2c4
∆2ϕ2 +

1
c1

∂2ϕ2

∂z2 − c3

c1

∂
∂z

(∂ϕ3

∂z
− 1

2c4

∂ϕ2

∂z
+

+
( 1

2c4

)′
ϕ2

)

− k10

c1
T = 0,



















































(37)

where the prime is the derivative with respect to z.
After integrating equation (37) with respect to z (37a) we obtain

∂2ϕ3

∂z2 + γ1∆2ϕ3 + γ2∆2ϕ2 +
( 1

2c4

)′′
ϕ2 − γ4T = −c3 + 2c4

2c2c4
f(ρ, α),

∂2ϕ2

∂z2 + γ1∆2ϕ2 + γ3∆2ϕ3 − γ5T = −c3

c2
f(ρ, α),















(38)

where f(ρ, α) is the function appearing as a result of the integration of (37a)
with respect to z.

A particular solution of system (38) can be written in the form

ϕ∗2 = χ∗, ϕ∗3 =
1

2c4
χ∗, T ∗ = 0, (39)

where χ∗ is in turn a particular solution of the equation ∆2χ = f(ρ, α).
The substituion of (39) into (36) shows that w∗ = 0, v∗ = 0, u∗ = 0, so
that without loss of generality it can be assumed that f(ρ, α) = 0.

Therefore ϕ1, ϕ2, and ϕ3 satisfy equations (32). Since (36) and (31)
coincide, this proves Theorem 1.

It is interesting to note that if T = 0 and in (18) Fj1 = 0 or fj1 =
0, F̃j2 = 0 or f̃j2 = 0, then ϕ2 = 0, ϕ3 = 0 and thus the solution of the
problem of elastic equilibrium of the CCP is reduced to finding ϕ1, i.e., to
integrating equation (32a) with the corresponding boundary conditions.

1.7. For a homogeneous transtropic medium (which is assumed to be ther-
mally homogeneous) we assume that

ϕ2 = γ3 · Φ2, ϕ3 = Φ3 + γ3 · a · Φ2, (40)

where a =
√

−γ2/γ3 · i, if γ2 < 0, i =
√
−1; a =

√

γ2/γ3, if γ2 ≥ 0. On
substituting (40) and (16) into (32) and performing some transformations,
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we obtain

a)
c4

c5

∂2ϕ1

∂z2 +∆2ϕ1 =0, b)
1

γ1−aγ3

∂2Φ3

∂z2 +∆2Φ3 =
γ4−aγ5

γ4−aγ3

∂2T̃
∂z2 ,

c)
1

γ1 + aγ3

∂2Φ2

∂z2 + ∆2Φ2 −
1

γ2
1 − γ2γ3

∂2Φ3

∂z2 =
γ1γ5 − γ3γ4

γ3(γ2
1 − γ2γ3)

∂2T̃
∂z2 .



















(41)

In the considered case (30) implies

ϕ1 =
∞
∑

n=0

∞
∑

m=0

(

A1mne−p̃1z + B1mnep̃1(z−z1)
)

ψ̄mn(ρ, α), (42)

where p̃1 =
√

c5/c4 · p1(m, n), A1mn and B1mn are constants.
Let us now construct a general solution of system (41b,c) for different

values of γ1, γ2, . . . , γ5 (for every value the function ϕ1 is given by formula
(42)) and denote by Φ̃2 and Φ̃3 the functions satisfying the equations

1
γ1 + aγ3

∂2Φ̃2

∂z2 + ∆2Φ̃2 = 0,
1

γ1 − aγ3

∂2Φ̃3

∂z2 + ∆2Φ̃3 = 0.

(a) If a 6= 0, λ0(γ1 ± aγ3) 6= 1, and γ5 6= λ0(γ1γ5 − γ3γ4), then the
solution of system (41b,c) has the form

Φ3 = Φ̃3 + G1T̃ , Φ2 = Φ̃2 + G2Φ̃3 + G3T̃ , (43)

where

G1 =
γ4−aγ5

1−λ0(γ1−aγ3)
, G2 =− 1

2aγ3
, G3 =

γ3G1+γ1γ5−γ3γ4

γ3(γ1−aγ3)[1−λ0(γ1+aγ3)]
.

(b) If a 6= 0, λ0(γ1 − aγ3) = 1, γ5 6= λ0(γ1γ5 − γ3γ4), then the solution
of system (41b,c) has the form

Φ3 = Φ̃3 + G1z
∂T̃
∂z

, Φ2 = Φ̃2 + G2Φ̃3 + G3z
∂T̃
∂z

+ G4T̃ , (44)

where

G1 =
γ4 − aγ5

2
, G2 = − 1

2aγ3
, G3 = − G1

2aγ3
, G4 =

λ0γ5(γ2 − aγ1)− γ4

2λ0γ2γ3
.

(c) If a 6= 0, λ0(γ1 + aγ3) = 1, γ5 6= λ0(γ1γ5 − γ3γ4), then the solution
of system (41b,c) has the form

Φ3 = Φ̃3 + G1T̃ , Φ2 = Φ̃2 + G2Φ̃3 + G3z
∂T̃
∂z

, (45)

where

G1 =
γ4 − aγ5

2aγ3
, G2 = − 1

2aγ3
, G3 =

γ3G1 + γ1γ5 − γ3γ4

2γ3(γ1 − aγ3)
.



534 N. KHOMASURIDZE

(d) If a 6= 0, γ5 = λ0(γ1γ5 − γ3γ4), then no matter whether any of the
conditions is fulfilled or not the solution of system (41b,c) has the form

Φ3 = Φ̃3 + G1T̃ , Φ2 = Φ̃2 + G2Φ̃3, (46)

where

G1 =
γ1γ5 − γ3γ4

γ3
, G2 = − 1

2aγ3
.

(e) If a = 0, (or γ2 = 0), λ0γ1 6= 1, γ5 6= λ0(γ1γ5 − γ3γ4), then the
solution of system (41b, c) has the form

Φ3 = Φ̃3 + G1T̃ , Φ2 = Φ̃2 + G2z
∂Φ̃3

∂z
+ G3T̃ , (47)

where

G1 =
γ4

1− λ0γ1
, G2 =

1
2γ1

, G3 =
γ5(1− λ0γ1) + λ0γ3γ4

γ3(1− λ0γ1)2
.

(f) If a = 0, (γ2 = 0), λ0γ1 = 1, γ5 6= λ0(γ1γ5 − γ3γ4), then the solution
of system (1b,c) has the form

Φ3 = Φ̃3 + G1z
∂T̃
∂z

, Φ2 = Φ̃2 + G2z
∂Φ̃3

∂z
+ G3z2 ∂2T̃

∂z2 + G4z
∂T̃
∂z

, (48)

where

G1 =
γ4

2
, G2 =

1
2γ 1

, G3 =
γ4

8γ1
, G4 =

4γ5 − λ0γ3γ4

8γ3
.

(g) If a = 0 (γ2 = 0), γ5 = λ0(γ1γ5 − γ3γ4), then no matter whether the
condition λ0γ1 = 1 is fulfilled or not the solution of system (41b,c) has the
form

Φ3 = Φ̃3 + G1T̃ , Φ2 = Φ̃2 + G2z
∂Φ̃3

∂z
, (49)

where

G1 = −γ1γ5 − γ3γ4

γ3
, G2 =

1
2γ1

.

(h) In the isotropic case with λ0 = 1, k1 = k2 = k, γ1 = 1, γ2 = 0, γ3 =
E

1−ν2 , γ4 = 0, γ5 = E
1−ν k, where E is the elasticity modulus and ν is the

Poisson coefficient, the solution of system (41b.c) takes the form

Φ3 = Φ̃3 − (1 + ν)kT̃ , Φ2 = Φ̃2 +
z
2

∂Φ̃3

∂z
. (50)
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1.8. By imposing certain restrictions on the nonhomogeneity and anisotro-
py, we can simplify the integration of system (32) in some cases. However we
shall not discuss this here but shall consider an isotropic nonhomogeneous
medium with a constant shear modulus [11], which is interesting from the
standpoint of thermal effects. The elastic equilibrium of the medium will
be expressed in terms of harmonic functions. We assume that

λ1 = λ2 = λ = const, k1 = k2 = k =
k0(a0z + 1)

2a0z + 2− ν0
,

E =
E0(2a0z + 2− ν0)

a0z + 1
, ν =

a0z + 1− ν0

a0z + 1
,

where k0, E0, ν0, and a0, are physically admissible constants, and rewrite
equation (32) in the form

∆ϕ1 = 0, ∆ϕ3 = 0, ∆ϕ2 =
E0(a0z + 1)

ν0

∂2

∂z2 (ϕ3 + k0T̃ ), (51)

where ∆ = ∂2

∂z2 + ∆2.
The solution of system (51) can, in turn, be represented as

ϕ1 = ϕ̃1, ϕ3 = ϕ̃3−k0T̃ , ϕ2 = ϕ̃2+
E0

4ν0

(

a0z2 ∂ϕ̃3

∂z
+2z

∂ϕ̃3

∂z
−a0zϕ̃3

)

, (52)

where ϕ̃1, ϕ̃2, ϕ̃3 and T̃ are harmonic functions.

1.9. The expressions for the functions T, T̃ , and ϕ1 are given by the
respective formulas. We shall now write the expressions for the functions
Φ̃2 and Φ̃3 appearing in Subsection 1.7, and for the functions ϕ̃2 and ϕ̃3

appearing in Subsection 1.8:

Φ̃j = Φ̃j0 + Φ̃j1 = bj1 + bj2z + bj3

[

z2 − r2

2(γ1 + (−1)jaγ3)

]

+ bj4

[

z3 −

− 3zr2

2(γ1 + (−1)jaγ3)

]

+
∞
∑

n=0

∞
∑

m=0

(

Ajmne−p̃jz + Bjmnep̃j(z−z1)
)

ψmn, (53)

where j = 2, 3; bj1, bj2, bj3, bj4, Ajmn, Bjmn, and p̃j = (γ1+(−1)jaγ3)0,5×
p(m, n) are constants. Putting a = 0, γ1 = 1, p̃j = p in (53), we obtain the
representations for the functions ϕ̃2 and ϕ̃3 figuring in (52).

1.10.

Theorem 2. The homogeneous boundary value problems (3), (4), (5),
(6), (7), (8), (9) have only the trivial solution in a class of regular functions.
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Proof. Let us prove the theorem for the boundary value problem (3), (4),
(5), (6a), (7a) when τj = 0, τ̃j = 0 and fjl = 0, Fjl = 0. The energy
equality for such a boundary value problem can be written in the form

ρ1
∫

ρ0

α1
∫

α0

z1
∫

0

Wh2dρdαdz = −
α1
∫

α0

z1
∫

0

[(c5

h
∂h
∂ρ

v2
)

ρ=ρ0

+
(c5

h
∂h
∂ρ

v2
)

ρ=ρ1

]

dαdz −

−
ρ1
∫

ρ0

z1
∫

0

[(c5

h
∂h
∂α

u2
)

α=α0

+
(c5

h
∂h
∂α

u2
)

α=α1

]

dρdz, (54)

where W is the potential energy accumulated by unit volume of the CCP,
c5
h

∂h
∂ρ ≥ 0, c5

h
∂h
∂α ≥ 0.

Equation (54) implies that the considered homogeneous boundary value
problem has only the trivial solution. Therefore the boundary value problem
(3), (4), (5), (6a), (7a), (8), (9) admits one regular solution at most. In a
similar manner one can prove that other homogeneous problems also have
only the trivial solution, which completes the proof of Theorem 2. Therefore
the boundary value problems (3), (4), (5), (6), (7), (8), (9) admit one regular
solution at most.

§ 2. An Analytic Solution of Some Boundary Value Problems
of Thermoelasticity

2.1. The representation of thermoelastic problems by the functions ϕ1, Φ̃2,
Φ̃3, ϕ̃2, ϕ̃3, and T̃ (see §1) enables us to write analytic solutions of quite a
number of boundary value problems. For simplicity, this will be illustrated
on homogeneous isotropic bodies.

Using formulas (50) and (40), we write the following expressions for dis-
placements

2(1− ν)hu=z
∂2Φ̃3

∂z∂ρ
+2(1− ν)

∂Φ̃3

∂ρ
+ 2

∂Φ̃2

∂ρ
+4γ

∂ϕ1

∂α
−2(1−ν2)k

∂T̃
∂ρ

,

2(1−ν)hv=z
∂2Φ̃3

∂z∂α
+2(1−ν)

∂Φ̃3

∂α
+2

∂Φ̃2

∂α
−4γ

∂ϕ1

∂ρ
−2(1−ν2)k

∂T̃
∂α

,

2(1− ν)w = z
∂2Φ̃3

∂z2 − (1− 2ν)
∂Φ̃3

∂z
+ 2

∂Φ̃2

∂z
+ 2(1− ν2)k

∂T̃
∂z

,



































(55)

where γ = 1−ν2

E ;

a) ∆ϕ1 = 0, b) ∆Φ̃2 = 0, c) ∆Φ̃3 = 0, d) ∆T̃ = 0. (56)
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By virtue of (17), (53), and (42) the functions T̃ , Φ̃2, Φ̃3, and ϕ1 take the
form

a) T̃ = T̃0 + T̃1 =
t0
2

(

z2 − r2

2

)

+
t1
6

(

z3 − 3zr2

2

)

+

+
∞
∑

n=1

∞
∑

m=0

(

ATmne−pz + BTmnep(z−z1)
) 1
p2

T
ψmn,

b) Φ̃j =Φ̃j0+Φ̃j1 =bj1+bj2z+bj3

(

z2− r2

2

)

+bj4

(

z3− 3zr2

2

)

+

+
∞
∑

n=0

∞
∑

m=0

(

Ajmne−pz + Bjmnep(z−z1)
)

ψmn, j = 2, 3,

c) ϕ1 =
∞
∑

n=0

∞
∑

m=0

(

A1mne−p1z + B1mnep1(z−z1)
)

ψ̄mn.















































































(57)

The necessity of replacing conditions (9) by conditions (18) in the case
of a homogeneous isotropic body is confirmed by the formulas

w =
z

2(1− ν)
∂2Φ̃3

∂z2 − 1
2(1− ν)

∂
∂z

[

(1− 2ν)Φ̃3 − 2Φ̃2 − 2(1− ν2)k · T̃
]

,

Γ1(hu, hv) = − z
2(1− ν)

∂3Φ̃3

∂z3 − 1
1− ν

∂2

∂z2

[

(1− ν)Φ̃3 + Φ̃2 − (1− ν2)kT̃
]

,

Γ2(hv, hu) =
2(1 + ν)

E
∂2ϕ1

∂z2 , Zz =
E

1− ν

(z
2

∂3Φ̃3

∂z3 +
∂2Φ̃2

∂z2

)

,

Γ1(hZρ, hZα) = − E
1− ν2

∂
∂z

(z
2

∂3Φ̃3

∂z3 +
∂2Φ̃2

∂z2

)

, Γ2(hZα, hZρ) =
∂3ϕ1

∂z3 .

Using similar formulas, one can show that it is also necessary to replace
conditions (9) by conditions (18) in the case of both transtropic and non-
homogeneous bodies.

Naturally, when considering boundary value problems admitting a rigid
displacement of the elastic body, it is required of the boundary condition
that the principal vector and principal moment be equal to zero. This will
always be assumed in what follows.

2.2. Let a temperature field T act on the CCP occupying the domain
Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 < z < z1}, and, on the CCP surface, let
the following conditions be given: (8a), (6b) with j = 0, (6a) with j = 1,
(7b) with j = 0, (7a) with j = 1, (9a). Then to find an elastic equilibrium
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of the CCP we write the functions T̃ , Φ̃2, Φ̃3, and ϕ1 in the form

T̃ =
∞
∑

n=0

∞
∑

m=0

HT (z)
1
p2 ψmn(ρ, α), Φ̃j =

∞
∑

n=0

∞
∑

m=0

Hj(z)ψmn(ρ, α),

ϕ1 =
∞
∑

n=0

∞
∑

m=0

H1(z)ψ̄mn(ρ, α),

(58)

where j = 2, 3; Hl(z) = Almne−p̄z +Blmnep̄(z−z1) with p̄ = p for l = T, 2, 3,
and p̄ = p1 for l = 1 p̄ = p1; ψmn(ρ, α) are the eigenfunctions of problem
(13), (14a) with j = 0, of (14b) with j = 1, and (15a) with j = 0, of (15b)
with j = 1. In the considered case, in (57) T̃0 = 0, Φ̃j0 = 0.

By virtue of (8a), (18a), (55) and (58) the constants Almn, Blmn are
defined by the following systems of linear algebraic equations:

HT (0) = τ0mn, HT (z1) = τ1mn, (59)
[ d3

dz3 H1(z)
]

z=0
= F̃03mn,

[ d3

dz3 H1(z)
]

z=z1

= F̃13mn, (60)

[z
2

d3

dz3 H3(z) +
d2

dz2 H2(z)
]

z=0
= γF01mn,

[z
2

d3

dz3 H3(z) +
d2

dz2 H2(z)
]

z=z1

= γF11mn,

[ d
dz

(z
2

d3

dz3 H3(z) +
d2

dz2 H2(z)
)]

z=0
= −γF̃02mn,

[ d
dz

(z
2

d3

dz3 H3(z) +
d2

dz2 H2(z)
)]

z=z1

= −γF̃12mn,










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










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










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

(61)

where τ0mn, τ1mn, F01mn, F11mn, F̃02mn, F̃12mn are the Fourier coefficients of
the functions τ0(ρ, α), τ1(ρ, α), F01(ρ, α), F11(ρ, α), F̃02(ρ, α), F̃12(ρ, α), re-
spectively, expanded in a Fourier series with respect to the functions ψmn,
F̃03mn and F̃13mn are the Fourier coefficients of the functions F03(ρ, α) and
F13(ρ, α), respectively, expanded in a Fourier series with respect to the
function ψ̄mn [7].

It readily follows that (59) and (60) are systems with a second-order
matrix and (61) is a system with a fourth-order matrix.

It is not difficult to prove that the corresponding functional series con-
verge in a closed domain Ω̄ if we construct a uniformly converging numerical
series majorizing these functional series in Ω̄. Indeed, for definiteness, let us
consider the above problem in the Cartesian coordinate system in the do-
main Ω = {0 < x < x1, 0 < y < y1,−z1 < z < z1} for T = 0. It is assumed
that Zz = F11(x, y), Γ1(Zx, Zy) = −F̃12(x, y), Γ2(Zy, Zx) = −F̃13(x, y)
for z = −z1, and Zz = F11(x, y), Γ1(Zx, Zy) = −F̃12(x, y), Γ2(Zy, Zx) =
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−F̃13(x, y) for z = z1 (the load is symmetrical with respect to the plane
z = 0). In this case, too, the functions Φ̃2, Φ̃3 and ϕ1 will take the form

Φ̃j =
∞
∑

m=1

∞
∑

n=1

Ajmne−pz1 cosh(pz) sin
[π(2m− 1)

2x1
x
]

· sin
[π(2n− 1)

2y1
y
]

,

ϕ1 =
∞
∑

m=1

∞
∑

n=1

A1mne−pz1 cosh(pz) cos
[π(2m− 1)

2x1
x
]

· cos
[π(2n− 1)

2y1
y
]

,

where j = 2, 3, p =
√

[π(2m−1)
2x1

]2
+

[π(2n−1)
2y1

]2
, and equations (60), (61)

will be rewritten as

p3 ·A1mne−pz1 sinh(pz1) = F̃13mn;
{

pz1 sinh(pz1)A3mn+2 cosh(pz1) ·A2mn =p−2 · 2γ · epz1 · F11mn,
[

pz1 cosh(pz1)+sinh(pz1)
]

A3mn+2 sinh(pz1)·A2mn =−p−32γepz1F12mn.

Using these equalities we obtain

A1mn =
epz1

sinh(pz1)
· p−3 · F̃13mn,

A3mn = −4γ
p3

epz1 cosh(pz1) · F̃12mn + epz1 · sinh(pz1) · p · F11mn

sinh(2pz1) + 2pz1

A2mn =
γepz1

cosh(pz1)
p−2 · F11mn − 0, 5 · th(pz1) · pz1 ·A3mn.

The latter equalities imply that there exists a positive constant A0 such
that the uniformly converging numerical series

∞
∑

m=1

∞
∑

n=1

A0
(

|F̃13mn|+ |F̃12mn|+ p|F11mn|
)

will majorize, in Ω̄, the functional series representing displacements and
stresses by formulas (55) (in Ω̄ the displacements u, v, and w are the analytic
functions of each coordinate).

We have thus obtained a regular solution of the considered boundary
value problem (we think it reasonable that such solutions are sometimes
called exact solutions [2]). Applying a similar technique, one can solve
any of the boundary value problems (11), (4), (5), (6), (7), (8), (9) for a
homogeneous isotropic CCP.

If the domain Ω is infinite, then in some cases the solution of the problem
can be constructed by an integral transformation [1, 2].

To conclude this subsection, note that although the coordinate surfaces
of this system of coordinates or another make it possible to consider a ther-
moelastic equilibrium of bodies of various shape, the mathematical tool of
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the solution remains the same. The geometric shape of an elastic body is de-
fined only by the form of the parameters h, r and of the functions ψmn, ψ̄mn.

2.3. In the previous subsection, the solution of the boundary value prob-
lems was reduced to defining the constants Almn and Blmn by means of
two systems of linear equations with a second-order matrix and a system of
linear equations with a fourth-order matrix. It appears that in most cases
the solution of boundary value problems can be reduced to defining Almn
and Blmn by equations and systems of linear equations with a second-order
matrix. We can illustrate this for a homogeneous isotropic medium by solv-
ing the boundary value problem (11), (4), (5), (6b), (7b), (8a), (9a) in the
domain Ω = {ρ0 < ρ < ρ1, α0 < α < α1,−z1 < z < z1}. It is assumed that
for z = −z1 we have the conditions that are fulfilled in (9a) for z = 0. Let
us denote this problem by l and write it in the form

I = I1 + I2.

Problem I1 can be obtained from problem I if in the latter we set

T = 0, 5(τ1 + τ0) = τ (1), Zz = 0, 5(F11 + F01) = F (1)
1 ,

hZρ = 0, 5(F12 − F02) = F (1)
2 , hZα = 0, 5(F13 − F03) = F (1)

3

for z = z1 and

T = 0, 5(τ1 + τ0) = τ (1), Zz = 0, 5(F11 + F01) = F (1)
1 ,

hZρ = −0, 5(F12 − F02) = −F (1)
2 , hZα = −0, 5(F13 − F03) = −F (1)

3

for z = −z1. Problem I2 can be obtained from problem I if in the latter we
set

T = 0, 5(τ1 − τ0) = τ (2), Zz = 0, 5(F11 − F01) = F (2)
1 ,

hZρ = 0, 5(F12 + F02) = F (2)
2 , hZα = 0, 5(F13 + F03) = F (2)

3

for z = z1 and

T = −0, 5(τ1 − τ0) = −τ (2), Zz = −0, 5(F11 − F01) = −F (2)
1 ,

hZρ = 0, 5(F12 + F02) = F (2)
2 , hZα = 0, 5(F13 + F03) = F (2)

3

for z = −z1.
For problem I1

ϕ1 =
∞
∑

m=1

∞
∑

n=1

A1mn · e−p1z1 cosh(p1z) · ψ̄mn(ρ, α),

Φ̃j =
∞
∑

m=1

∞
∑

n=1

Ajmn · epz1 · cosh(pz) · ψmn(ρ, α),
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where j = T, 2, 3 and the constants ATmn, A1mn, A2mn, and A3mn are de-
fined by the equations

ATmn · e−pz1 · cosh(pz1) = τ (1)
mn, p3

1 ·A1mn · e−p1z1 · sinh(p1z1) = F̃ (1)
3mn,















pz1 · sinh(pz1) ·A3mn + 2 cosh(pz1) ·A2mn = 2γ · p−2 · epz1 · F̃ (1)
1mn,

[

pz1 · cosh(pz1)+sinh(pz1)
]

·A3mn+2 sinh(pz1) ·A2mn =

= −2γ · p−3epz1 F̃ (1)
2mn.

In the case of Problem I2

ϕ1 =
∞
∑

m=1

∞
∑

n=1

B1mne−p1z1 sinh(p1z)ψ̄mn(ρ, α),

Φ̃j =
∞
∑

m=1

∞
∑

n=1

Bjmnepz1 sinh(pz)ψmn(ρ, α),

where j = T, 2, 3, and the constants BTmn, B1mn, B2mn, and B3mn are
defined by the equations

BTmne−pz1 sinh(pz1) = τ (2)
mn, p3

1 ·B1mn · e−p1z1 cosh(p1z1) = F̃ (2)
3mn,

pz1 cosh(pz1) ·B3mn + 2 sinh(pz1) ·B2mn = 2γp−2epz1 F̃ (2)
1mn,

[

pz1 sinh(pz1)+cosh(pz1)
]

B3mn+2 cosh(pz1)A2mn =−2γ · p−3epz1 F̃ (2)
2mn.

The homogeneous conditions (9c) and (9d) provide a continuous exten-
sion of the solution [12] and therefore problem I1 is equivalent to the bound-
ary value problem (11), (4), (5), (6b), (7b), (8a) for z = 0 and τ̃0 = 0; to
(8a) for z = z1 and f01 = 0, F02 = 0, F03 = 0, to (9a) for z = z1. Problem
I2 is equivalent to (8a) for z = 0, τ0 = 0; for z = z1, to (9d) for z = 0 and
F01 = 0, f02 = 0. f03 = 0, to (9a) for z = z1.

The method considered simplifies the investigation and solution of bound-
ary value problems. It can be used (1) if the boundary conditions for z = 0
are of the same type as for z = z1; (2) if the homogeneous conditions (9c)
or (9d) are fulfilled for z = 0 or z = z1; (3) if one of conditions (9c), (9d) is
fulfilled for z = 0, and the other for z = z1.

The above arguments also hold for a nonhomogeneous transtropic CCP
occupying the domain Ω = {ρ0 < ρ < ρ1, α0 < α < α1,−z1 < z < z1}
provided that λ1(z), λ2(z), and cj(z) (j = 1, 2, 3, 4, 5) are even functions of
the coordinate z.

2.4. Consider a CCP having layers along z and occupying the domain Ωz.
Here Ωz is the union of the domains Ωz1 = {ρ0 < ρ < ρ1, α0 < α < α1, 0 <
z < z1}, Ωz2 = {ρ0 < ρ < ρ1, α0 < α < α1, z1 < z < z2}, . . . , Ωzβ = {ρ0 <
ρ < ρ1, α0 < α < α1, zβ−1 < z < zβ} contacting one another along the



542 N. KHOMASURIDZE

planes z = zj , where j = 1, 2, . . . , β−1, and β is the number of layers. Each
layer has its own elastic and thermal characteristics. For ρ = ρj (j = 0, 1)
some of conditions (6) are fulfilled for all layers simultaneously, and for
α = αj some of conditions (7).

If the body occupies the domain Ωz, then conditions (8), (18), (6), (7)
are fulfilled on its boundaries after replacing z1 by zβ in (8) and (18). On
the contact surfaces z = zj (j = 1, 2, . . . , β−1; z = zj is the contact surface
of the jth layer contacting the (j + 1)th layer) we give the conditions

Tj − Tj+1 = τj1(ρ, α),
∂Tj

∂z
− ∂Tj+1

∂z
= τj2(ρ, α); (62)

wj − wj+1 = qj1(ρ, α), Zzj − Zzj+1 = Qj1(ρ, α),

Γ1(huj , hvj)− Γ1(huj+1, hvj+1) = q̃j2(ρ, α),

Γ1(hZρj , hZαj )− Γ1(hZρ(j+1) , hZα(j+1)) = Q̃j2(ρ, α),

Γ2(hvj , huj)− Γ2(hvj+1, huj+1) = q̃j3(ρ, α),

Γ2(hZαj , hZρj )− Γ2(hZα(j+1) , hZρ(j+1)) = Q̃j3(ρ, α)




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
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




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











(63)

or

wj − wj+1 = qj1(ρ, α), Zzj − Zzj+1 = Qj1(ρ, α),

Γ1(hZρj , hZαj ) = Q̃j2(ρ, α), Γ2(hZαj , hZρj ) = Q̃j3(ρ, α),

Γ1(hZρ(j+1) , hZα(j+1)) = Q̃(j+1)2(ρ, α),

Γ2(hZα(j+1) , hZρ(j+1)) = Q̃(j+1)3(ρ, α),























(64)

where τj1(ρ, α), τj2(ρ, α), . . . , Q̃(j+1)3(ρ, α) are the known functions.
To find a thermoelastic balance of the multilayer CCP, for the jth layer

we must write, using conditions (6), (7), the expressions of the functions
T̃ (j), Φ̃(j)

2 , Φ̃(j)
3 , ϕ(j)

1 . Applying the arguments of Subsection 2.2, similarly to
systems (59), (60), and (61) we obtain two systems of 2β equations with
2β unknowns and one system of 4β equations with 4β unknowns. Then
we prove the solvability of the systems, convergence of the corresponding
series, and uniqueness of the obtained regular solutions of the corresponding
boundary-contact problems of thermoelasticity (solutions for the multilayer
CCP are called regular if each of the solutions uj , vj and wj is such).

In addition to the above contact conditions, we can consider some other
contact conditions enabling us to solve boundary-contact problems of ther-
moelasticity with the same effectiveness.

2.5. All the arguments we used in this section for the homogeneous isotro-
pic CCP or the multilayer CCP with isotropic homogeneous layers can be
applied to transtropic bodies (see formulas (43)–(49) from Subsection 1.7)
and to bodies with a special nonhomogeneity (see formulas (52)). As for
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composite bodies, we can find a thermoelastic equilibrium of the multilayer
CCP every layer of which has its own thermal and transtropic characteristics
(a piecewise-transtropic body) or its own elastic and thermal nonhomogene-
ity (a piecewise-nonhomogeneous body).

Note that if the multilayer CCP with transtropic layers is considered
in the Cartesian coordinate system, then the class of solvable boundary-
contact problems of thermoelasticity will become much broader. This is,
in fact, the only coordinate system in which the problems can be solved
using the boundary conditions (6), (7), (8), (9) and natural (but not of type
(64)) contact conditions, i.e., without performing any transformations of
the boundary and contact conditions. In that case, we shall have a greater
number of possible contact and boundary conditions for z = zj .

2.6. If the CCP is subjected only to the action of a thermal field and the
condition γ5 = λ0(γ1γ5 − γ3γ4) is satisfied, then by virtue of formulas (31),
(2), (40), (46), (49), and (52) one can easily verify that the following two
remarks are true.

Remark 1. When γ5 = λ0(γ1γ5−γ3γ4) and the boundary conditions (8),
(6), (7), and (9a) are fulfilled for Fjl = 0, the thermoelastic equilibrium of
a transtropic homogeneous CCP has the form

w =
γ5

λ0γ3

∂T̃
∂z

, hv = − γ5

λ0γ3

∂T̃
∂α

, hu = − γ5

λ0γ3

∂T̃
∂ρ

.

For an isotropic body γ5
λ0γ3

= k(1 + ν).

Remark 2. When the boundary conditions (8), (6), (7) and (9a) are ful-
filled for Fjt = 0, the thermoelastic equilibrium of the nonhomogeneous
CCP described in Subsection 1.8 has the form

w = k0
∂ ˜T
∂z

, hv = −k0
∂ ˜T
∂α

, hu = −k0
∂ ˜T
∂ρ

.

The function ˜T figuring in both remarks is defined by formula (17) when
˜T0 = 0.

If the thermoelastic equilibrium of the CCP is considered when the
boundary conditions (8), (6a), (7a), (9a) are fulfilled for Fji = 0, then
the theorems hold only provided that

ρ1
∫

ρ0

α1
∫

α0

rj(ρ, α)h2dρ dα = 0 or

ρ1
∫

ρ0

α1
∫

α0

r̃j(ρ, α)h2dρ dα = 0, (65)

where j = 0, 1.
Remark 1 implies that if (65) and the equality γ5 = λ0(γ1γ5 − γ3γ4) are

satisfied, the boundary value problem (11), (41), (8), (6), (7), (9a) can be
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represented by combining the boundary value problem (11), (41), (8), (6),
(7), (9a) for Fjt = 0 and the ordinary (T = 0) boundary value problem
(41), (6), (7), (9a). Remark 2 leads to a similar conclusion.
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