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COMMUTATIVITY FOR A CERTAIN CLASS OF RINGS


H. A. S. ABUJABAL AND M. A. KHAN


Abstract. We first establish the commutativity for the semiprime
ring satisfying [xn, y]xr = ±ys[x, ym]yt for all x, y in R, where m,
n, r, s and t are fixed non-negative integers, and further, we inves-
tigate the commutativity of rings with unity under some additional
hypotheses. Moreover, it is also shown that the above result is true
for s-unital rings. Also, we provide some counterexamples which show
that the hypotheses of our theorems are not altogether superfluous.
The results of this paper generalize some of the well-known commu-
tativity theorems for rings which are right s-unital.


1. Introduction


Let R be an associative ring with N(R), Z(R), C(R), N ′(R), and R+


denoting the set of nilpotent elements, the center, the commutator ideal,
the set of all zero divisors, and the additive group of R, respectively. For
any x, y in R, [x, y] = xy − yx. By GF (q) we mean the Galois field (finite
field) with q elements, and by (GF (q))2 the ring of all 2 × 2 matrices over
GF (q). We set


e11 =
(


1 0
0 0


)


, e12 =
(


0 1
0 0


)


, e21 =
(


0 0
1 0


)


and e22 =
(


0 0
0 1


)


in (GF (p))2 for prime p.
There are several results dealing with the conditions under which R is


commutative. Generally, such conditions are imposed either on the ring
itself or on its commutators. Very recently, Abujabal and Perić [1] re-
marked that if a ring R satisfies either [xn, y]yt = ±ys[x, ym] or [xn, y]yt =
±[x, ym]ys for all x, y in R, where m > 1, n ≥ 1, and R has the property
Q(m) (see below) for n > 1, then R is commutative. Also, under different
and appropriate constraints, the commutativity of R has been studied for
other values of m,n, s and t (see [1]).
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The objective of this paper is to generalize the above-mentioned commu-
tativity results to a certain class of rings satisfying the property


[xn, y]xr = ±ys[x, ym]yt for all x, y ∈ R (∗)


for any fixed non-negative integers m, n, r, s, and t (see [2], [3], and [4]).
In Section 2, we shall prove the commutativity of semiprime rings sat-


isfying (∗) and, in Section 3, study the commutativity of rings with unity
satisfying (∗). However, in Section 4, we extend these results to the wider
class of rings that are called right s-unital.


2. Commutativity Theorem for Semiprime Rings


Theorem 1. Suppose that n > 0,m, r, s, and t are fixed non-negative
integers such that (n, r, s, m, t) 6= (1, 0, 0, 1, 0). Let R be a semiprime ring
satisfying (∗). Then R is commutative.


Proof. Let R be a semiprime ring satisfying the polynomial identity


h(x, y) = [xn, y]xr ∓ ys[x, ym]yt = 0. (1)


Then R is isomorphic to a subdirect sum of prime rings Ri, i ∈ I (the index
set), each of which as a homomorphic image of R satisfies the hypothesis
placed on R. Thus we can assume that R is a prime ring satisfying (1).
By Posner’s theorem [5, Sec. 12.6, Theorem 8], the central quotient of R
is a central simple algebra over a field. If the ground field is finite, then
the center of R is a finite integral domain, and so R is equal to its central
quotient and is a matrix ring Mα(S) for some α ≥ 1 and some finite field
S. Further, we prove that α = 1.


If the ground field is infinite and h(x, y) = 0 is the polynomial identity for
R, we write h = h0+h1+h2+h3+· · ·+hm−1+hm where hj , j = 0, 1, 2, . . . , m,
is a homogeneous polynomial in x, y. Then g0(x, y) = g1(x, y) = · · · =
gm(x, y) = 0 for every x, y in R, since the center of R is infinite. Hence
h0 = h1 = h2 = · · · = hm = 0 is also valid in the central quotient of R.
Thus h = h0 + h1 + h2 + · · ·+ hm = 0 is satisfied by elements in the central
quotient of R. Moreover, h = 0 is satisfied by elements in A ⊗S B, where
A is the central quotient of R, S the center of A, and B any field extension
of S [5, Sec. 12.5, Proposition 3]. As a special case, choosing B to be a
splitting field of A, we have A⊗S B ' Mα(S). Now f = 0 is satisfied by the
elements in Mα(S). So it is enough to prove α = 1. Let eij , 1 ≤ i, j ≤ α, be
the matrix units in the ring of α × α matrices. Suppose that α ≥ 2. Then
(1) can be rewritten as h(x, y) = [xn, y]xr∓ys[x, ym]yt = 0, which does not
hold in Mα(S) because h(e11 + e21, e12) 6= 0. Hence we get a contradiction,
i.e., α = 1. So the central quotient of R is contained in the respective ground
field. Hence this proves that R itself is commutative.
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Remark 1. In 1989 W. Streb [6] gave some classification of minimal com-
mutative factors of non-commutative rings. This classification is very useful
in proving commutativity theorems for rings satisfying conditions that are
not necessarily identities (see details in [7]).


If we take (n, r, s,m, t) = (1, 0, 0, 1, 0) in Theorem 1, then (∗) becomes
an identity.


The following example demonstrates that we cannot extend the above
theorem to arbitrary rings.


Example 1. Let R =

















0 0 0
α 0 0
β γ 0








∣


∣α, β and γ are integers











. Then


it can be easily verified that R satisfies (1). However, R is not commutative.


One might ask a natural question: “What additional conditions are
needed to force the commutativity for arbitrary rings which satisfies (∗)?”.
To investigate the commutativity of the ring R with the property (∗), we
need some extra conditions on R such as the property:


Q(m) : for all x, y in R,m[x, y] = 0 implies [x, y] = 0, where m is some
positive integer.


The property Q(m) is an H-property in the sense of [8]. It is easy to
check that every m-torsion free ring R has the property Q(m), and every
ring has the property Q(1). Further, it is clear that if the ring R has the
property Q(m), then R has the property Q(n) for every divisor n of m. In
this direction we prove the following theorems.


3. Some Commutativity Theorems for Rings with Unity


The following theorem is a generalization of H. E. Bell and A. Yaquab
obtained in the 80s.


Theorem 2. Suppose that n > 1, m, r, s, and t are fixed non-negative
integers, and let R be a ring with unity 1 satisfying (∗). Further, if R has
property Q(n), then R is commutative.


We begin with the following well-known result [9, p. 221].


Lemma 1. Let x, y be elements in a ring R such that [x, [x, y]] = 0. Then
for any positive integer h, [xh, y] = hxh−1[x, y].


The next four lemmas are essentially proved in [3], [10], [11], and [12],
respectively.


Lemma 2. Let R be a ring with unity 1 and x, y in R. If k[x, y]xm = 0
and k[x, y](x+1)m = 0 for some integers m ≥ 1 and k ≥ 1, then necessarily
k[x, y] = 0.
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Lemma 3. Let R be a ring with unity 1 and let there exist relatively
prime positive integers m and n such that m[x, y] = 0 and n[x, y] = 0. Then
[x, y] = 0 for all x, y in R.


Lemma 4. Let R be a ring with unity 1. If for each x in R there exists
a pair m and n of relative prime positive integers for which xm ∈ Z(R) and
xn ∈ Z(R), then R is commutative.


Lemma 5. Let R be a ring with unity 1. If (1 − yk) = 0, then (1 −
ykm)x = 0 for any positive integers m and k.


Further, the following results play a key role in proving the main results
of this paper. The first and the second are due to Herstein [13] and [14],
and the third is due to Kezlan [15].


Theorem A. Suppose that R is a ring and n > 1 is an integer. If xn−x
in Z(R) for all x in R, then R is commutative.


Theorem B. If for every x and y in a ring R we can find a polyno-
mial px,y(z) with integral coefficients which depends on x and y such that
[x2px,y(x)− x, y] = 0, then R is commutative.


Theorem C. Let f be a polynomial in non-commuting indeterminates
x1, x2, . . . , xn with integer coefficients. Then the following statements are
equivalent:


(i) For any ring R satisfying f = 0, C(R) is a nil ideal.
(ii) For every prime p, (GF (p))2 fails to satisfy f = 0.


Now we shall prove the following lemmas:


Lemma 6. Let n > 1, m, r, s, and t be fixed non-negative integers, and
let R be a ring with unity 1 which satisfies the property (∗). Further, if R
has Q(n), then N(R) ⊆ Z(R).


Proof. Let a ∈ N(R). Then there exists a positive integer p such that


ah ∈ Z(R) (2)


for all h ≥ p, where p is minimal.
If p = 1, then a ∈ Z(R). Now we assume that p > 1 and b = ap−1.


Replacing x by b in (∗) we get [bn, y]yr = ±ys[b, ym]yt. Using (2) and the
fact that (p− 1)n ≥ p for n > 1, we obtain


±ys[b, ym]yt = 0 for all y ∈ R. (3)


Replacing 1 + b for x in (∗), we get [(1 + b)n, y](1 + b)r = ±ys[b, ym]yt.
Since (1 + b) is invertible (3) leads to


[(1 + b)n, y] = 0 for all y ∈ R. (4)
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Combining (2) with (4) yields 0 = [(1 + b)n, y] = [1 + nb, y] = n[b, y].
Using the property Q(n) gives [b, y] = 0. Thus ap−1 ∈ Z(R), which is a
contradiction for the minimality of p. Hence p = 1 and a ∈ Z(R), which
implies N(R) ⊆ Z(R).


Lemma 7. Let n > 0,m, r, s, and t be fixed non-negative integers, and
let R be a ring with unity 1 satisfying (∗). Then C(R) ⊆ Z(R).


Proof. Let x = e11 + e21 and y = e12. Then x and y fail to satisfy (∗)
whenever n > 0 except for r = 0, s = 0, and m = 1. For other cases we
can also choose x = e12 and y = e22. Thus by Theorem C, C(R) is nil and
hence by Lemma 6 we get C(R) ⊆ Z(R).


Remark 2. In view of the above lemma it is guaranteed that Lemma 1
holds for each pair of elements x and y in the ring R which satisfies (∗).
Proof of Theorem 2. To get [xn, y]xr = 0 let m = 0 in (∗). By Lemmas
1 and 7 this becomes n[x, y]xr+n−1 = 0. By Lemma 2 and the property of
Q(n) this yields the commutativity of R. Let m ≥ 1 and k = (λn+r − λ),
where λ is a prime. Then by (∗) we have


k[xn, y]xr = (λn+r − λ)[xn, y]xr, [(λx)n, y](λx)r ∓ ys[(λx), y]yt = 0.


Again by Lemmas 7 and 2 one gets 0 = kn[x, y] = kn[x, y]xr+n−1. Suppose
that h = kn; this gives h[x, y] = 0. So [xh, y] = hxh−1[x, y] = 0, whence


xh ∈ Z(R) for all x ∈ R. (5)


Now, we consider two cases:
Case (1). If m = 1 in (∗) we get [xn, y]xr = ±ys[x, y]yt for all x, y in R.


By Lemmas 1 and 7


n[x, y]xr+n−1 = ±ys+t[x, y]. (6)


Replacing x by xn in (6), we have


n[x, y]xn(r+n−1) = ±ys+t[xn, y] for all x, y ∈ R. (7)


Using Lemmas 1 and 7 together with (∗) (7) yields


n[xn, y]xn(r+n−1) = ±nxn−1[x, y]ys+t = n[xn, y]xr+n−1 for all x, y ∈ R.


This implies that


n[xn, y]xr+n−1(1− x(n−1)(r+n−1)) = 0 for all x, y ∈ R.


By Lemma 5 one can write


n[xn, y]xr+n−1(1− xh(n−1)(r+n−1)) = 0 for all x, y ∈ R. (8)


Since R is isomorphic to a subdirect sum of subdirectly irreducible rings Ri
(i ∈ I), each Ri satisfies (∗), Lemma 7, and (8). Now we take the ring Ri,
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i ∈ I, and assume H is the heart of Ri (i.e., the intersection of all non-zero
ideals of Ri). Then H 6= (0) and Hd = 0 for any central zero divisor d.


Let a ∈ N ′(Ri). Then by (8) we have


n[an, y]ar+n−1(1− ah(n−1)(r+n−1)) = 0 for all y ∈ Ri.


If n[an, y]ar+n−1 6= 0, then ah(n−1)(r+n−1) and 1−ah(n−1)(r+n−1) are central
zero divisors. Hence (0) = H(1− ah(n−1)(r+n−1)) = H. But H 6= (0), which
leads to a contradiction. Hence n[an, y]ar+n−1 = 0 for all y ∈ Ri, i ∈ I.
From (7) and the above condition we get


0 = ±ys+t[an, y] = n[an, y]an(r+n−1).


Again by Lemma 2, we get [an, y] = 0 for all y ∈ Ri. Hence


±[a, y]ys+t = [an, y]ar = 0 and [a, y] = 0.


Let z ∈ N(Ri). Then by (∗) we have


(zr+n − z)[xn, y]xr = [(zx)n, y](zx)r ∓ ys[(zx), ym]yt = 0.


Lemmas 1, 2, and 7 together with Q(n) give


(zr+n − z)[x, y] = 0 for all x, y ∈ Ri. (9)


Now, as a special case , using (3) we get (xh(r+n)−xh)[x, y] = 0. If [x, y] = 0
for all x, y in Ri, then R satisfies [x, y] = 0 for all x, y in R and R is
commutative. Further, if [x, y] 6= 0 for each x, y in Ri, then xh(r+n−1)+1 −
x ∈ N ′(Ri) and so xh(r+n−1)+1 − x ∈ N ′(R). But [a, y] = 0 is satisfied by
R. So [xh(r+n−1)+1 − x, y] = 0 for each x, y in R. Hence R is commutative
by Theorem A.


Case (2). Let m > 1. Then by (∗) and together with Lemma 7, we get


[xn, y]xr = ±m[x, y]ys+t+m−1 for all x, y ∈ R. (10)


Replacing y by ym in (10), we get


[xn, ym]xr = ±[x, ym]ym(s+t+m−1) for all x, y ∈ R.


Thus by Lemma 1 we obtain mym−1[xn, y]xr = ±m[x, ym]ym(s+t+m−1).
Applying (∗) and Lemma 3, this becomes


m[x, ym]ys+t+m−s(1− yh(m−1)(s+t+m−1)) = 0 for all x, y ∈ R. (11)


By Lemmas 7 and 1, (∗) becomes


n[x, y]xr+n−1 = ±[x, y]ys+t+m−1 for all x, y ∈ R. (12)
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Suppose that a ∈ N ′(Ri). Then using (11) and the same argument as in
case (1), we write m[x, am]as+t+m−1(1 − ah(m−1)(s+t+m−1)) = 0. We can
prove that


m[x, am]as+t+m−1 = 0 for all x ∈ Ri. (13)


Combining (12) and (13) we get n[x, am]xr+n−1 = ±m[x, am]am(s+t+m−1) =
0 for all x ∈ Ri. Again using Lemma 1, this yields n[x, am] = 0. So
nm[x, a]am−1 = 0. So we shall show that


n2[x, a]xr+n−1 = n(n[x, a]xr+n−1) = n([xn, a]xr)


By (∗) and Lemma 7 we get n2[x, a]xr+n−1 = ±n(m[x, a]as+t+m−1) = 0;
replacing x by x + 1 and applying Lemma 2 we have n2[x, a] = 0 for all
x ∈ Ri, so that [xn2


, a] = n2xn2−1[x, a] = 0. This implies that


[xn2
, a] = 0 for all x ∈ Ri. (14)


Next, let z ∈ Z(Ri). By arguments similar to those we used in case (1)
we have (zr+n − z)[xn, y] = 0 for all x, y ∈ Ri. Using (2), we get


(yh(r+n) − yh)[xn, y] = 0 for all x, y ∈ Ri. (15)


Let y ∈ Ri and let [xn, y] = 0. Then [xn2
, yj−y] = 0 for all positive integers


j and x ∈ Ri. If [xn, y] = 0, then [xn2
, y] = 0. If [xn, y] 6= 0, then (15)


implies that yh(r+n) − yh is a zero divisor. Hence yh(r+n−1)+1 − y is also a
zero divisor. But [xn2


, a] = 0. Therefore


[xn2
, yh(r+n−1)+1 − y] = 0 for all x, y ∈ Ri. (16)


Since each R satisfies (16), the original ring R also satisfies (16). But R
possesses Q(n). So by Lemma 1 (16) gives [x, y(r+n−1)+1− y] = 0. Hence R
is commutative by Theorem A.


Remark 3. The property Q(n) is essential in Theorem 2. To show this,
we consider


Example 2. Let


A =








0 0 1
0 0 0
0 0 0





 , B =








0 1 0
0 0 0
0 0 0





 , S =








0 0 0
0 0 1
0 0 0








be elements of the ring of all 3×3 matrices over Z2, the ring of integers mod
2. If R is the ring generated by the matrices A,B, and S, then by the Dorroh
construction with Z2, we get a ring with unity. But R is noncommutative
and satisfies [x2, y] = [x, y2] for all x, y in R.
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Remark 4. Also, if we neglect the restriction of unity in the hypothesis,
R may be badly noncommutative. Indeed,


Example 3. Let Dk be the ring of k × k matrices over a division ring
D and Ak = {aij ∈ Dk/aij = 0, i ≤ j}. Ak is necessarily noncommutative
for any positive integer k > 2. Now A3 satisfies (∗) for all positive integers
m,n.


Example 4. Let


A1 =








0 0 0
0 0 0
0 1 0





 , B1 =








0 0 0
0 0 0
1 0 0





 , S1 =








0 0 0
0 0 1
0 0 0








be elements of the ring of all 3 × 3 matrices over Z2. If R is the ring
generated by the elements A1, B1, and S1, then for each integer m ≥ 1,
the ring R satisfies the identity [xm, y] = [x, ym] for all x, y in R, but R is
noncommutative.


The following results are direct consequences of Theorem 2.


Corollary 1. Let n > 1 and m be positive integers, and let r and t be
any non-negative integers. Suppose that R is a ring with unity satisfying
the polynomial identity [xn, y]xr = [x, ym]yt for all x, y ∈ R. Further, if R
has property Q(n), then R is commutative.


Corollary 2 ([3, Theorem 6]). Let R be a ring with unity 1, and n >
1 be a fixed integer. If R+ is n-torsion free and R satisfies the identity
xny − yxn = xyn − ynx for all x, y in R, then R is commutative.


Corollary 3 ([7, Theorem 2]). Let n ≥ m ≥ 1 be fixed integers such
that mn > 1, and let R be a ring with unity 1. Suppose that every commu-
tator in R is m-torsion free. Further, if R satisfies the polynomial identity
[xn, y] = [x, ym] for all x, y in R. Then R is commutative.


Now, the following theorem shows that the conclusion of Theorem 2 is
still valid if the property Q(n) is replaced by requiring m and n to be
relatively prime positive integers.


Theorem 3. Suppose that m > 1, and n > 1 are relatively prime positive
integers, and r, s, and t are nonnegative integers. Let R be a ring with unity
satisfying (∗). Then R is commutative.


Proof. Without loss of generality we may assume that R is a subdirectly
irreducible ring. Suppose that a ∈ N(R) and choose p and b as in Lemma
7. By the arguments of the proof of Lemma 7 we get n[b, y] = 0 and
m[b, y] = 0, whence by Lemma 3 [b, y] = 0 for all y in R. But ap−1 ∈ Z(R),
i.e., N(R) ⊆ Z(R), and by Lemma 7 we get C(R) ⊆ N(R) ⊆ Z(R). The
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proof of (2) also works in the present situation. So there exists an integer
h such that


xh ∈ Z(R) for all x ∈ R. (17)


Suppose that c ∈ N ′(R). Using the same steps as in the proof of Theorem
2 (see (14)), we obtain [xn2


, c] = 0 and [xm2
, c] = 0. Hence by Lemma 3 we


get


[x, c] = 0 for all x ∈ R and c ∈ N ′(R). (18)


As is observed in the proof followed by (9) one can see that


n(zr+n − z)[x, y] = 0 and m(zr+n − z)[x, y] = 0, where z ∈ Z(R).


Again using Lemma 3, we get


(zr+n − z)[x, y] = 0 for all x, y ∈ R and z ∈ Z(R). (19)


Since yh ∈ Z(R), (17) yields (yh(r+n) − yh)[x, y] = 0 for all x, y ∈ R.
Using the same arguments as in the proof of Theorem 2, we finally get
yh(r+n−1)+1 − y ∈ N ′(R) so that (18) gives yh(r+n−1)+1 − y ∈ Z(R) for all
y ∈ R. Hence by Theorem A,R is commutative.


As a consequence of Theorem 3 we obtain


Corollary 4. Suppose that m and n are relatively prime positive inte-
gers, and let r and t be any nonnegative integers. Let R be a ring with unity
satisfying [xn, y]xr = [x, ym]yt. Then R is commutative.


Further, the following result deals with the commutativity of R for the
case where (∗) is satisfied with n = 1. Thus we prove:


Theorem 4. Suppose that R is a ring with unity, and m, r, s, and t are
fixed nonnegative integers such that (m, r, s, t) 6= (1, 0, 0, 0). If R satisfies


[x, y]xr = ±ys[x, ym]yt for all x, y ∈ R, (∗∗)


then R is commutative.


Proof. First, we consider the following cases:
Case 1. Let m = 0 in (∗∗). Then [x, y]xr = 0. Replacing x by x + 1 and


using Lemma 2, we obtain the commutativity of R.
Case 2. Let m > 1 in (∗∗). Then we choose the matrix for x = e22 and


y = e12 fail to satisfy (∗∗). Thus C, C(R) ⊆ Z(R) by Theorem.
Let a ∈ N(R). Then there exists a positive integer p such that


ah ∈ Z(R) for all h ≥ p and p is minimal. (20)
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If p = 1, then a ∈ Z(R). Suppose that p > 1 and let b = ap−1. Replacing b
by y in (∗∗) we get [x, b]xr = ±bs[x, bm]bt. Using (20) we have [x, b]xr = 0
which by Lemma 2 becomes [x, b] = 0. Thus ap−1 ∈ Z(R), which contradicts
the minimality of p. Hence p = 1 and N(R) ⊆ Z(R). Thus C(R) ⊆ N(R) ⊆
Z(R) and the proof of Theorem 2 enables us to establish the commutativity
of R.


Case 3. If m = 1 in (∗∗), we have


[x, y]xr = ±ys[x, y]yt for all x, y ∈ R. (21)


Step (i). Assuming r = 0 in (21), we get


[x, y] = ±ys[x, y]yt for all x, y ∈ R. (22)


Then either s > 0 or t > 0. Trivially, we can see that x = e22 and y = e12


fail to satisfy (22). Hence C(R) ⊆ N(R). Suppose that p and b are defined
as in Case (2). Then (22) holds and becomes [x, b] = ±bs[x, b]bt = 0 for all
x in R, which is a contradiction. Hence a ∈ Z(R) so that N(R) ⊆ Z(R).
Therefore


C(R) ⊆ N(R) ⊆ Z(R). (23)


Using (23) and Lemma 1 we get [x, y] = ±[x, y]yr+s for x, y in R. Hence R
is commutative by Kezlan [16].


Step (ii). If s = 0 in (21), we get


[x, y]xr = ±[x, y]yt for all x, y ∈ R. (24)


Let t = 0. Then r > 0 and (24) become [x, y]xr = ±[x, y]. Hence R is
commutative [12]. Now, let r = 0 and t > 0. Then (24) gives [x, y] =
±[x, y]yt for all x, y ∈ R. Again R is commutative by Kezlan [16].


Finally, if r > 0, t > 0, then x = e22 and y = e12 fail to satisfy (24).
Hence by Theorem C, C(R) ⊆ N(R). For any positive integer k we have


[x, y]xkr = ±[x, y]ykt for all x, y ∈ R. (25)


Let a ⊆ N(R). Then for sufficiently large k, we get [x, a]xkr = 0. Using
Lemma 2 this gives a ∈ Z(R) and thus C(R) ⊆ N(R) ⊆ Z(R). Further, we
choose q = (pt+1 − p) > 0 for t > 0, p is a prime. We can prove that


xq ∈ Z(R) for all x ∈ R. (26)


Using (25) and (26), we get [xqr+1, y] = ±[x, yqt+1]. In view of Proposition
3 (ii) of [10], there exists a positive integer l such that [x, y(qt+1)l] = 0 for
each x, y in R. But (qt + l)l = gh + 1. So (25) becomes [x, y]yhq = 0 and by
Lemma 2 R is commutative.
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Step (iii). Setting t = 0 in (21), we get


[x, y] = ±ys[x, y] for all x, y ∈ R. (27)


Now we have r > 0 and s > 0. Without loss of generality we may assume
that s > 0. So, trivially, we can see that x = e22 and y = e12 fail to satisfy
(27). Hence by Theorem C, C(R) ⊆ N(R). By the same arguments as in
Step (ii) we can show the commutativity of R.


Step (iv). Suppose that r > 0, s > 0, and t > 0 in (21), and suppose
that x = e22, y = e12 fail to satisfy (21). So C(R) ⊆ N(R). p and b are
defined in the same manner as in Case (2). So [x, b]xr = ±bs[x, b]bt = 0.
Using Lemma 2, we get [x, b] = 0, which contradicts the minimality of p.
Hence N(R) ⊆ Z(R) so that C(R) ⊆ N(R) ⊆ Z(R).


Since C(R) ⊆ Z(R), we can write [x, b]xr = ±[x, b]ys+t.
Using the same argument as in step (ii), we can get the commutativity


of R.


Theorem 5. Suppose that n > 0 and m (resp. m > 0 and n) are two
fixed non-negative integers. Suppose that a ring with unity satisfies the
polynomial identity [xn± ym, yx] = 0 for all x, y in R. Further, if R has the
property Q(n), then R is commutative.


Proof. By hypothesis, we [xn, y]x = ±y[x, yr]. Hence R is commutative by
Theorem 2.


Corollary 5. t Let m > 1 and n > 1 be relatively prime integers and R
be a ring with unity satisfying [xn ± ym, yx] = 0 for all x, y in R. Then R
is commutative.


Recently, Harmanci [4] proved that if n > 1 is a fixed integer and R
is a ring with unity 1 which satisfies the identities [xn, y] = [x, yn] and
[xn+1, y] = [x, yn+1] for each x, y ∈ R, then R must be commutative. In
[17], Bell generalized this result. The following theorem further extends the
result of Bell.


Theorem 6. Suppose that m > 1 and n > 1 are fixed relatively prime
integers, and let r, s, and t be fixed non-negative integers: R is a ring with
unity satisfying both identities


[xn, y]xr = ±ys[x, yn]yt and [xm, y]xr = ±ys[x, ym]yt. (∗ ∗ ∗)


Then R is commutative.


Proof. Suppose that b is as in the proof of Lemma 6. Using the proof of
Theorem 1 and Theorem 2 of [4], we can show that n[b, y] = 0 and m[b, y] =
0 for all y in R. Applying Lemma 3, we get [b, y] = 0. By the same argument
as in the proof of Lemma 6, we get N(R) ⊆ Z(R). The matrices x = e22


and y = e12 fail to satisfy (∗ ∗ ∗). Thus by Theorem C, C(R) ⊆ N(R).
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And thus C(R) ⊆ N(R) ⊆ C(R). Carrying out the argument of subdirectly
irreducible rings for n and m, we obtain integers α > 1 and h > 1 such
that [xα − x, yn2


] = 0 and [xh − x, yn2
] = 0 for all x, y ∈ R. Suppose


that g(x) = (xα − x)h − (xα − x). Then 0 = [g(x), yn2
] = n2[g(x), y]yn2−1


and 0 = [g(x), ym2
] = m2[g(x), y]ym2−1. By Lemma 3 and Lemma 4 we get


[g(x), y]ys = 0 for all x, y ∈ R and s = max{m2−1, n2−1}. So g(x) ∈ Z(R).
But g(x) = x2h(x) − x with h(x) having integral coefficients. Hence R is
commutative by Theorem B.


As a consequence of Theorem 6 we get the result which is proved in [3].


Corollary 6. Let m > 1 and n > 1 be relatively prime positive integers.
If R is any ring with unity satisfying both identities [xm, y] = [x, ym] and
[xn, y] = [x, yn] for all x, y ∈ R, then R is commutative.


4. Extension for s-Unital Rings


We pause to recall a few preliminaries in order to make our paper self-
contained as far as possible. A ring R is called right (resp. left) s-unital if
x ∈ xR (resp. x ∈ Rx) for all x in R, and R is called s-unital if for any finite
subset F of R there exists an element e in R such that xe = ex = x(resp.
ex = x or xe = x) for all x ∈ F . The element is called a pseudo-identity
of F (see [18]). The results proved in the earlier sections can be extended
further to right s-unital rings.


The following Lemma is proved in [19].


Lemma 8. Let R be a right (resp. left) s-unital ring. If for each pair of
elements x, y of R there exist a positive integer k = k(x, y) and an element
e1 = e1(x, y) of R such that e′xk = xk and e′yk = yk (resp xke′ = xk and
yke′ = yk), then R is s-unital.


Theorem 7. Suppose that n > 1,m, r, s, and t are fixed non-negative
integers, and let R be a right s-unital ring satisfying (∗). Further, if R has
property Q(n), then R is commutative.


Proof. Let x and y be arbitrary elements of R. Suppose that R is a right
s-unital ring. Then there exists an element e ∈ R such that xe = x and
ye = y. Replacing x by e in (∗) we get [en, y]er = ±ys[e, ym]yt for all y ∈ R.
This implies that y = eny for all y ∈ R. So y ∈ Ry. Hence in view of Lemma
8 R is an s-unital ring and by Proposition 1 of [8], we may assume that R
has unity 1. Thus R is commutative by Theorem 2.


Corollary 7. Let r and m be two fixed nonnegative integers. Suppose
that R satisfies the polynomial identity [x, y]xr = [x, ym] for all x, y ∈ R.
Further,
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(i) if R is a right s-unital ring, then R is commutative except (m, r) =
(1, 0);


(ii) if R is a left s-unital ring, then R is commutative except when
(m, r) = (0, 1) and r > 0 and m = 1.


Remark 5. Let t = 0 in (∗). Then Theorem 7 and Corollary 7 are special
cases of [20, Corollary 3] and [20, Theorem 5].


Remark 6. In Corollary 7, for m > 1, R is commutative by Theorem 6.
However, for m = 0 (resp. m = 1 and r > 0) it is trivial to prove the
commutativity of R.


Theorems such as Theorem 3, Theorem 4, Theorem 5, and Theorem 6 can
also be proved for right s-unital rings by the same lines as above employing
the necessary variations.


Remark 7. If we take m = 0 and n ≥ 1 in (∗), then Theorem 7 need not
be true for left s-unital rings. Also, when m = 0 and t = 1, Corollary 4 is
not valid for s-unital rings. Indeed,


Example 5. Let R =
{(


0 0
0 0


)


,
(


1 0
1 0


)


,
(


0 1
0 1


)


,
(


1 1
1 1


)}


be a


subring of all 2 × 2 matrices over GF (2) which is a non-commutative left
s-unital ring satisfying (∗).


Remark 8. If m = 0 and n > 0 in (∗), then Theorem 7 need not be true
for left s-unital rings. Owing to this fact, Example 5 disproves Theorems 3,
4, 5, 6, and 7 for left s-unital case whenever both r and s are positive.
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