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OSCILLATORY PROPERTIES OF SOLUTIONS OF
IMPULSIVE DIFFERENTIAL EQUATIONS WITH


SEVERAL RETARDED ARGUMENTS


D. D. BAINOV, M. B. DIMITROVA, AND V. A. PETROV


Abstract. The impulsive differential equation


x′(t) +


m
∑


i=1


pi(t)x(t− τi) = 0, t 6= ξk,


∆x(ξk) = bkx(ξk)


with several retarded arguments is considered, where pi(t) ≥ 0, 1 +
bk > 0 for i = 1, . . . , m, t ≥ 0, k ∈ N. Sufficient conditions for the
oscillation of all solutions of this equation are found.


§ 1. Introduction


In the past two decades the number of investigations of the oscillatory
and nonoscillatory behavior of solutions of functional differential equations
has been growing constantly. The greater part of works on this subject pub-
lished up to 1977 are given in [1]. In the monographs [2] and [3], published
in 1987 and 1991 respectively, the oscillatory and asymptotic properties of
solutions of various classes of functional differential equations are system-
atically studied.


The first work in which the oscillatory properties of impulsive differential
equations with retarded argument of the form


x′(t) + p(t)x(t− τ) = 0, t 6= tk,


∆x(tk) = bkx(tk)
(∗)


are investigated is the paper of Gopalsamy and Zhang [4]. In it the au-
thors give sufficient conditions for the oscillation of all solutions under the
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assumption that p(t) is a positive function, and sufficient conditions are
found for the existence of a nonoscillatory solution if p(t) ≡ p = const > 0.


In [5] more general conditions for the oscillation of solutions of equation
(∗) are found, when this equation has a retarded argument (τ > 0). In [6]
similar results are obtained when equation (∗) has an advanced argument
(τ < 0).


In the present work sufficient conditions for the oscillation of solutions of
impulsive differential equations with several retarded arguments are found.


§ 2. Preliminary notes


Consider the impulsive differential equation with several retarded argu-
ments


x′(t) +
m


∑


i=1


pi(t)x(t− τi) = 0, t 6= ξk,


∆x(ξk) = bkx(ξk),


(1)


where ∆x(ξk) = x(ξ+
k ) − x(ξk), together with the impulsive differential


inequalities


x′(t) +
m


∑


i=1


pi(t)x(t− τi) ≤ 0, t 6= ξk,


∆x(ξk) = bkx(ξk)


(2)


and


x′(t) +
m


∑


i=1


pi(t)x(t− τi) ≥ 0, t 6= ξk,


∆x(ξk) = bkx(ξk)


(3)


provided that the following conditions are met:


A1. 0 < τ1 < · · · < τm.
A2. The sequence {ξk} is such that


0 < ξ1 < ξ2 < · · · , lim
k→∞


ξk = ∞.


A3. pi ∈ C(R+,R+), i = 1, 2, . . . , m.
A4. bk > −1 for k ∈ N.


Remark 1. If 1 + bk ≤ 0 for an infinite number of k ∈ N, then every
nonzero solution x(t) of equation (1) is oscillatory, since x(ξ+


k ) = (1 +
bk)x(ξk). Therefore the case bk < −1 is not interesting for consideration
and condition A4 is quite natural.
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Consider the sequences {ξn}∞n=1 (the jump points) and {ξn + τi}∞n=1,
i = 1, 2, . . . ,m, and let


{ξn}∞n=1 ∩ {ξn + τ1}∞n=1 ∩ · · · ∩ {ξn + τm}∞n=1 = ∅.


Let {tk}∞1 be the sequence with the following properties:


(i) t1 < t2 < · · · .
(ii) {tk}∞1 = {ξn}∞1 ∪ {ξn + τ1}∞1 ∪ · · · ∪ {ξn + τm}∞1 .


Clearly lim
k→∞


tk = ∞.


Definition 1. The function x(t) is said to be a solution of equation (1)
if:


1. x(t) is continuous in [−τ,∞) \ {ξn}∞n=1, and is continuous from the
left for t = ξn, n = 1, 2, . . . .


2. x(t) is differentiable in (0,∞) \ {tk}∞1 .


3. x(t) satisfies equation (1) for t ∈ (0, t1) and t ∈
∞
∪


i=1
(ti, ti+1).


4. x(ξ+
k ) = (1 + bk)x(ξk).


Analogously solutions of the inequalities (2) and (3) are defined. Details
about the general theory of differential equations with impulses can be found
in [7].


Definition 2. The solution x(t) of the inequality (2) is said to be even-
tually positive if there exists t0 > 0 such that x(t) > 0 for t ≥ t0.


Definition 3. The solution x(t) of the inequality (3) is said to be even-
tually negative if there exists t0 > 0 such that x(t) < 0 for t ≥ t0.


Definition 4. The solution x(t) of equation (1) is said to be oscilla-
tory if the set of its zeros is unbounded above, otherwise it is said to be
nonoscillatory.


Let the function u(t) satisfy conditions 1, 2, and 4 from Definition 1 and
let u(t) be nonincreasing in (tk, tk+1), k = 0, 1, 2, . . . (t0 = 0). Define the
function ψ(t) by


ψ(t) =
∏


0≤ξk<t


(1 + bk). (4)


(If t ≤ ξ1, ψ(t) = 1.) Let


v(t) =
u(t)
ψ(t)


, t ≥ 0. (5)


We shall establish some properties of v(t) which we shall use in the proof
of the main results. To this end we need the following result.
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Lemma 1 ([8], p. 330). Let f have the properties:


(i) f ∈ C([a, b],R).
(ii) There exists a finite derivative f ′(x) in (a, b) with the possible ex-


ception of countably many points.
(iii) f ′ ∈ L1(a, b).


Then f is absolutely continuous and


x
∫


a


f ′(t) dt = f(x)− f(a), x ∈ [a, b].


Lemma 2. The function v(t) defined by (5) has the following properties:


(i) v ∈ C([0,∞),R).
(ii) v(t) is nonincreasing in [0,∞).


(iii) v(t) is differentiable for t ∈
∞
∪


i=0
(ti, ti+1) and if 0 ≤ a < b then


b
∫


a


v′(t) dt = v(b)− v(a).


Proof. (i) We have to prove only that v(t) is continuous at the points
ξ1, ξ2, . . . . Since u(t) and ψ(t) are continuous from the left at these points
it suffices to prove that lim


t→ξk+
v(t) = v(ξk) but this follows easily from the


following relations:


lim
t→ξk+


v(t) = lim
t→ξk+


u(t)
ψ(t)


=
lim


t→ξk+
u(t)


lim
t→ξk+


ψ(t)
=


u(ξ+
k )


k
∏


i=1
(1 + bi)


=


=
(1 + bk)u(ξk)


k
∏


i=1
(1 + bi)


=
u(ξk)


k−1
∏


i=1
(1 + bi)


=
u(ξk)
ψ(ξk)


= v(ξk).


(ii) Since u(t) is nonincreasing in (ti, ti+1), i = 0, 1, . . . , and ψ(t) is
constant in each of these intervals, we conclude that v(t) is nonincreasing
in (ti, ti+1), i = 0, 1, . . . . The fact that v(t) is continuous implies that
v(t) is nonincreasing in [0,∞).


(iii) The fact that the derivative v′(t) exists at each point t ∈
∞
∪


i=0
(ti, ti+1)


is obvious. The already proved properties (i) and (ii) imply that v′(t) is
summable in any finite interval. Then (iii) follows immediately from Lem-
ma 1.
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§ 3. Main Results


Theorem 1. Suppose that:


1. Conditions A1—A4 hold.
2. There exists an unbounded increasing sequence {γn} such that for


each n ∈ N,


γn
∫


γn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1ds ≥ 1. (6)


Then:


1. Inequality (2) has no eventually positive solution.
2. Inequality (3) has no eventually negative solution.
3. Each solution of equation (1) is oscillatory.


Proof. First we shall prove that inequality (2) has no eventually positive
solutions. Suppose that this is not true and let x(t) be an eventually positive
solution of (2). Without loss of generality we may assume that x(t) > 0
for t ≥ −τm. We define the function y(t) by y(t) = x(t)ψ(t)−1, where ψ(t)
was defined by (4). Then the inequality (2) takes the form


y′(t) +
m


∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1y(t− τi) ≤ 0, t 6= tk, t ≥ 0. (7)


Since x(t) > 0, (2) implies that x(t) is nonincreasing in each interval
(ti, ti+1), i = 0, 1, . . . . Thus x(t) satisfies the same conditions as the func-
tion u(t). Then (5) and Lemma 2 imply that y(t) is a continuous nonin-
creasing function. Let N be a large enough integer such that γn ≥ τ1 for
n ≥ N . We integrate (7) from γn−τ1 to γn and by making use of assertion
(iii) of Lemma 2 obtain


y(γn)− y(γn − τ1) +


γn
∫


γn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1y(s− τi)ds ≤ 0.


Since y(t) is nonincreasing,


y(s− τi) ≥ y(γn − τi) ≥ y(γn − τ1), i = 1, 2, . . . , m,


for s ∈ [γn − τ1, γn]. Then


y(γn)+y(γn − τ1)











γn
∫


γn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds− 1











≤0. (8)
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The last inequality and the fact that y(t) is positive imply that for n ≥ N
the following inequality holds:


γn
∫


γn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds < 1,


which contradicts (6).
In order to prove that (3) has no eventually negative solution it suffices


to note that if x(t) is a solution of (3), then −x(t) is a solution of (2). From
assertions 1 and 2 it follows that equation (1) has neither eventually positive
nor eventually negative solutions. Thus each solution of (1) is oscillatory.


Theorem 2. Suppose that:


1. Conditions A1—A4 hold.
2. There exists an unbounded increasing sequence {γn} such that for


each n ∈ N and for some i = i(n) ∈ {1, . . . , m} the inequalities


γn
∫


γn−τi


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1ds ≥ 1 (9)


hold.


Then:


1. Inequality (2) has no eventually positive solution.
2. Inequality (3) has no eventually negative solution.
3. Each solution of equation (1) is oscillatory.


The proof of Theorem 2 is analogous to the proof of Theorem 1.


Theorem 3. Let conditions A1—A4 hold and a sequence of disjoint in-
tervals {(αn, βn)}∞n=1 (α1 > 0) exist such that βn−αn ≥ 2τm, limn→∞(βn−
αn) = ∞ and


lim inf
t→∞


t
∫


t−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1ds >
1
e


(10)


for t ∈
∞
∪


n=1
(αn + τm, βn). Then:


1. Inequality (2) has no eventually positive solution.
2. Inequality (3) has no eventually negative solution.
3. Each solution of equation (1) is oscillatory.
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Proof. Suppose that x(t) is an eventually positive solution of (2). Without
loss of generality we may assume that x(t) > 0, t ≥ −τm. We define the
function y(t) as in Theorem 1. Then inequality (2) takes form (7), and the
function y(t) is continuous, positive, and nonincreasing for t ≥ 0. Choose
K such that


lim inf
t→∞


t
∫


t−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds > K >
1
e
,


t ∈
∞
∪


n=1
(αn + τm, βn).


Then there exists an integer N1 such that


t
∫


t−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≥ K (11)


for t ∈
∞
∪


n=N1
(αn+τm, βn). We integrate (7) from βn−τ1 to t and by making


use of Lemma 2(iii) we obtain


y(t)− y(βn − τ1) +


t
∫


βn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1y(s− τi)ds ≤ 0,


t ∈ [βn− τ1, βn], n ≥ N1. Since βn− τm− τ1 > 0 and y(t) is nonincreasing
for t ≥ 0, we have


y(s− τi) ≥ y(s− τ1) ≥ y(t− τ1), i = 1, 2, . . . ,m,


for s ∈ [βn − τ1, t] and t ∈ [βn − τ1, βn]. Then


y(t)− y(βn − τ1) + y(t− τ1)


t
∫


βn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≤ 0.


Having in mind that y(t) is a positive function, from the last inequality we
obtain for n ≥ N1


y(t− τ1)An(t) ≤ y(βn − τ1) , t ∈ [βn − τ1, βn], (12)


where


An(t) =


t
∫


βn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds.
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Analogously, from the inequality


y(βn)− y(t) +


βn
∫


t


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1y(s− τi) ds ≤ 0


we obtain


y(βn − τ1)Bn(t) ≤ y(t), t ∈ [βn − τ1, βn], (13)


where


Bn(t) =


βn
∫


t


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds.


Since An(t) and Bn(t) are continuous for t ∈ [βn − τ1, βn] and


An(t) + Bn(t) =


βn
∫


βn−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≥ K,


there exists γn ∈ (βn− τ1, βn) such that An(γn) ≥ K
2 and Bn(γn) ≥ K


2 for
n ≥ N1. Then from (12) and (13) we obtain


y(γn − τ1)
y(γn)


≤ 4
K2 , n ≥ N1 , γn ∈ (βn − τ1, βn). (14)


On the other hand, it follows from (7) that


y′(t) + y(t)
m


∑


i=1


pi(t)
∏


t−τi≤ξk<t


(1 + bk)−1 ≤ 0


for t ≥ τm and in particular for t ∈
∞
∪


n=N1
(αn + τm, βn), or


y′(t)
y(t)


+
m


∑


i=1


pi(t)
∏


t−τi≤ξk<t


(1 + bk)−1 ≤ 0.


From Lemma 1 applied to the function ln y(t) it follows that


ln
y(t)


y(t− τ1)
+


t
∫


t−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≤ 0


for t ∈
∞
∪


n=N1
[αn + τm + τ1, βn]. From (11) we obtain


ln
y(t− τ1)


y(t)
≥ K , t ∈


∞
∪


n=N1
[αn + τm + τ1, βn]
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or equivalently


y(t− τ1)
y(t)


≥ eK ≥ eK , t ∈
∞
∪


n=N1
[αn + τm + τ1, βn].


Since y(t− τ1) ≥ eKy(t) , t ∈
∞
∪


n=N1
(αn + τm + τ1, βn), it follows from (7)


that


y′(t) + eKy(t)
m


∑


i=1


pi(t)
∏


t−τi≤ξk<t


(1 + bk)−1 ≤ 0


and, as above,


ln
y(t)


y(t− τ1)
+ eK


t
∫


t−τ1


m
∑


i=1


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≤ 0


for t ∈
∞
∪


n=N1
[αn + τm + 2τ1, βn] or


ln
y(t− τ1)


y(t)
≥ eK2 , t ∈


∞
∪


n=N1
[αn + τm + 2τ1, βn].


Thus


y(t− τ1)
y(t)


≥ eeK2
≥ e2K2 , t ∈


∞
∪


n=N1
[αn + τm + 2τ1, βn].


Repeating the above procedure, we arrive at


y(t− τ1)
y(t)


≥ (eK)r , t ∈
∞
∪


n=N1
[αn + τm + rτ1, βn].


If r is sufficiently large, then (eK)r > 4
K2 . Since lim


n→∞
(βn−αn) = ∞ there


exists an integer N2 ≥ N1 such that [βn − τ1, β] ⊆ [αn + τm + rτ1, βn] for
n ≥ N2. It follows from (14) that


4
K2 ≥


y(γn − τ1)
y(γn)


≥ (eK)r >
4


K2 , n ≥ N2.


The contradiction obtained shows that (2) has no eventually positive solu-
tions.


The proof of assertions 2 and 3 is carried out as in Theorem 1.


Remark 2. The assertion of Theorem 3 is still valid if p(t) > 0 only on
∞
∪


n=1
(αn, βn). The proof with insignificant changes is the same.
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Remark 3. Theorem 3 generalizes the result of Gopalsamy and Zhang in
several directions. The trivial generalization (the procedure is very familiar
for delay equations without impulses) is that we have several delays while
it is one in [4], and we impose the integral condition (10) on p(t) only on
a sequence of disjoint intervals and not on the whole axis. The nontrivial
extension is that there are no restrictions on the inter-jump distance (in
[4] it is greater than the delay) and also that bk ∈ (−1,∞) while in [4],
bk ∈ (0,∞). In the case of one delay and integral condition on the whole
axis (10) takes the form


lim inf
t→∞


t
∫


t−τ


p(s)
∏


s−τ≤ξk<s


(1 + bk)−1 ds >
1
e
. (15)


If the sequence {bk} is bounded from above and the number of jumps in
[t− τ, t] is also bounded, then


l = lim inf
t→∞


∏


t−τ≤ξk<t


(1 + bk)−1 > 0.


It is easy to see that


lim inf
t→∞


t
∫


t−τ


p(s)
∏


s−τ≤ξk<s


(1 + bk)−1 ds ≥ l lim inf
t→∞


t
∫


t−τ


p(s) ds.


Since


lim inf
t→∞


∏


t−τ≤ξk<t


(1 + bk)−1 =
1


lim sup
t→∞


∏


t−τ≤ξk<t(1 + bk)
,


the integral condition (15) can be replaced by


lim inf
t→∞


t
∫


t−τ


p(s) ds >
lim sup


t→∞


∏


t−τ≤ξk<t(1 + bk)


e
. (16)


For the sake of comparison the corresponding condition in [4] is


lim inf
t→∞


t
∫


t−τ


p(s) ds >
1 + sup


k
bk


e
(17)


with bk > 0 and ξk+1 − ξk > τ . If ξk+1 − ξk > τ , then (16) takes the form


lim inf
t→∞


t
∫


t−τ


p(s) ds >
1 + lim sup


k
bk


e
,
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which is again slightly better than (17).
Analogously to Theorem 3 we can prove the following theorem:


Theorem 4. Let conditions A1—A4 hold and there exist a sequence
of disjoint intervals {(αn, βn)}∞n=1 (α1 > 0) such that βn − αn ≥ 2τm,
lim


n→∞
(βn − αn) = ∞, and there exist K > 0 and N1 such that the inequali-


ties
t


∫


t−τi


pi(s)
∏


s−τi≤ξk<s


(1 + bk)−1 ds ≥ K >
1
e


(18)


hold for any n ≥ N1 and t ∈ (αn + τm, βn) and for some i = i(n) ∈
{1, 2, . . . ,m}. Then:


1. Inequality (2) has no eventually positive solution.
2. Inequality (3) has no eventually negative solution.
3. Each solution of equation (1) is oscillatory.
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