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ON THE BOUNDARY VALUE PROBLEM IN A
DIHEDRAL ANGLE FOR NORMALLY HYPERBOLIC

SYSTEMS OF FIRST ORDER

O. JOKHADZE

Abstract. Some structural properties as well as a general three-
dimensional boundary value problem for normally hyperbolic systems
of partial differential equations of first order are studied. A condition
is given which enables one to reduce the system under consideration
to a first-order system with the spliced principal part. It is shown
that the initial problem is correct in a certain class of functions if
some conditions are fulfilled.

§ 1. Some Structural Properties of Normally Hyperbolic
Systems of First Order

In the Euclidean space Rn+1, n ≥ 2, of independent variables (x, t),
x = (x1, . . . , xn), we consider the system of partial differential equations of
first order

A0ut +
n

∑

i=1

Aiuxi + Bu = F, (1.1)

where Ai, i = 0, 1, . . . , n, B are the given real m × m matrix-functions,
m ≥ 2, F is the given and u is the unknown m-dimensional real vector-
function. It is assumed that det A0 6= 0.

Denote by p(x, t;λ, ξ) the characteristic determinant of system (1.1), i.e.,
p(x, t;λ, ξ) ≡ det Q(x, t;λ, ξ), where

Q(x, t; λ, ξ) ≡ A0λ +
n

∑

i=1

Aiξi, λ ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn.
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Since det A0 6= 0, we have the representation

p(x, t; λ, ξ) = det A0

l
∏

i=1

(

λ− λi(x, t; ξ)
)ki ,

l
∑

i=1

ki = m,

l = l(x, t; ξ), ki = ki(x, t; ξ), i = 1, . . . , l.

System (1.1) is said to be hyperbolic at the point (x, t) if all roots
λ1(x, t; ξ), . . . , λl(x, t; ξ) of the polynomial p(x, t;λ, ξ) are real numbers.

One can easily verify that

ki(x, t; ξ) ≥ m− rank Q
(

x, t;λi(x, t; ξ), ξ
)

, i = 1, . . . , l.

The hyperbolic system (1.1) is said be normally hyperbolic at the point
(x, t), if the equalities

ki(x, t; ξ) = m− rank Q
(

x, t; λi(x, t; ξ), ξ
)

, i = 1, . . . , l,

are fulfilled (see, e.g., [1], [2]).
Note that strictly hyperbolic systems, i.e., when l = m, ki = 1, i =

1, . . . , m, form a subclass of normally hyperbolic systems.
Since det A0 6= 0, it can be assumed without loss of generality that A0 =

E, where E is the m×m unit matrix. For simplicity, we shall always assume
that (i) n = 2, x1 = x, x2 = y; (ii) the matrices A1 and A2 are constant;
(iii) system (1.1) is normally hyperbolic.

In our assumptions, in the space of independent variables x, y and t,
system (1.1) is rewritten as

ut + A1ux + A2uy + Bu = F. (1.2)

It is easy to show that since system (1.2) is normally hyperbolic, each
of the matrices Ai, i = 1, 2, has only real characteristic roots so that the
corresponding eigenvectors of the operator Ai, 1 ≤ i ≤ 2, form a complete
system, i.e., a basis in the space Rm. Therefore the matrices Ai, i = 1, 2,
are diagonalizable, i.e., there exist real nondegenerate matrices Ci, i = 1, 2,
such that the matrices C−1

i AiCi, i = 1, 2, are diagonal.
The normally hyperbolic system (1.2) will be said to be diagonalizable if

there exists a real nondegenerate matrix C such that the matrices C−1AiC,
i = 1, 2, are diagonal. We have

Lemma 1.1. The normally hyperbolic system (1.2) is diagonalizable if
and only if the matrices A1 and A2 are commutative, i.e., A1A2 = A2A1.

Proof. The necessity readily follows from the fact that the diagonal matrices
C−1A1C and C−1A2C are commutative, C−1A1CC−1A2C =
C−1A2CC−1A1C, i.e., C−1A1A2C = C−1A2A1C. This immediately im-
plies A1A2 = A2A1.
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To prove sufficiency note that since system (1.2) is normally hyperbolic,
we have dimRλi = ki, where Rλi ≡ Ker (A1 − λiE), 1 ≤ i ≤ l. Clearly,
Â1(Rλi) ⊂ Rλi , 1 ≤ i ≤ l, where Â1 stands for the linear transform corre-
sponding to the matrix A1.

Let {νij}ki
j=1 be an arbitrary basis of the space Rλi , 1 ≤ i ≤ l. By the

definition of the space Rλi , the vectors νi1, . . . , νiki are the eigenvectors for
the transform Â1 and correspond to the eigenvalue λi, 1 ≤ i ≤ l. Therefore,
the matrix of the transform Â1 in the basis {νij}ki

j=1 of the space Rλi will
be diagonal of order (ki × ki) and written as diag [λi, . . . , λi

︸ ︷︷ ︸

ki−times

], 1 ≤ i ≤ l.

Hence, recalling that the decomposition of the space Rm as the direct sum
of subspaces Rλi , i = 1, . . . , l, i.e., Rm = Rλ1 ⊕ · · · ⊕ Rλl is unique, we can
write the matrix D1 of the transform Â1 in the basis {νij ; i = 1, . . . , l; j =
1, . . . , ki} as D1 = diag [λ1, . . . , λ1

︸ ︷︷ ︸

k1−times

, . . . , λl, . . . , λl
︸ ︷︷ ︸

kl−times

].

Let ˜A2i be the matrix corresponding to the linear transform Â2 of the
subspace Rλi , 1 ≤ i ≤ l in the basis {νij}ki

j=1. Since the matrices A1 and A2

are commutative, the subspace Rλi is invariant with respect to the linear
transform Â2, i.e., Â2(Rλi) ⊂ Rλi , 1 ≤ i ≤ l (see, e.g., [3]). Therefore,
in the basis {νij ; i = 1, . . . , l; j = 1, . . . , ki} of the space Rm, the matrix
˜A2 corresponding to Â2 will be block-diagonal and have, on its principal
diagonal, matrices ˜A2i, i = 1, . . . , l. It is well known that matrices giving
the same linear transform in different bases are similar. At the same time,
similar matrices have the same characteristic equation. Therefore we have

det(A2 − λE) = det(˜A2 − λE) = det(˜A21 − λEk1)× · · · × det(˜A2l − λEkl).

Since system (1.2) is normally hyperbolic, the matrix A2 has only real
characteristic roots. Thus for the linear transform Â2 : Rλi → Rλi there
exists a basis {µij}ki

j=1 which consists of the real vectors of the subspace Rλi ,
and where the matrix A∗2i of the above-mentioned transform is of Jordan
form, 1 ≤ i ≤ l. Therefore, in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki}
of the space Rm, the matrix A∗2 of the transform Â2 will also be of Jordan
form. But, since system (1.2) is normally hyperbolic, in the space Rm there
exists a basis {σi}m

i=1 in which the matrix of the transform Â2 is diagonal.
Further, as is well known, a Jordan matrix similar to the diagonal one is
diagonal too. Therefore in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki} of
the space Rm the matrix A∗2 is diagonal, but the matrix of the transform
Â1 is diagonal in any basis of the transform Rλi , in particular, in the basis
{µij}ki

j=1, 1 ≤ i ≤ l. Therefore the matrices of the transforms Â1 and Â2

will be diagonal in the basis {µij ; i = 1, . . . , l; j = 1, . . . , ki} of the space
Rm.
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§ 2. Statement of the Problem and Some Notations

In the discussion below the matrices A1 and A2 will always be assumed
to be commutative, i.e., the equality

A1A2 = A2A1 (2.1)

is valid.
After introducing a new unknown function v by the formula u = Cv with

the nondegenerate matrix C whose existence was proved by condition (2.1)
in §1, system (1.2) takes the form

vt + D1vx + D2vy + B0v = F0, (2.2)

where by virtue of Lemma 1.1 the matrices Di = C−1AiC, i = 1, 2, are
diagonal, i.e., D1 = diag[ν1, . . . , νm], D2 = diag[µ1, . . . , µm], B0 = C−1BC,
F0 = C−1F .

It is obvious that the directions defined by the vectors li = (νi, µi, 1),
i = 1, . . . , m, are bicharacteristic.

Let Âj be the linear transform corresponding to he matrix Aj , 1 ≤ j ≤
2. Denote by Λi an m-dimensional vector which is the eigenvalue of the
transform Â1, corresponding to the eigenvalue νi, 1 ≤ i ≤ m. By virtue of
(2.1) the vector Λi is also the eigenvector of the transform Â2 corresponding
to the eigenvalue µi, 1 ≤ i ≤ m. By Lemma 1.1, the vectors Λi, i = 1, . . . ,m,
can be chosen such that the (m × m) matrix C = [Λ1, . . . , Λm], whose
columns consist of these vectors, will reduce the matrices A1 and A2 to the
diagonal form, namely, to Di = C−1AiC, i = 1, 2.

Obviously, the vectors li = (νi, µi, 1) and lj = (νj , µj , 1) define the same
bicharacteristic direction if the equalities νi = νj , µi = µj , 1 ≤ i 6= j ≤ m,
are fulfilled. In this context, we divide the set of vectors {l1, . . . , lm} into
nonintersecting classes {l11, . . . , l1s1}, . . . , {lm01, . . . , lm0sm0

} whose repre-
sentatives with respective “multiplicities” s1, . . . , sm0 , will be denoted by
˜l1, . . . ,˜lm0 , m0 ≤ m. Now the matrix C = [Λ1, . . . , Λm] can be represented
as

C = [Λ11, . . . , Λ1s1 ; . . . ; Λm01, . . . , Λm0sm0
],

or as C = (˜C1, ˜C2), where

˜C1 = [Λ11, . . . , Λ1s1 ; . . . ; Λq1, . . . , Λqsq ],

˜C2 = [Λq+11, . . . , Λq+1sq+1 ; . . . ; Λm01, . . . , Λm0sm0
]

and q will be defined below.
Denote by D∗ the dihedral angle

D∗ ≡ {(x, y, t) ∈ R3, t− y > 0, t + y > 0}.
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For bicharacteristic directions of system (1.2) we make the following as-
sumption: bicharacteristics passing through any point of the edge Γ∗ ≡
{(x, y, t) ∈ R3 : y = t = 0, x ∈ R} of the angle D∗ have no common points
with the set D∗\Γ∗. This is equivalent to the fulfillment of the inequalities

|µi| > 1, i = 1, . . . , m. (2.3)

Let P0 = P0(x0, y0, t0) be an arbitrary fixed point of the set D∗\Γ∗,
and let S1 ⊃ Γ∗ and S2 ⊃ Γ∗ be the two-dimensional edges of D∗, i.e.,
∂D∗ = S1 ∪ S2, S1 ≡ {(x, y, t) ∈ R3 : x ∈ R, y = t, t ∈ R+}, S2 ≡
{(x, y, t) ∈ R3 : x ∈ R, y = −t, t ∈ R+}, R+ ≡ (0,∞). From the point P0

we draw the bicharacteristic beam ˜Li(P0) of system (2.2) which corresponds
to the vector ˜li, is directed towards the decreasing values of the t-coordinate
of a moving point ˜Li(P0), and intersects one of the edges S1 or S2 at a
point ˜P i

0, 1 ≤ i ≤ m0. It can be assumed without loss of generality that
bicharacteristic beams defined by the vectors ˜l1, . . . ,˜lq and passing through
the point P0 intersect the edge S1, while those defined by ˜lq+1, . . . ,˜lm0

intersect the edge S2.
Below, it will be assumed for simplicity that q = 2 and m0 = 3, ˜li =

(ν̃i, µ̃i, 1), i = 1, 2, 3, and also rank (˜l1,˜l2,˜l3) = 3.
Through the point P0 draw a plane P

l̃i ,̃lj
, parallel to the vectors ˜li and

˜lj , 1 ≤ i < j ≤ 3. We introduce the following notation:
P

l̃2 ,̃l3
and P

l̃1 ,̃l3
are respectively the intersection points of the planes Q1

and Q2 with the edge Γ∗;
D is a the domain forming a pentahedron with the vertices at the points

P0, ˜P 2
0 , ˜P 1

0 , Q2, ˜P 3
0 , Q1;

∆1 and ∆2 are respectively a triangle and rectangle with the vertices at
the points Q2, ˜P 3

0 , Q1 and Q1, ˜P 2
0 , ˜P 1

0 , Q2, respectively.
For system (1.2) we consider the boundary value problem formulated as

follows: Find, in the domain D, a regular solution u(x, y, t) of system (1.2)
satisfying the boundary conditions

Biu
∣

∣

∆i
= fi, (2.4)

where Bi are the given (mi ×m) matrix-functions and fi are the given mi-
dimensional vector-functions, i = 1, 2,m1 = s1 + · · ·+ sq,m2 = sq+1 + · · ·+
sm0 . It is obvious that m1 + m2 = m though we do not exclude the cases
with m1 = 0 or m2 = 0, which correspond to the Cauchy problem. Below
it will always be assumed that 0 < mi < m, i = 1, 2.

A function u(x, y, t) which, together with its partial derivatives ux, uy, ut,
is continuous in D and satisfies system (1.2) is called a regular solution of
system (1.2).
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Some analogs of the Goursat problem for hyperbolic systems of first or-
der with two independent variables have been studied in [4]–[8]. A lot of
papers are devoted to general boundary value problems of the Darboux type
for normally hyperbolic systems of second order on a plane (see, e.g., [1],
[2]). Some multidimensional problems of the Goursat and Darboux type
are considered in several papers (see, e.g., [9]–[11]) both for a hyperbolic
equation and for a system of equations in a dihedral angle. For hyperbolic
equations of third order, a boundary value problem in a dihedral angle is
investigated in [12].

Denote by ∆∗
i the orthogonal projection of the polygons ∆∗

i , i = 1, 2,
onto the plane x, t. The restrictions of Bi and fi on the sets ∆∗

i , i = 1, 2,
will be denoted as before.

In the domains D and ∆∗
i , we introduce the following functional spaces

0
Cα(D) ≡

{

w ∈ C(D) : w|Γ = 0, sup
(x,y,t)∈D\Γ∗

ρ−α||w(x, y, t)||Rm < ∞
}

,

0
Cα(∆∗

i ) ≡
{

ψ ∈ C(∆∗
i ) : ψ|Γ1 = 0, sup

(x,t)∈∆∗i \Γ
∗
1

t−α||ψ(x, t)||Rm < ∞
}

,

where Γ ≡ D∩Γ∗,Γ1 ≡ ∆∗
i ∩Γ∗1, i = 1, 2, Γ∗1 ≡ {(x, t) ∈ R2 : x ∈ R, t = 0}, ρ

is the distance from the point (x, y, t) ∈ D\Γ∗ to the edge Γ∗ of the domain
D∗, the real parameter α = const ≥ 0. For a = (a1, . . . , am) ∈ Rm, m ≥ 2,
denote ‖a‖Rm = |a1|+ · · ·+ |am|.

Obviously, the spaces
0
Cα(D) and

0
Cα(∆∗

i ), i = 1, 2, are Banach ones with
the norms

‖w‖ 0
Cα(D)

= sup
(x,y,t)∈D\Γ∗

ρ−α||w(x, y, t)||Rm ,

‖ψ‖ 0
Cα(∆∗i )

= sup
(x,t)∈∆∗i \Γ

∗
1

t−α||ψ(x, t)||Rm .

Remark 2.1. Since the estimate 1 ≤ ρ/t ≤
√

2, (x, y, t) ∈ D∗, is uniform,

the value ρ in the definition of the space
0
Cα(D) below will be replaced by

the variable t.

It is easy to verify that the fact that w ∈
0
C(D) and ψ ∈

0
C(∆∗

i ) belong to

the spaces
0
Cα(D) and

0
Cα(∆∗

i ), respectively, is equivalent to the fulfillment
of the inequalities

||w(x, y, t)||Rm ≤ ctα, (x, y, t) ∈ D,

||ψ(x, t)||Rm ≤ ctα, (x, t) ∈ ∆∗
i , i = 1, 2.

(2.5)
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We shall investigate the boundary value problem (1.2), (2.4) in the Ba-
nach space

0
C1,1,1

α (D) ≡
{

u :
∂|i|u

∂xi1∂yi2∂ti3
∈

0
Cα(D), |i| ≤ 1, |i| =

3
∑

j=1

ij
}

,

with respect to the norm

‖u‖ 0
C1,1,1

α (D)
=

∑

|i|≤1

∥

∥

∥

∂|i|u
∂xi1∂yi2∂ti3

∥

∥

∥ 0
Cα(D)

assuming that the matrix-functions B ∈ C(D), Bi ∈ C(∆∗
i ) and the vector-

functions F ∈
0
Cα(D), fi ∈

0
Cα(∆∗

i ), i = 1, 2.

§ 3. Equivalent Reduction of Problem (1.2), (2.4) to a System
of Integro-Differential Equations

From an arbitrary point P (x, y, t) ∈ D\Γ we draw the bicharacteristic
beam ˜Li(P ) of system (2.2) which corresponds to the vector ˜li and is directed
towards the decreasing values of the t-coordinate of a moving point of ˜Li(P ),
1 ≤ i ≤ 3. The points of intersection of beams ˜Li(P ), i = 1, 2, 3, with the
faces S1 and S2 are ˜P i ∈ S1, i = 1, 2, and ˜P 3 ∈ S2. Denote by

(

ω1
i (x, y, t),

ω2
i (x, y, t)

)

the coordinates of orthogonal projection of the point ˜P i onto
the plane (x, t), 1 ≤ i ≤ 3. A simple calculation yields

ω1
i (x, y, t) = x + ν̃i(1− µ̃i)−1(y − t),

ω2
i (x, y, t) = t + (1− µ̃i)−1(y − t),

i = 1, 2,

ω1
3(x, y, t) = x− ν̃3(1 + µ̃3)−1(y + t), ω2

3(x, y, t) = t− (1 + µ̃3)−1(y + t).

Let ξ = xi(x, y, t; τ), η = yi(x, y, t; τ), ζ = τ be the parametrization of a
segment ˜Li(P ) ∩D, where ω2

i (x, y, t) ≤ τ ≤ t, 1 ≤ i ≤ 3.
After integrating the (qi + j)-th equation of system (2.2), where q1 = 0,

qi = s1 + · · · + si−1, i ≥ 2, j = 1, . . . , si, along the i-th bicharacteristic
˜Li(P ) drawn from an arbitrary point P (x, y, t) ∈ D\Γ and lying between
the point P (x, y, t) and the point of intersection of ˜Li(P ) with the face S1

or S2 (depending on the index i of ˜Li(P )), we obtain

vqi+j(x, y, t) = vqi+j
(

ω1
i (x, y, t), ω2

i (x, y, t)
)

+

+

t
∫

ω2
i (x,y,t)

(
m

∑

p′=1

bijp′vp′

)

(

xi(x, y, t; τ), yi(x, y, t; τ), τ
)

dτ +

+Fij(x, y, t), 1 ≤ i ≤ 3, 1 ≤ j ≤ si, (3.1)
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where vqi+j are the components of the vector v, bijp′ and Fij are the well-
defined functions depending only on the coefficients and the right-hand side
of system (2.2).

We set

ϕ1
qi+j(x, t)≡vqi+j

∣

∣

∆1
≡vqi+j(x, t, t), (x, t)∈∆∗

1, i = 1, 2; j = 1, . . . , si,

ϕ2
qi+j(x, t)≡vqi+j

∣

∣

∆2
≡vqi+j(x,−t, t), (x, t)∈∆∗

2, i = 3; j = 1, . . . , si.
(3.2)

It is obvious that the number of components of the vectors

ϕ1(x, t) ≡
(

ϕ1
qi+j(x, t)

)

, (x, t) ∈ ∆∗
1, i = 1, 2; j = 1, . . . , si,

ϕ2(x, t) ≡
(

ϕ2
qi+j(x, t)

)

, (x, t) ∈ ∆∗
2, i = 3; j = 1, . . . , si,

is equal to the numbers m1 and m2, respectively.
By substituting the expressions of v from equality (3.1) into the boundary

conditions (2.4) and taking into account (3.2) we have

Q1
0(x, t)ϕ1(x, t)+Q1

3(x, t)ϕ2(σ3(x, t)
)

+(T1v)(x, t)=f1(x, t), (x, t) ∈ ∆∗
1,

Q2
0(x, t)ϕ2(x, t) +

2
∑

i=1

Q2
i (x, t)ϕ1(σi(x, t)

)

+ (T2v)(x, t) = (3.3)

= f2(x, t), (x, t) ∈ ∆∗
2,

where

(

T1v
)

(x, t) ≡
t

∫

ω2
3(x,t,t)

(

˜A3v
)(

x3(x, t, t; τ), y3(x, t, t; τ), τ
)

dτ,

(

T2v
)

(x, t) ≡
2

∑

i=1

t
∫

ω2
i (x,−t,t)

(

˜Aiv
)(

xi(x,−t, t; τ), yi(x,−t, t; τ), τ
)

dτ,

(3.4)

and Q1
3, ˜A3, Q2

i , ˜Ai, f i, i = 1, 2, are respectively the well-defined matrices
and vectors.

It is obvious that Qi
0 from (3.3) are matrices of order (mi ×mi) which

can be represented as the product

Qi
0 = Bi ×˜Ci, i = 1, 2, (3.5)

and the functions σi are defined by the equalities

σi : (x, t) →
(

ω1
i (x,−t, t), ω2

i (x,−t, t)
)

, i = 1, 2,

σi : (x, t) →
(

ω1
i (x, t, t), ω2

i (x, t, t)
)

, i = 3.
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Assuming that

detQi
0

∣

∣

∆∗i
6= 0, i = 1, 2, (3.6)

where the matrices Qi
0 are given by (3.5), we rewrite system (3.3) as

ϕ1(x, t)−
2

∑

i=1

G1
i (x, t)ϕ1(J1

i (x, t)
)

+
(

T3v
)

(x, t)=f3(x, t), (x, t)∈∆∗
1,

ϕ2(x, t)−
2

∑

i=1

G2
i (x, t)ϕ2(J2

i (x, t)
)

+
(

T4v
)

(x, t)=f4(x, t), (x, t)∈∆∗
2,

(3.7)

where Gp
i are the known matrix-functions of order (mp×mp), p = 1, 2, f i+2

are the known vector-functions,

J1
i (x, t) ≡ σi

(

σ3(x, t)
)

, (x, t) ∈ ∆∗
1,

J2
i (x, t) ≡ σ3

(

σi(x, t)
)

, (x, t) ∈ ∆∗
2, i = 1, 2.

It is easy to verify that by virtue of equalities (3.4) the linear integral
operators T3 and T4 can be represented as

(

T3v
)

(x, t) =
2

∑

i=1

ω2
3(x,t,t)
∫

ω̃2
i (x,t)

(

˜Biv
)(

xi
(

ω1
3(x, t, t),−ω2

3(x, t, t), ω2
3(x, t, t); τ

)

,

yi
(

ω1
3(x, t, t),−ω2

3(x, t, t), ω2
3(x, t, t); τ

)

, τ
)

dτ +

+

t
∫

ω2
3(x,t,t)

(

˜B3v
)(

x3(x, t, t; τ), y3(x, t, t; τ), τ
)

dτ,

(

T4v
)

(x, t)=
2

∑

i=1

ω2
i (x,−t,t)
∫

ω̃2
3(x,t)

(

Eiv
)(

x3
(

ω1
i (x,−t, t), ω2

i (x,−t, t), ω2
i (x,−t, t); τ

)

,

y3
(

ω1
i (x,−t, t), ω2

i (x,−t, t), ω2
i (x,−t, t); τ

)

, τ
)

dτ +

+
2

∑

i=1

t
∫

ω2
i (x,−t,t)

(

Hiv
)(

xi(x,−t, t; τ), yi(x,−t, t; τ), τ
)

dτ,

where ω̃2
i (x, t) ≡ ω2

i

(

ω1
3(x, t, t), −ω2

3(x, t, t), ω2
3(x, t, t)

)

, ω̃2
3(x, t) ≡

ω2
3

(

ω1
i (x,−t, t), ω2

i (x,−t, t), ω2
i (x,−t, t)

)

, and Ei, Hi, i = 1, 2, ˜Bj , j =
1, 2, 3, are the well-defined matrices.
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For the functions Jk
i : ∆∗

k → ∆∗
k we have the formulas

Jk
i : (x, t) → (x + δk

i t, τit), (x, t) ∈ ∆∗
k,

where δk
i , τi, i, k = 1, 2, are the well-defined constants written in terms of

ν̃i, µ̃i, i = 1, 2, 3.

Remark 3.1. Note that by virtue of condition (2.3) it is easy to establish
that 0 < τi < 1, i = 1, 2.

Remark 3.2. It is obvious that when conditions (3.6) are fulfilled, prob-

lem (1.2), (2.4) in the class
0
C1,1,1

α (D) is equivalently reduced to system

(3.7) for the unknown vector-function ϕi of the class
0
Cα(∆∗

i ), i = 1, 2.

Furthermore, if u ∈
0
C1,1,1

α (D), then ϕi ∈
0
Cα(∆∗

i ), i = 1, 2. Vice versa, if

ϕi ∈
0
Cα(∆∗

i ), i = 1, 2, then with regard to inequality (2.5) equalities (3.1),

(3.2) and u = Cv readily imply that u ∈
0
C1,1,1

α (D).

§ 4. Investigation of the System of Integro-Functional
Equations (3.1), (3.7) and the Proof of the Main Result

Let us consider the system of functional equations

(Kpϕp)(x, t)≡ϕp(x, t)−
2

∑

i=1

Gp
i (x, t)ϕp(Jp

i (x, t)
)

=gp(x, t), (x, t)∈∆∗
p, (4.1)

and introduce the notation

hp(ρ) ≡
2

∑

i=1

ηipτ
ρ
i , ηp ≡ max

1≤i≤2
sup

(x,t)∈∆∗p

‖Gp
i (x, t)‖,

ηip ≡ sup
x∈[Q1,Q2]

‖Gp
i (x, 0)‖, i, p = 1, 2, ρ ∈ R.

(4.2)

Here and in what follows by ‖.‖ we understand the norm of a matrix
operator acting from one Euclidean space into another.

If all values ηip = 0, then it is assumed that ρp = −∞, i = 1, 2, 1 ≤ p ≤ 2.
Let now for some value of the index i the value ηip, 1 ≤ p ≤ 2, be different
from zero. In that case, by Remark 3.1, the function hp : R → R+ is
continuous and strictly decreasing on R; also, limρ→−∞ hp(ρ) = +∞ and
limρ→+∞ hp(ρ) = 0, 1 ≤ p ≤ 2. Therefore there exists a unique real number
ρp such that hp(ρp) = 1, 1 ≤ p ≤ 2. It is assumed that ρ0 ≡ max (ρ1, ρ2).
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Lemma 4.1. If α > ρ0, then equation (4.1) is uniquely solvable in the

space
0
Cα(∆∗

p) and for the solution ϕp = K−1
p gp the estimate

‖ϕp(x, t)‖Rmp = ‖(K−1
p gp)(x, t)‖Rmp ≤

≤ C2+ptα‖gp‖ 0
Cα(∆∗p∩{t1≤t})

, (x, t) ∈ ∆∗
p, (4.3)

holds, where C2+p is a positive constant not depending on the function gp,
1 ≤ p ≤ 2.

Proof. We shall consider the case p = 1, since the case p = 2 is considered
analogously. The condition α > ρ0 and the definition of the function h1

from (4.2) imply

h1(α) =
2

∑

i=1

ηi1τα
i < 1. (4.4)

By inequality (4.4) and the continuity of the functions G1
i , i = 1, 2, there

exist positive numbers ε1 (ε1 < t0) and δ1 such that the inequalities

‖G1
i (x, t)‖ ≤ ηi1 + δ1, i = 1, 2, (4.5)

2
∑

i=1

(ηi1 + δ1)τα
i ≡ γ1 < 1 (4.6)

hold for (x, t) ∈ ∆∗
1 ∩ {0 ≤ t ≤ ε1}.

By Remark 3.1 there is a natural number r0 such that for r ≥ r0

τirτir−1 · · · τi1t ≤ ε1, 0 ≤ t ≤ t0, (4.7)

where 1 ≤ is ≤ 2, s = 1, . . . , r.
We introduce the operators Λ1 and K−1

1 acting by the formulas

(Λ1ϕ1)(x, t) =
2

∑

i=1

G1
i (x, t)ϕ1

(

J1
i (x, t)

)

, (x, t) ∈ ∆∗
1, K−1

1 = I +
∞
∑

r=1

Λr
1,

where I is the identical operator. Obviously, the operator K−1
1 is the for-

mally inverse operator to the operator K1 defined by equality (4.1). Hence

it is sufficient for us to show that K−1
1 is continuous in the space

0
Cα(∆∗

1).
As is easily seen, the expression Λr

1g1 is the sum consisting of terms of
the form

Ii1···ir (x, t) = G1
i1(x, t)G1

i2(J
1
i1(x, t))G1

i3(J
1
i2(J

1
i1(x, t))) · · ·

· · ·G1
ir

(J1
ir−1

(J1
ir−2

(· · · (J1
i1(x, t)) · · · )))g1(J1

ir
(J1

ir−1
(· · · (J1

i1(x, t)) · · · ))),

where 1 ≤ is ≤ 2, s = 1, . . . , r.
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Hence, using (4.2), (4.5), (3.7) and Remark 3.1, we obtain: for r > r0,

g1 ∈
0
Cα(∆∗

1)

‖Ii1···ir (x, t)‖Rm1 ≤
≤ ‖G1

i1(x, t)‖ · · · ‖G1
ir0

(J1
ir0−1

(J1
ir0−2

(· · · (J1
i1(x, t)) · · · )))‖ ×

×‖G1
ir0+1

(J1
ir0

(J1
ir0−1

(· · · (J1
i1(x, t)) · · · )))‖ · · ·

· · · ‖G1
ir

(J1
ir−1

(J1
ir−2

(· · · (J1
i1(x, t)) · · · )))‖ ×

×‖g1(J1
ir

(J1
ir−1

(· · · (J1
i1(x, t)) · · · )))‖Rm1 ≤

≤ ηr0
1 (ηir0+11 + δ1) · · · (ηir1 + δ1)(τirτir−1 · · · τi1t)

α‖g1‖ 0
Cα(∆∗1∩{t1≤t})

≤

≤ ηr0
1

(
r

∏

s=r0+1

(ηis1 + δ1)
)(

r
∏

s=r0+1

τα
is

)

tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})

=

= ηr0
1

(
r

∏

s=r0+1

(ηis1 + δ1)τα
is

)

tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})

, (4.8)

and for 1 ≤ r ≤ r0

‖Ii1···ir (x, t)‖Rm1 ≤ ηr
1(τirτir−1 · · · τi1t)

α‖g1‖ 0
Cα(∆∗1∩{t1≤t})

≤

≤ ηr
1t

α‖g1‖ 0
Cα(∆∗1∩{t1≤t})

. (4.9)

By (4.8), (4.9), and (4.6) we have: for r > r0

‖(Λr
1g1)(x, t)‖Rm1 =

∥

∥

∥

∑

i1,...,ir

Ii1···ir (x, t)
∥

∥

∥

Rm1
≤

≤
(

∑

i1,...,ir0

1
)r0

ηr0
1

[
2

∑

i=1

(ηi1 + δ1)τα
i

]r−r0

tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})

≤

≤ C5γr
1tα‖g1‖ 0

Cα(∆∗1∩{t1≤t})
, (4.10)

and for 1 ≤ r ≤ r0

‖(Λr
1g1)(x, t)‖Rm1 ≤ C6tα‖g1‖ 0

Cα(∆∗1∩{t1≤t})
, (4.11)

where C5 ≡ ηr0
1 γ−r0

1

(

∑

i1,...,ir0
1
)r0

, C6 ≡ ηr
1

(

∑

i1,...,ir
1
)

.

Inequalities (4.10) and (4.11) finally imply

‖ϕ1(x, t)‖Rm1 = ‖(K−1
1 g1)(x, t)‖Rm1 ≤

≤ ‖g1(x, t)‖Rm1 +
r0

∑

r=1

‖(Λr
1g1)(x, t)‖Rm1 +

∞
∑

r=r0+1

‖(Λr
1g1)(x, t)‖Rm1 ≤
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≤
(

1 + C6r0 + C5γr0+1
1 (1− γ1)−1)tα‖g1‖ 0

Cα(∆∗1∩{t1≤t})
=

= C3tα‖g1‖ 0
Cα(∆∗1∩{t1≤t})

,

where C3 ≡ 1 + C6r0 + C5γr0+1
1 (1 − γ1)−1. Hence we conclude that the

operator K−1
1 is continuous in the space

0
Cα(∆∗

1) and therefore Lemma 4.1
is true.

On the basis of this lemma we have

Theorem 4.1. Let conditions (3.6) be fulfilled. If α > ρ0, then problem

(1.2), (2.4) is uniquely solvable in the space
0
C1,1,1

α (D).

Proof. First we solve the system of equations (3.1), (3.7) with respect to

the unknown functions v ∈
0
C1,1,1

α (D) and ϕp ∈
0
Cα(∆∗

p), p = 1, 2, using the
method of successive approximations.

Let

v0(x, y, t) ≡ 0, (x, y, t) ∈ D; ϕp
0(x, t) ≡ 0, (x, t) ∈ ∆∗

p, p = 1, 2;

vqi+j,k(x, y, t) = ϕqi+j,k
(

ω1
i (x, y, t), ω2

i (x, y, t)
)

+

+

t
∫

ω2
i (x,y,t)

(
m

∑

p′=1

bijp′vp′,k−1

)

(

xi(x, y, t; τ), yi(x, y, t; τ), τ
)

dτ +

+ ˜Fij(x, y, t), 1 ≤ i ≤ 3, 1 ≤ j ≤ si,

(4.12)

where

ϕqi+j,k(ω1
i (x, y, t), ω2

i (x, y, t)
)

=

=

{

ϕ1
qi+j,k

(

ω1
i (x, y, t), ω2

i (x, y, t)
)

, 1 ≤ i ≤ 2, 1 ≤ j ≤ si,
ϕ2

qi+j,k

(

ω1
i (x, y, t), ω2

i (x, y, t)
)

, i = 3, 1 ≤ j ≤ si,
(x, y, t) ∈ D.

The values ϕp
k(x, t) are defined by the equations

(Kpϕ
p
k)(x, t) + (T2+pvk−1)(x, t) = f2+p(x, t), (4.13)

(x, t) ∈ ∆∗
p, p = 1, 2, k ≥ 1,

where the operators Kp, p = 1, 2, act by (4.1).
For convenience, system (4.12) is rewritten as

vk(x, y, t) = ϕk(x, y, t) +
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+
3

∑

i=1

t
∫

ω2
i (x,y,t)

(

Ωivk−1

)(

xi(x, y, t; τ), yi(x, y, t; τ), τ
)

dτ +

+ ˜F (x, y, t), (x, y, t) ∈ D, (4.14)

where the (qi + j)-th component of the vector ϕk(x, y, t) is equal to
ϕqi+j,k

(

ω1
i (x, y, t), ω2

i (x, y, t)
)

, 1 ≤ i ≤ 3, 1 ≤ j ≤ si, k ≥ 1; Ωi, i = 1, 2, 3,
and ˜F are respectively the well-defined matrices and vector-functions.

We shall now show that the following estimates are true:

‖vk+1(x, y, t)− vk(x, y, t)‖Rm ≤ M∗Mk
∗

k!
tk+α, (x, y, t) ∈ D, (4.15)

‖ϕp
k+1(x, t)− ϕp

k(x, t)‖Rmp ≤ M∗Mk
∗

k!
tk+α, (x, t) ∈ ∆∗

p, (4.16)

where M∗ and M∗ are well-defined sufficiently large numbers not depending
on k, k ≥ 1, p = 1, 2.

Indeed, by the assumptions for fp and F we have f2+p ∈
0
C α(∆∗

p), ˜F ∈
0
C α(D), p = 1, 2. Hence, on account of inequalities (2.5) from §2, we
conclude that the estimates

‖ ˜F (x, y, t)‖Rm ≤ Θ1tα, (x, y, t) ∈ D, (4.17)

‖f2+p(x, t)‖Rmp ≤ Θ1+ptα, (x, t) ∈ ∆∗
p, (4.18)

p = 1, 2, Θi = const ≥ 0, i = 1, 2, 3,

are fulfilled.
By v0 ≡ 0, ϕp

0 ≡ 0, p = 1, 2 and the conditions of Theorem 4.1 estimate
(4.3) is true so that (4.13), (4.18) imply

‖ϕp
1(x, t)− ϕp

0(x, t)‖Rmp = ‖ϕp
1(x, t)‖Rmp ≤ C5Θ4tα, p = 1, 2,

C7 = max (C3, C4), Θ4 = max (Θ2,Θ3)
(4.19)

which in turn gives rise to

‖ϕ1(x, y, t)− ϕ0(x, y, t)‖Rm = ‖ϕ1(x, y, t)‖Rm =

=
∑

1≤i≤3

∑

1≤j≤si

∣

∣ϕqi+j,1
(

ω1
i (x, y, t), ω2

i (x, y, t)
)∣

∣ ≤

≤
∑

1≤i≤3

∑

1≤j≤si

C7Θ4
(

ω2
i (x, y, t)

)α ≤ mC7Θ4tα, (4.20)

since
∑

1≤i≤3

∑

1≤j≤si

1 = m and, as shown in §3, 0 ≤ ω2
i (x, y, t) ≤ t, i = 1, 2, 3.
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By virtue of (4.17) and (4.20), from (4.14) we have

‖v1(x, y, t)− v0(x, y, t‖Rm = ‖v1(x, y, t)‖Rm ≤ ‖ϕ1(x, y, t)‖Rm +

+‖ ˜F (x, y, t)‖Rm ≤ mC7Θ4tα + Θ1tα = (mC7Θ4 + Θ1)tα. (4.21)

Now, assuming that estimates (4.15), (4.16) are fulfilled for k, k > 0, we
shall show that they hold for k + 1 when M∗ and M∗ are sufficiently large.

Using (4.13), for p = 1 we have

{K1(ϕ1
k+2 − ϕ1

k+1)}(x, t) = −{T3(vk+1 − vk)}(x, t), (x, t) ∈ ∆∗
1. (4.22)

It is obvious that for the right-hand side of equation (4.22) we have the
estimate

∥

∥{T3(vk+1 − vk)}(x, t)
∥

∥

Rm1
≤

≤
2

∑

i=1

ω2
3(x,t,t)
∫

ω̃2
i (x,t)

‖˜Bi‖‖vk+1 − vk‖Rm

(

xi
(

ω1
3(x, t, t),−ω2

3(x, t, t),

ω2
3(x, t, t); τ

)

, yi
(

ω1
3(x, t, t),−ω2

3(x, t, t), ω2
3(x, t, t); τ

)

, τ
)

dτ +

+

t
∫

ω2
3(x,t,t)

‖˜B3‖‖vk+1 − vk‖Rm

(

x3(x, t, t; τ), y3(x, t, t; τ), τ
)

dτ. (4.23)

Denote by ξ1 the largest of the numbers max
x,t,τ

‖˜Bi(x, t, τ)‖, i = 1, 2, 3. Since

0 ≤ ω̃2
i (x, t) ≤ ω2

3(x, t, t) ≤ t, by (4.15) we find from (4.23) that
∥

∥{T3(vk+1 − vk)}(x, t)
∥

∥

Rm1
≤

≤ ξ1M∗Mk
∗

k!

(
2

∑

i=1

ω2
3(x,t,t)
∫

ω̃2
i (x,t)

τk+αdτ +

t
∫

ω2
3(x,t,t)

τk+αdτ
)

≤

≤ ξ1M∗Mk
∗

k!

(
2

∑

i=1

1 + 1
)

t
∫

0

τk+αdτ ≤

≤ 3ξ1M∗Mk
∗

k!
1

k + α + 1
tk+α+1 ≤ 3ξ1M∗ Mk

∗
(k + 1)!

tk+1+α. (4.24)

Now (4.22), (4.24), and (4.3) (for p = 1) imply

∥

∥ϕ1
k+2(x, t)− ϕ1

k+1(x, t)
∥

∥

Rm1
≤ 3C3ξ1M∗ Mk

∗
(k + 1)!

tk+1+α. (4.25)
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Similarly, (4.13) (for p = 2), (4.15), and (4.3) (for p = 2) give

∥

∥ϕ2
k+2(x, t)− ϕ2

k+1(x, t)
∥

∥

Rm2
≤ 4C4ξ2M∗ Mk

∗
(k + 1)!

tk+1+α, (4.26)

where ξ2 denotes the largest of the numbers max
x,t,τ

‖Ei(x, t, τ)‖,
max
x,t,τ

‖Hi(x, t, τ)‖, i = 1, 2.

Using the same arguments as in deriving estimate (4.20), from (4.25) and
(4.26) we obtain

‖ϕk+2(x, y, t)− ϕk+1(x, y, t)‖Rm ≤ ξ4M∗ Mk
∗

(k + 1)!
tk+1+α, (4.27)

where ξ4 ≡ 4mC7ξ3, ξ3 ≡ max (ξ1, ξ2).
We denote by η the largest of the numbers max

D
‖Ωi‖, where the matrices

Ωi, i = 1, 2, 3, are defined by (4.14). By (4.27) and (4.15), from system
(4.14) we have

‖vk+2(x, y, t)− vk+1(x, y, t)‖Rm ≤ ‖ϕk+2(x, y, t)− ϕk+1(x, y, t)‖Rm +

+
3

∑

i=1

t
∫

ω2
i (x,y,t)

‖Ωi‖‖vk+1 − vk‖Rm

(

xi(x, y, t; τ), yi(x, y, t; τ), τ
)

dτ ≤

≤ ξ4M∗ Mk
∗

(k + 1)!
tk+1+α + 3η

t
∫

0

M∗Mk
∗

k!
τk+αdτ ≤

≤ (ξ4 + 3η)M∗ Mk
∗

(k + 1)!
tk+1+α, (x, y, t) ∈ D, (4.28)

since 0 ≤ ω2
i (x, y, t) ≤ t, i = 1, 2, 3.

If we set

M∗ = mC7Θ4 + Θ1, M∗ = max
(

3C3ξ1, 4C4ξ2, ξ4 + 3η
)

,

then by (4.19), (4.21), (4.25), (4.26), (4.28) immediately imply that esti-
mates (4.15), (4.16) hold for any integer k ≥ 0.

It follows from (4.15), (4.16) that the series

v(x, y, t) = lim
k→∞

vk(x, y, t) =
∞
∑

k=1

(

vk(x, y, t)− vk−1(x, y, t)
)

, (x, y, t) ∈ D,

ϕp(x, t) = lim
k→∞

ϕp
k(x, t) =

∞
∑

k=1

(

ϕp
k(x, t)− ϕp

k−1(x, t)
)

, (x, t) ∈ ∆∗
p, p = 1, 2,
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converge in the spaces
0
C 1,1,1

α (D),
0
C α(∆∗

p), p = 1, 2, and by (4.13), (4.14)
the limit functions v, ϕp, p = 1, 2, satisfy system (3.1), (3.7). Finally, since
problem (1.2), (2.4) is equivalent to system (3.1), (3.7) and the equality
u = Cv holds, we conclude that the obtained function u(x, y, t) is really a

solution of problem (1.2), (2.4) in the class
0
C 1,1,1

α (D), α > ρ0.
Now we shall show that under the conditions of Theorem 4.1 prob-

lem (1.2), (2.4) has no other solutions in the class
0
C 1,1,1

α (D). Indeed,

if u ∈
0
C 1,1,1

α (D) is the solution of the homogeneous problem corresponding
to (1.2), (2.4), then the corresponding functions v, ϕp, p = 1, 2, satisfy the
homogeneous system of equations

vqi+j(x, y, t) = ϕqi+j
(

ω1
i (x, y, t), ω2

i (x, y, t)
)

+

+

t
∫

ω2
i (x,y,t)

(
m

∑

p′=1

bijp′vp′

)

(

xi(x, y, t; τ), yi(x, y, t; τ), τ
)

dτ, (x, y, t) ∈ D,

1 ≤ i ≤ 3, 1 ≤ j ≤ si,
(

Kpϕp)(x, t) +
(

T2+pv
)

(x, t) = 0, (x, t) ∈ ∆∗
p, p = 1, 2.

(4.29)

We apply the method of successive approximations to system (4.29), as-
suming that v, ϕ1, ϕ2, are zero approximations. Since these values satisfy
system (4.29), each next approximation will coincide with it so that we shall
have vk(x, y, t) ≡ v(x, y, t), (x, y, t) ∈ D, ϕp

k(x, t) ≡ ϕp(x, t), (x, t) ∈ ∆∗
p for

k ≥ 1 and p = 1, 2. Recalling that these values satisfy estimates of form
(4.17), (4.18) and arguing as in the case of deriving estimates (4.15), (4.16),
we obtain

‖v(x, y, t)‖Rm = ‖vk+1(x, y, t)‖Rm ≤ ˜M∗
˜Mk
∗

k!
tk+α, (x, y, t) ∈ D,

‖ϕp(x, t)‖Rmp =‖ϕp
k+1(x, t)‖Rmp ≤˜M∗

˜Mk
∗

k!
tk+α, (x, t)∈∆∗

p, k ≥ 1, p=1, 2,

whence, as k →∞, we find in the limit that

v(x, y, t) ≡ 0, (x, y, t) ∈ D, ϕp(x, t) ≡ 0, (x, t) ∈ ∆∗
p, p = 1, 2.

Next, using inequality (4.15) and recalling that the value M∗ is defined
by Θi, i = 1, 2, 3, which are given by the right-hand sides F and fi, i = 1, 2,
of problem (1.2), (2.4), we can readily show that for a regular solution of
the considered problem the estimate

‖u‖ 0
C1,1,1

α (D)
≤ c

(
2

∑

i=1

‖fi‖ 0
Cα(∆i)

+ ‖F‖ 0
Cα(D)

)

(4.30)
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holds, where the positive constant c does not depend on fi, i = 1, 2, and
F . Estimate (4.30) implies that a regular solution of problem (1.2), (2.4) is

stable in the space
0
C1,1,1

α (D), α > ρ0.
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