# ON THE BOUNDARY VALUE PROBLEM IN A DIHEDRAL ANGLE FOR NORMALLY HYPERBOLIC SYSTEMS OF FIRST ORDER

#### O. JOKHADZE

ABSTRACT. Some structural properties as well as a general threedimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.

## § 1. Some Structural Properties of Normally Hyperbolic Systems of First Order

In the Euclidean space  $\mathbb{R}^{n+1}$ ,  $n \geq 2$ , of independent variables (x,t),  $x = (x_1, \dots, x_n)$ , we consider the system of partial differential equations of first order

$$A_0 u_t + \sum_{i=1}^n A_i u_{x_i} + B u = F, \tag{1.1}$$

where  $A_i$ ,  $i=0,1,\ldots,n$ , B are the given real  $m\times m$  matrix-functions,  $m\geq 2$ , F is the given and u is the unknown m-dimensional real vector-function. It is assumed that  $\det A_0\neq 0$ .

Denote by  $p(x, t; \lambda, \xi)$  the characteristic determinant of system (1.1), i.e.,  $p(x, t; \lambda, \xi) \equiv \det Q(x, t; \lambda, \xi)$ , where

$$Q(x,t;\lambda,\xi) \equiv A_0\lambda + \sum_{i=1}^n A_i\xi_i, \quad \lambda \in \mathbb{R}, \quad \xi = (\xi_1,\dots,\xi_n) \in \mathbb{R}^n.$$

<sup>1991</sup> Mathematics Subject Classification. 35L50.

Key words and phrases. Normally hyperbolic systems, dihedral angle, reduction of a boundary value problem to a spliced system, bicharacteristic.

Since det  $A_0 \neq 0$ , we have the representation

$$p(x,t;\lambda,\xi) = \det A_0 \prod_{i=1}^{l} (\lambda - \lambda_i(x,t;\xi))^{k_i}, \quad \sum_{i=1}^{l} k_i = m,$$
$$l = l(x,t;\xi), \quad k_i = k_i(x,t;\xi), \quad i = 1,\dots,l.$$

System (1.1) is said to be hyperbolic at the point (x,t) if all roots  $\lambda_1(x,t;\xi),\ldots,\lambda_l(x,t;\xi)$  of the polynomial  $p(x,t;\lambda,\xi)$  are real numbers. One can easily verify that

$$k_i(x,t;\xi) \ge m - \operatorname{rank} Q(x,t;\lambda_i(x,t;\xi),\xi), \quad i = 1,\ldots,l.$$

The hyperbolic system (1.1) is said be normally hyperbolic at the point (x, t), if the equalities

$$k_i(x,t;\xi) = m - \operatorname{rank} Q(x,t;\lambda_i(x,t;\xi),\xi), \quad i = 1,\ldots,l,$$

are fulfilled (see, e.g., [1], [2]).

Note that strictly hyperbolic systems, i.e., when l = m,  $k_i = 1$ , i = 1, ..., m, form a subclass of normally hyperbolic systems.

Since det  $A_0 \neq 0$ , it can be assumed without loss of generality that  $A_0 = E$ , where E is the  $m \times m$  unit matrix. For simplicity, we shall always assume that (i) n = 2,  $x_1 = x$ ,  $x_2 = y$ ; (ii) the matrices  $A_1$  and  $A_2$  are constant; (iii) system (1.1) is normally hyperbolic.

In our assumptions, in the space of independent variables x, y and t, system (1.1) is rewritten as

$$u_t + A_1 u_x + A_2 u_y + B u = F. (1.2)$$

It is easy to show that since system (1.2) is normally hyperbolic, each of the matrices  $A_i$ , i=1,2, has only real characteristic roots so that the corresponding eigenvectors of the operator  $A_i$ ,  $1 \le i \le 2$ , form a complete system, i.e., a basis in the space  $\mathbb{R}^m$ . Therefore the matrices  $A_i$ , i=1,2, are diagonalizable, i.e., there exist real nondegenerate matrices  $C_i$ , i=1,2, such that the matrices  $C_i^{-1}A_iC_i$ , i=1,2, are diagonal.

The normally hyperbolic system (1.2) will be said to be diagonalizable if there exists a real nondegenerate matrix C such that the matrices  $C^{-1}A_iC$ , i = 1, 2, are diagonal. We have

**Lemma 1.1.** The normally hyperbolic system (1.2) is diagonalizable if and only if the matrices  $A_1$  and  $A_2$  are commutative, i.e.,  $A_1A_2 = A_2A_1$ .

*Proof.* The necessity readily follows from the fact that the diagonal matrices  $C^{-1}A_1C$  and  $C^{-1}A_2C$  are commutative,  $C^{-1}A_1CC^{-1}A_2C = C^{-1}A_2CC^{-1}A_1C$ , i.e.,  $C^{-1}A_1A_2C = C^{-1}A_2A_1C$ . This immediately implies  $A_1A_2 = A_2A_1$ .

To prove sufficiency note that since system (1.2) is normally hyperbolic, we have dim  $\mathbb{R}_{\lambda_i} = k_i$ , where  $\mathbb{R}_{\lambda_i} \equiv \text{Ker } (A_1 - \lambda_i E)$ ,  $1 \leq i \leq l$ . Clearly,  $\hat{A}_1(\mathbb{R}_{\lambda_i}) \subset \mathbb{R}_{\lambda_i}$ ,  $1 \leq i \leq l$ , where  $\hat{A}_1$  stands for the linear transform corresponding to the matrix  $A_1$ .

Let  $\{\nu_{ij}\}_{j=1}^{k_i}$  be an arbitrary basis of the space  $\mathbb{R}_{\lambda_i}$ ,  $1 \leq i \leq l$ . By the definition of the space  $\mathbb{R}_{\lambda_i}$ , the vectors  $\nu_{i1}, \ldots, \nu_{ik_i}$  are the eigenvectors for the transform  $\hat{A}_1$  and correspond to the eigenvalue  $\lambda_i$ ,  $1 \leq i \leq l$ . Therefore, the matrix of the transform  $\hat{A}_1$  in the basis  $\{\nu_{ij}\}_{j=1}^{k_i}$  of the space  $\mathbb{R}_{\lambda_i}$  will be diagonal of order  $(k_i \times k_i)$  and written as diag  $[\lambda_i, \ldots, \lambda_i]$ ,  $1 \leq i \leq l$ .

Hence, recalling that the decomposition of the space  $\mathbb{R}^m$  as the direct sum of subspaces  $\mathbb{R}_{\lambda_i}$ ,  $i=1,\ldots,l$ , i.e.,  $\mathbb{R}^m=\mathbb{R}_{\lambda_1}\oplus\cdots\oplus\mathbb{R}_{\lambda_l}$  is unique, we can write the matrix  $D_1$  of the transform  $\hat{A}_1$  in the basis  $\{\nu_{ij};\ i=1,\ldots,l;\ j=1,\ldots,k_i\}$  as  $D_1=\operatorname{diag}\left[\underbrace{\lambda_1,\ldots,\lambda_1,\ldots,\lambda_l,\ldots,\lambda_l}_{k_l-\operatorname{times}},\ldots,\underbrace{\lambda_l,\ldots,\lambda_l}_{k_l-\operatorname{times}}\right]$ .

Let  $\widetilde{A}_{2i}$  be the matrix corresponding to the linear transform  $\widehat{A}_2$  of the subspace  $\mathbb{R}_{\lambda_i}$ ,  $1 \leq i \leq l$  in the basis  $\{\nu_{ij}\}_{j=1}^{k_i}$ . Since the matrices  $A_1$  and  $A_2$  are commutative, the subspace  $\mathbb{R}_{\lambda_i}$  is invariant with respect to the linear transform  $\widehat{A}_2$ , i.e.,  $\widehat{A}_2(\mathbb{R}_{\lambda_i}) \subset \mathbb{R}_{\lambda_i}$ ,  $1 \leq i \leq l$  (see, e.g., [3]). Therefore, in the basis  $\{\nu_{ij}; i = 1, \ldots, l; j = 1, \ldots, k_i\}$  of the space  $\mathbb{R}^m$ , the matrix  $\widehat{A}_2$  corresponding to  $\widehat{A}_2$  will be block-diagonal and have, on its principal diagonal, matrices  $\widehat{A}_{2i}$ ,  $i = 1, \ldots, l$ . It is well known that matrices giving the same linear transform in different bases are similar. At the same time, similar matrices have the same characteristic equation. Therefore we have

$$\det(A_2 - \lambda E) = \det(\widetilde{A_2} - \lambda E) = \det(\widetilde{A_{21}} - \lambda E_{k1}) \times \cdots \times \det(\widetilde{A_{2l}} - \lambda E_{kl}).$$

Since system (1.2) is normally hyperbolic, the matrix  $A_2$  has only real characteristic roots. Thus for the linear transform  $\hat{A}_2: \mathbb{R}_{\lambda_i} \to \mathbb{R}_{\lambda_i}$  there exists a basis  $\{\mu_{ij}\}_{j=1}^{k_i}$  which consists of the real vectors of the subspace  $\mathbb{R}_{\lambda_i}$ , and where the matrix  $A_{2i}^*$  of the above-mentioned transform is of Jordan form,  $1 \leq i \leq l$ . Therefore, in the basis  $\{\mu_{ij}; i=1,\ldots,l; j=1,\ldots,k_i\}$  of the space  $\mathbb{R}^m$ , the matrix  $A_2^*$  of the transform  $\hat{A}_2$  will also be of Jordan form. But, since system (1.2) is normally hyperbolic, in the space  $\mathbb{R}^m$  there exists a basis  $\{\sigma_i\}_{i=1}^m$  in which the matrix of the transform  $\hat{A}_2$  is diagonal. Further, as is well known, a Jordan matrix similar to the diagonal one is diagonal too. Therefore in the basis  $\{\mu_{ij}; i=1,\ldots,l; j=1,\ldots,k_i\}$  of the space  $\mathbb{R}^m$  the matrix  $A_2^*$  is diagonal, but the matrix of the transform  $\hat{A}_1$  is diagonal in any basis of the transform  $\mathbb{R}_{\lambda_i}$ , in particular, in the basis  $\{\mu_{ij}\}_{j=1}^{k_i}, 1 \leq i \leq l$ . Therefore the matrices of the transforms  $\hat{A}_1$  and  $\hat{A}_2$  will be diagonal in the basis  $\{\mu_{ij}; i=1,\ldots,l; j=1,\ldots,k_i\}$  of the space  $\mathbb{R}^m$ .  $\square$ 

### § 2. Statement of the Problem and Some Notations

In the discussion below the matrices  $A_1$  and  $A_2$  will always be assumed to be commutative, i.e., the equality

$$A_1 A_2 = A_2 A_1 \tag{2.1}$$

is valid.

After introducing a new unknown function v by the formula u = Cv with the nondegenerate matrix C whose existence was proved by condition (2.1) in §1, system (1.2) takes the form

$$v_t + D_1 v_x + D_2 v_y + B_0 v = F_0, (2.2)$$

where by virtue of Lemma 1.1 the matrices  $D_i = C^{-1}A_iC$ , i = 1, 2, are diagonal, i.e.,  $D_1 = \text{diag}[\nu_1, \dots, \nu_m]$ ,  $D_2 = \text{diag}[\mu_1, \dots, \mu_m]$ ,  $B_0 = C^{-1}BC$ ,  $F_0 = C^{-1}F$ .

It is obvious that the directions defined by the vectors  $l_i = (\nu_i, \mu_i, 1)$ ,  $i = 1, \ldots, m$ , are bicharacteristic.

Let  $\hat{A}_j$  be the linear transform corresponding to he matrix  $A_j$ ,  $1 \leq j \leq 2$ . Denote by  $\Lambda_i$  an m-dimensional vector which is the eigenvalue of the transform  $\hat{A}_1$ , corresponding to the eigenvalue  $\nu_i$ ,  $1 \leq i \leq m$ . By virtue of (2.1) the vector  $\Lambda_i$  is also the eigenvector of the transform  $\hat{A}_2$  corresponding to the eigenvalue  $\mu_i$ ,  $1 \leq i \leq m$ . By Lemma 1.1, the vectors  $\Lambda_i$ ,  $i = 1, \ldots, m$ , can be chosen such that the  $(m \times m)$  matrix  $C = [\Lambda_1, \ldots, \Lambda_m]$ , whose columns consist of these vectors, will reduce the matrices  $A_1$  and  $A_2$  to the diagonal form, namely, to  $D_i = C^{-1}A_iC$ , i = 1, 2.

Obviously, the vectors  $l_i=(\nu_i,\mu_i,1)$  and  $l_j=(\nu_j,\mu_j,1)$  define the same bicharacteristic direction if the equalities  $\nu_i=\nu_j,\ \mu_i=\mu_j,\ 1\leq i\neq j\leq m,$  are fulfilled. In this context, we divide the set of vectors  $\{l_1,\ldots,l_m\}$  into nonintersecting classes  $\{l_{11},\ldots,l_{1s_1}\},\ldots,\{l_{m_01},\ldots,l_{m_0s_{m_0}}\}$  whose representatives with respective "multiplicities"  $s_1,\ldots,s_{m_0}$ , will be denoted by  $\widetilde{l}_1,\ldots,\widetilde{l}_{m_0},\ m_0\leq m$ . Now the matrix  $C=[\Lambda_1,\ldots,\Lambda_m]$  can be represented

$$C = [\Lambda_{11}, \dots, \Lambda_{1s_1}; \dots; \Lambda_{m_0 1}, \dots, \Lambda_{m_0 s_{m_0}}],$$

or as  $C = (\widetilde{C_1}, \widetilde{C_2})$ , where

$$\begin{split} \widetilde{C_1} &= [\Lambda_{11}, \dots, \Lambda_{1s_1}; \dots; \Lambda_{q1}, \dots, \Lambda_{qs_q}], \\ \widetilde{C_2} &= [\Lambda_{q+11}, \dots, \Lambda_{q+1s_{q+1}}; \dots; \Lambda_{m_01}, \dots, \Lambda_{m_0s_{m_0}}] \end{split}$$

and q will be defined below.

Denote by  $D^*$  the dihedral angle

$$D^* \equiv \{(x, y, t) \in \mathbb{R}^3, \ t - y > 0, \ t + y > 0\}.$$

For bicharacteristic directions of system (1.2) we make the following assumption: bicharacteristics passing through any point of the edge  $\Gamma^* \equiv \{(x,y,t) \in \mathbb{R}^3 : y=t=0, x \in \mathbb{R}\}$  of the angle  $D^*$  have no common points with the set  $\overline{D^*}\backslash \Gamma^*$ . This is equivalent to the fulfillment of the inequalities

$$|\mu_i| > 1, \quad i = 1, \dots, m.$$
 (2.3)

Let  $P_0 = P_0(x_0, y_0, t_0)$  be an arbitrary fixed point of the set  $\overline{D^*} \backslash \Gamma^*$ , and let  $S_1 \supset \Gamma^*$  and  $S_2 \supset \Gamma^*$  be the two-dimensional edges of  $D^*$ , i.e.,  $\partial D^* = S_1 \cup S_2$ ,  $S_1 \equiv \{(x, y, t) \in \mathbb{R}^3 : x \in \mathbb{R}, y = t, t \in \overline{\mathbb{R}}_+\}$ ,  $S_2 \equiv \{(x, y, t) \in \mathbb{R}^3 : x \in \mathbb{R}, y = -t, t \in \overline{\mathbb{R}}_+\}$ ,  $\mathbb{R}_+ \equiv (0, \infty)$ . From the point  $P_0$  we draw the bicharacteristic beam  $\widetilde{L_i}(P_0)$  of system (2.2) which corresponds to the vector  $\widetilde{l_i}$ , is directed towards the decreasing values of the t-coordinate of a moving point  $\widetilde{L_i}(P_0)$ , and intersects one of the edges  $S_1$  or  $S_2$  at a point  $\widetilde{P_0^i}$ ,  $1 \leq i \leq m_0$ . It can be assumed without loss of generality that bicharacteristic beams defined by the vectors  $\widetilde{l_1}, \ldots, \widetilde{l_q}$  and passing through the point  $P_0$  intersect the edge  $S_1$ , while those defined by  $\widetilde{l_{q+1}}, \ldots, \widetilde{l_{m_0}}$  intersect the edge  $S_2$ .

Below, it will be assumed for simplicity that q=2 and  $m_0=3$ ,  $\tilde{l}_i=(\tilde{\nu}_i,\tilde{\mu}_i,1), i=1,2,3$ , and also rank  $(\tilde{l}_1,\tilde{l}_2,\tilde{l}_3)=3$ .

Through the point  $P_0$  draw a plane  $P_{\widetilde{l_i},\widetilde{l_j}}$ , parallel to the vectors  $\widetilde{l_i}$  and  $\widetilde{l_j}$ ,  $1 \le i < j \le 3$ . We introduce the following notation:

 $P_{\widetilde{l}_2,\widetilde{l}_3}$  and  $P_{\widetilde{l}_1,\widetilde{l}_3}$  are respectively the intersection points of the planes  $Q_1$  and  $Q_2$  with the edge  $\Gamma^*$ ;

D is a the domain forming a pentahedron with the vertices at the points  $P_0, \widetilde{P_0^2}, \widetilde{P_0^1}, Q_2, \widetilde{P_0^3}, Q_1;$ 

 $\Delta_1$  and  $\Delta_2$  are respectively a triangle and rectangle with the vertices at the points  $Q_2, \widetilde{P_0^3}, Q_1$  and  $Q_1, \widetilde{P_0^2}, \widetilde{P_0^1}, Q_2$ , respectively.

For system (1.2) we consider the boundary value problem formulated as follows: Find, in the domain D, a regular solution u(x, y, t) of system (1.2) satisfying the boundary conditions

$$B_i u \Big|_{\overline{\Delta_i}} = f_i, \tag{2.4}$$

where  $B_i$  are the given  $(m_i \times m)$  matrix-functions and  $f_i$  are the given  $m_i$ -dimensional vector-functions,  $i = 1, 2, m_1 = s_1 + \dots + s_q, m_2 = s_{q+1} + \dots + s_{m_0}$ . It is obvious that  $m_1 + m_2 = m$  though we do not exclude the cases with  $m_1 = 0$  or  $m_2 = 0$ , which correspond to the Cauchy problem. Below it will always be assumed that  $0 < m_i < m, i = 1, 2$ .

A function u(x, y, t) which, together with its partial derivatives  $u_x, u_y, u_t$ , is continuous in D and satisfies system (1.2) is called a regular solution of system (1.2).

Some analogs of the Goursat problem for hyperbolic systems of first order with two independent variables have been studied in [4]–[8]. A lot of papers are devoted to general boundary value problems of the Darboux type for normally hyperbolic systems of second order on a plane (see, e.g., [1], [2]). Some multidimensional problems of the Goursat and Darboux type are considered in several papers (see, e.g., [9]–[11]) both for a hyperbolic equation and for a system of equations in a dihedral angle. For hyperbolic equations of third order, a boundary value problem in a dihedral angle is investigated in [12].

Denote by  $\Delta_i^*$  the orthogonal projection of the polygons  $\Delta_i^*$ , i=1,2, onto the plane x,t. The restrictions of  $B_i$  and  $f_i$  on the sets  $\overline{\Delta_i^*}$ , i=1,2, will be denoted as before.

In the domains D and  $\Delta_i^*$ , we introduce the following functional spaces

$$\begin{split} \overset{0}{C}_{\alpha}(\overline{D}) & \equiv \Big\{ w \in C(\overline{D}) : w|_{\Gamma} = 0, \quad \sup_{(x,y,t) \in \overline{D} \backslash \Gamma^*} \rho^{-\alpha} ||w(x,y,t)||_{\mathbb{R}^m} < \infty \Big\}, \\ \overset{0}{C}_{\alpha}(\overline{\Delta_i^*}) & \equiv \Big\{ \psi \in C(\overline{\Delta_i^*}) : \psi|_{\Gamma_1} = 0, \quad \sup_{(x,t) \in \overline{\Delta_i^*} \backslash \Gamma_1^*} t^{-\alpha} ||\psi(x,t)||_{\mathbb{R}^m} < \infty \Big\}, \end{split}$$

where  $\Gamma \equiv \overline{D} \cap \Gamma^*$ ,  $\Gamma_1 \equiv \overline{\Delta_i^*} \cap \Gamma_1^*$ ,  $i = 1, 2, \Gamma_1^* \equiv \{(x, t) \in \mathbb{R}^2 : x \in \mathbb{R}, t = 0\}$ ,  $\rho$  is the distance from the point  $(x, y, t) \in \overline{D} \setminus \Gamma^*$  to the edge  $\Gamma^*$  of the domain  $D^*$ , the real parameter  $\alpha = const \geq 0$ . For  $a = (a_1, \ldots, a_m) \in \mathbb{R}^m$ ,  $m \geq 2$ , denote  $||a||_{\mathbb{R}_m} = |a_1| + \cdots + |a_m|$ .

Obviously, the spaces  $\overset{0}{C}_{\alpha}(\overline{D})$  and  $\overset{0}{C}_{\alpha}(\overline{\Delta_{i}^{*}})$ , i=1,2, are Banach ones with the norms

$$\begin{split} \|w\|_{\overset{0}{C}_{\alpha}(\overline{D})} &= \sup_{(x,y,t) \in \overline{D} \backslash \Gamma^*} \rho^{-\alpha} ||w(x,y,t)||_{\mathbb{R}^m}, \\ \|\psi\|_{\overset{0}{C}_{\alpha}(\overline{\Delta}_i^*)} &= \sup_{(x,t) \in \overline{\Delta}_i^* \backslash \Gamma_1^*} t^{-\alpha} ||\psi(x,t)||_{\mathbb{R}^m}. \end{split}$$

Remark 2.1. Since the estimate  $1 \leq \rho/t \leq \sqrt{2}$ ,  $(x,y,t) \in D^*$ , is uniform, the value  $\rho$  in the definition of the space  $\overset{0}{C}_{\alpha}(\overline{D})$  below will be replaced by the variable t.

It is easy to verify that the fact that  $w \in \overset{0}{C}(\overline{D})$  and  $\psi \in \overset{0}{C}(\overline{\Delta_{i}^{*}})$  belong to the spaces  $\overset{0}{C}_{\alpha}(\overline{D})$  and  $\overset{0}{C}_{\alpha}(\overline{\Delta_{i}^{*}})$ , respectively, is equivalent to the fulfillment of the inequalities

$$||w(x,y,t)||_{\mathbb{R}^m} \le ct^{\alpha}, \quad (x,y,t) \in \overline{D},$$

$$||\psi(x,t)||_{\mathbb{R}^m} \le ct^{\alpha}, \quad (x,t) \in \overline{\Delta}_i^*, \quad i = 1, 2.$$
(2.5)

We shall investigate the boundary value problem (1.2), (2.4) in the Banach space

$$\overset{0}{C}{}_{\alpha}^{1,1,1}(\overline{D}) \equiv \Big\{ u : \frac{\partial^{|i|} u}{\partial x^{i_1} \partial y^{i_2} \partial t^{i_3}} \in \overset{0}{C}{}_{\alpha}(\overline{D}), \; |i| \leq 1, \; |i| = \sum_{j=1}^3 i_j \Big\},$$

with respect to the norm

$$\|u\|_{\overset{0}{C}_{\alpha}^{1,1,1}(\overline{D})} = \sum_{|i| \le 1} \left\| \frac{\partial^{|i|} u}{\partial x^{i_1} \partial y^{i_2} \partial t^{i_3}} \right\|_{\overset{0}{C}_{\alpha}(\overline{D})}$$

assuming that the matrix-functions  $B \in C(\overline{D})$ ,  $B_i \in C(\overline{\Delta_i^*})$  and the vector-functions  $F \in {}^0_{\alpha}(\overline{D})$ ,  $f_i \in {}^0_{\alpha}(\overline{\Delta_i^*})$ , i = 1, 2.

## § 3. Equivalent Reduction of Problem (1.2), (2.4) to a System of Integro-Differential Equations

From an arbitrary point  $P(x, y, t) \in \overline{D} \backslash \Gamma$  we draw the bicharacteristic beam  $\widetilde{L}_i(P)$  of system (2.2) which corresponds to the vector  $\widetilde{l}_i$  and is directed towards the decreasing values of the t-coordinate of a moving point of  $\widetilde{L}_i(P)$ ,  $1 \le i \le 3$ . The points of intersection of beams  $\widetilde{L}_i(P)$ , i = 1, 2, 3, with the faces  $S_1$  and  $S_2$  are  $\widetilde{P}^i \in S_1$ , i = 1, 2, and  $\widetilde{P}^3 \in S_2$ . Denote by  $(\omega_i^1(x, y, t), \omega_i^2(x, y, t))$  the coordinates of orthogonal projection of the point  $\widetilde{P}^i$  onto the plane  $(x, t), 1 \le i \le 3$ . A simple calculation yields

$$\begin{split} &\omega_i^1(x,y,t) = x + \widetilde{\nu}_i(1-\widetilde{\mu}_i)^{-1}(y-t), \\ &\omega_i^2(x,y,t) = t + (1-\widetilde{\mu}_i)^{-1}(y-t), \\ &\omega_3^1(x,y,t) = x - \widetilde{\nu}_3(1+\widetilde{\mu}_3)^{-1}(y+t), \quad \omega_3^2(x,y,t) = t - (1+\widetilde{\mu}_3)^{-1}(y+t). \end{split}$$

Let  $\xi = x_i(x, y, t; \tau)$ ,  $\eta = y_i(x, y, t; \tau)$ ,  $\zeta = \tau$  be the parametrization of a segment  $\widetilde{L_i}(P) \cap \overline{D}$ , where  $\omega_i^2(x, y, t) \le \tau \le t$ ,  $1 \le i \le 3$ .

After integrating the  $(q_i + j)$ -th equation of system (2.2), where  $q_1 = 0$ ,  $q_i = s_1 + \cdots + s_{i-1}$ ,  $i \geq 2$ ,  $j = 1, \ldots, s_i$ , along the *i*-th bicharacteristic  $\widetilde{L}_i(P)$  drawn from an arbitrary point  $P(x, y, t) \in \overline{D} \backslash \Gamma$  and lying between the point P(x, y, t) and the point of intersection of  $\widetilde{L}_i(P)$  with the face  $S_1$  or  $S_2$  (depending on the index i of  $\widetilde{L}_i(P)$ ), we obtain

$$v_{q_{i}+j}(x,y,t) = v_{q_{i}+j}\left(\omega_{i}^{1}(x,y,t), \omega_{i}^{2}(x,y,t)\right) +$$

$$+ \int_{\omega_{i}^{2}(x,y,t)}^{t} \left(\sum_{p'=1}^{m} b_{ijp'}v_{p'}\right) \left(x_{i}(x,y,t;\tau), y_{i}(x,y,t;\tau), \tau\right) d\tau +$$

$$+ F_{ij}(x,y,t), \quad 1 \leq i \leq 3, \quad 1 \leq j \leq s_{i}, \tag{3.1}$$

where  $v_{q_i+j}$  are the components of the vector v,  $b_{ijp'}$  and  $F_{ij}$  are the well-defined functions depending only on the coefficients and the right-hand side of system (2.2).

We set

$$\varphi_{q_{i}+j}^{1}(x,t) \equiv v_{q_{i}+j} \Big|_{\overline{\Delta_{1}}} \equiv v_{q_{i}+j}(x,t,t), (x,t) \in \overline{\Delta_{1}^{*}}, i = 1, 2; j = 1, \dots, s_{i}, 
\varphi_{q_{i}+j}^{2}(x,t) \equiv v_{q_{i}+j} \Big|_{\overline{\Delta_{2}}} \equiv v_{q_{i}+j}(x,-t,t), (x,t) \in \overline{\Delta_{2}^{*}}, i = 3; j = 1, \dots, s_{i}.$$
(3.2)

It is obvious that the number of components of the vectors

$$\varphi^{1}(x,t) \equiv (\varphi_{q_{i+j}}^{1}(x,t)), (x,t) \in \overline{\Delta}_{1}^{*}, i = 1, 2; j = 1, \dots, s_{i},$$
  
$$\varphi^{2}(x,t) \equiv (\varphi_{q_{i+j}}^{2}(x,t)), (x,t) \in \overline{\Delta}_{2}^{*}, i = 3; j = 1, \dots, s_{i},$$

is equal to the numbers  $m_1$  and  $m_2$ , respectively.

By substituting the expressions of v from equality (3.1) into the boundary conditions (2.4) and taking into account (3.2) we have

$$Q_0^1(x,t)\varphi^1(x,t) + Q_3^1(x,t)\varphi^2(\sigma_3(x,t)) + (T_1v)(x,t) = f^1(x,t), (x,t) \in \overline{\Delta_1^*},$$

$$Q_0^2(x,t)\varphi^2(x,t) + \sum_{i=1}^2 Q_i^2(x,t)\varphi^1(\sigma_i(x,t)) + (T_2v)(x,t) =$$

$$= f^2(x,t), (x,t) \in \overline{\Delta_2^*},$$
(3.3)

where

$$\left(T_{1}v\right)(x,t) \equiv \int_{\omega_{3}^{2}(x,t,t)}^{t} \left(\widetilde{A}_{3}v\right)\left(x_{3}(x,t,t;\tau),y_{3}(x,t,t;\tau),\tau\right)d\tau, 
\left(T_{2}v\right)(x,t) \equiv \sum_{i=1}^{2} \int_{\omega_{i}^{2}(x,-t,t)}^{t} \left(\widetilde{A}_{i}v\right)\left(x_{i}(x,-t,t;\tau),y_{i}(x,-t,t;\tau),\tau\right)d\tau,$$
(3.4)

and  $Q_3^1$ ,  $\widetilde{A_3}$ ,  $Q_i^2$ ,  $\widetilde{A_i}$ ,  $f^i$ , i=1,2, are respectively the well-defined matrices and vectors.

It is obvious that  $Q_0^i$  from (3.3) are matrices of order  $(m_i \times m_i)$  which can be represented as the product

$$Q_0^i = B_i \times \widetilde{C}_i, \quad i = 1, 2, \tag{3.5}$$

and the functions  $\sigma_i$  are defined by the equalities

$$\sigma_i: (x,t) \to (\omega_i^1(x,-t,t), \omega_i^2(x,-t,t)), \ i = 1, 2,$$
  
 $\sigma_i: (x,t) \to (\omega_i^1(x,t,t), \omega_i^2(x,t,t)), \ i = 3.$ 

Assuming that

$$\det Q_0^i \Big|_{\overline{\Delta}_i^*} \neq 0, \quad i = 1, 2, \tag{3.6}$$

where the matrices  $Q_0^i$  are given by (3.5), we rewrite system (3.3) as

$$\varphi^{1}(x,t) - \sum_{i=1}^{2} G_{i}^{1}(x,t)\varphi^{1}(J_{i}^{1}(x,t)) + (T_{3}v)(x,t) = f^{3}(x,t), (x,t) \in \overline{\Delta_{1}^{*}},$$

$$\varphi^{2}(x,t) - \sum_{i=1}^{2} G_{i}^{2}(x,t)\varphi^{2}(J_{i}^{2}(x,t)) + (T_{4}v)(x,t) = f^{4}(x,t), (x,t) \in \overline{\Delta_{2}^{*}},$$
(3.7)

where  $G_i^p$  are the known matrix-functions of order  $(m_p \times m_p)$ ,  $p = 1, 2, f^{i+2}$  are the known vector-functions,

$$J_i^1(x,t) \equiv \sigma_i \left(\sigma_3(x,t)\right), \quad (x,t) \in \overline{\Delta_1^*},$$
  
$$J_i^2(x,t) \equiv \sigma_3 \left(\sigma_i(x,t)\right), \quad (x,t) \in \overline{\Delta_2^*}, \quad i = 1, 2.$$

It is easy to verify that by virtue of equalities (3.4) the linear integral operators  $T_3$  and  $T_4$  can be represented as

$$(T_3v)(x,t) = \sum_{i=1}^{2} \int_{\widetilde{\omega}_i^2(x,t)}^{\omega_3^2(x,t,t)} (\widetilde{B_i}v) \left(x_i \left(\omega_3^1(x,t,t), -\omega_3^2(x,t,t), \omega_3^2(x,t,t); \tau\right), \right.$$

$$y_i \left(\omega_3^1(x,t,t), -\omega_3^2(x,t,t), \omega_3^2(x,t,t); \tau\right), \tau \right) d\tau +$$

$$+ \int_{\omega_3^2(x,t,t)}^{t} (\widetilde{B_3}v) \left(x_3(x,t,t;\tau), y_3(x,t,t;\tau), \tau\right) d\tau,$$

$$(T_4v)(x,t) = \sum_{i=1}^{2} \int_{\widetilde{\omega}_3^2(x,t)}^{\omega_i^2(x,-t,t)} (E_iv) \left(x_3 \left(\omega_i^1(x,-t,t), \omega_i^2(x,-t,t), \omega_i^2(x,-t,t); \tau\right), \tau\right) d\tau +$$

$$+ \sum_{i=1}^{2} \int_{\omega_i^2(x,-t,t)}^{t} (H_iv) \left(x_i(x,-t,t;\tau), y_i(x,-t,t;\tau), \tau\right) d\tau,$$

where  $\widetilde{\omega}_i^2(x,t) \equiv \omega_i^2(\omega_3^1(x,t,t), -\omega_3^2(x,t,t), \omega_3^2(x,t,t)), \ \widetilde{\omega}_3^2(x,t) \equiv \omega_3^2(\omega_i^1(x,-t,t), \ \omega_i^2(x,-t,t), \ \omega_i^2(x,-t,t)), \ \text{and} \ E_i, \ H_i, \ i=1,2, \ \widetilde{B_j}, \ j=1,2,3, \ \text{are the well-defined matrices.}$ 

For the functions  $J_i^k: \overline{\Delta_k^*} \to \overline{\Delta_k^*}$  we have the formulas

$$J_i^k: (x,t) \to (x+\delta_i^k t, \tau_i t), \quad (x,t) \in \overline{\Delta_k^*},$$

where  $\delta_i^k, \tau_i, i, k = 1, 2$ , are the well-defined constants written in terms of  $\widetilde{\nu}_i, \widetilde{\mu}_i, i = 1, 2, 3$ .

Remark 3.1. Note that by virtue of condition (2.3) it is easy to establish that  $0 < \tau_i < 1, i = 1, 2$ .

Remark 3.2. It is obvious that when conditions (3.6) are fulfilled, problem (1.2), (2.4) in the class  $\overset{0}{C}_{\alpha}^{1,1,1}(\overline{D})$  is equivalently reduced to system (3.7) for the unknown vector-function  $\varphi^i$  of the class  $\overset{0}{C}_{\alpha}(\overline{\Delta_i^*})$ , i=1,2. Furthermore, if  $u\in \overset{0}{C}_{\alpha}^{1,1,1}(\overline{D})$ , then  $\varphi^i\in \overset{0}{C}_{\alpha}(\overline{\Delta_i^*})$ , i=1,2. Vice versa, if  $\varphi^i\in \overset{0}{C}_{\alpha}(\overline{\Delta_i^*})$ , i=1,2, then with regard to inequality (2.5) equalities (3.1), (3.2) and u=Cv readily imply that  $u\in \overset{0}{C}_{\alpha}^{1,1,1}(\overline{D})$ .

§ 4. Investigation of the System of Integro-Functional Equations (3.1), (3.7) and the Proof of the Main Result

Let us consider the system of functional equations

$$(K_p \varphi^p)(x,t) \equiv \varphi^p(x,t) - \sum_{i=1}^2 G_i^p(x,t) \varphi^p (J_i^p(x,t)) = g_p(x,t), (x,t) \in \overline{\Delta_p^*}, (4.1)$$

and introduce the notation

$$h_{p}(\rho) \equiv \sum_{i=1}^{2} \eta_{ip} \tau_{i}^{\rho}, \quad \eta_{p} \equiv \max_{1 \leq i \leq 2} \sup_{(x,t) \in \overline{\Delta_{p}^{*}}} \|G_{i}^{p}(x,t)\|,$$

$$\eta_{ip} \equiv \sup_{x \in [Q_{1},Q_{2}]} \|G_{i}^{p}(x,0)\|, \quad i,p = 1,2, \quad \rho \in \mathbb{R}.$$
(4.2)

Here and in what follows by  $\|.\|$  we understand the norm of a matrix operator acting from one Euclidean space into another.

If all values  $\eta_{ip}=0$ , then it is assumed that  $\rho_p=-\infty, i=1,2, 1\leq p\leq 2$ . Let now for some value of the index i the value  $\eta_{ip}, 1\leq p\leq 2$ , be different from zero. In that case, by Remark 3.1, the function  $h_p:\mathbb{R}\to\overline{\mathbb{R}}_+$  is continuous and strictly decreasing on  $\mathbb{R}$ ; also,  $\lim_{\rho\to-\infty}h_p(\rho)=+\infty$  and  $\lim_{\rho\to+\infty}h_p(\rho)=0, 1\leq p\leq 2$ . Therefore there exists a unique real number  $\rho_p$  such that  $h_p(\rho_p)=1, 1\leq p\leq 2$ . It is assumed that  $\rho_0\equiv \max{(\rho_1,\rho_2)}$ .

**Lemma 4.1.** If  $\alpha > \rho_0$ , then equation (4.1) is uniquely solvable in the space  $\overset{0}{C}\alpha(\overline{\Delta}_p^*)$  and for the solution  $\varphi^p = K_p^{-1}g^p$  the estimate

$$\|\varphi^{p}(x,t)\|_{\mathbb{R}^{m_{p}}} = \|(K_{p}^{-1}g_{p})(x,t)\|_{\mathbb{R}^{m_{p}}} \leq$$

$$\leq C_{2+p}t^{\alpha}\|g_{p}\|_{C_{\alpha}(\overline{\Delta_{p}^{*}}\cap\{t_{1}\leq t\})}, \quad (x,t)\in\overline{\Delta_{p}^{*}},$$
(4.3)

holds, where  $C_{2+p}$  is a positive constant not depending on the function  $g_p$ ,  $1 \le p \le 2$ .

*Proof.* We shall consider the case p=1, since the case p=2 is considered analogously. The condition  $\alpha > \rho_0$  and the definition of the function  $h_1$  from (4.2) imply

$$h_1(\alpha) = \sum_{i=1}^2 \eta_{i1} \tau_i^{\alpha} < 1.$$
 (4.4)

By inequality (4.4) and the continuity of the functions  $G_i^1$ , i = 1, 2, there exist positive numbers  $\varepsilon_1$  ( $\varepsilon_1 < t^0$ ) and  $\delta_1$  such that the inequalities

$$||G_i^1(x,t)|| \le \eta_{i1} + \delta_1, \quad i = 1, 2,$$
 (4.5)

$$\sum_{i=1}^{2} (\eta_{i1} + \delta_1) \tau_i^{\alpha} \equiv \gamma_1 < 1 \tag{4.6}$$

hold for  $(x,t) \in \overline{\Delta_1^*} \cap \{0 \le t \le \varepsilon_1\}.$ 

By Remark 3.1 there is a natural number  $r_0$  such that for  $r \geq r_0$ 

$$\tau_{i_r}\tau_{i_{r-1}}\cdots\tau_{i_1}t\leq\varepsilon_1,\quad 0\leq t\leq t^0,\tag{4.7}$$

where  $1 \le i_s \le 2, \, s = 1, \dots, r$ .

We introduce the operators  $\Lambda_1$  and  $K_1^{-1}$  acting by the formulas

$$(\Lambda_1 \varphi^1)(x,t) = \sum_{i=1}^2 G_i^1(x,t) \varphi^1 \Big( J_i^1(x,t) \Big), \quad (x,t) \in \overline{\Delta_1^*}, \quad K_1^{-1} = I + \sum_{r=1}^{\infty} \Lambda_1^r,$$

where I is the identical operator. Obviously, the operator  $K_1^{-1}$  is the formally inverse operator to the operator  $K_1$  defined by equality (4.1). Hence it is sufficient for us to show that  $K_1^{-1}$  is continuous in the space  $\overset{0}{C}_{\alpha}(\overline{\Delta_1^*})$ .

As is easily seen, the expression  $\Lambda_1^r g_1$  is the sum consisting of terms of the form

$$I_{i_{1}\cdots i_{r}}(x,t) = G_{i_{1}}^{1}(x,t)G_{i_{2}}^{1}(J_{i_{1}}^{1}(x,t))G_{i_{3}}^{1}(J_{i_{2}}^{1}(J_{i_{1}}^{1}(x,t)))\cdots$$

$$\cdots G_{i_{r}}^{1}(J_{i_{r-1}}^{1}(J_{i_{r-2}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots)))g_{1}(J_{i_{r}}^{1}(J_{i_{r-1}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots))),$$

where  $1 \le i_s \le 2, s = 1, ..., r$ .

Hence, using (4.2), (4.5), (3.7) and Remark 3.1, we obtain: for  $r > r_0$ ,  $g_1 \in \overset{0}{C}_{\alpha}(\overline{\Delta_1^*})$ 

$$||I_{i_{1}\cdots i_{r}}(x,t)||_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq ||G_{i_{1}}^{1}(x,t)||\cdots||G_{i_{r_{0}}}^{1}(J_{i_{r_{0}-1}}^{1}(J_{i_{r_{0}-2}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots)))|| \times$$

$$\times ||G_{i_{r_{0}+1}}^{1}(J_{i_{r_{0}}}^{1}(J_{i_{r_{0}-1}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots)))|| \cdots$$

$$\cdots ||G_{i_{r}}^{1}(J_{i_{r-1}}^{1}(J_{i_{r-2}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots)))|| \times$$

$$\times ||g_{1}(J_{i_{r}}^{1}(J_{i_{r-1}}^{1}(\cdots(J_{i_{1}}^{1}(x,t))\cdots)))||_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq \eta_{1}^{r_{0}}(\eta_{i_{r_{0}+11}} + \delta_{1}) \cdots (\eta_{i_{r_{1}}} + \delta_{1})(\tau_{i_{r}}\tau_{i_{r-1}}\cdots\tau_{i_{1}}t)^{\alpha}||g_{1}||_{0}^{0} C_{\alpha}(\overline{\Delta_{1}^{*}}\cap\{t_{1}\leq t\})} \leq$$

$$\leq \eta_{1}^{r_{0}}(\prod_{s=r_{0}+1}^{r}(\eta_{i_{s}1} + \delta_{1})) \left(\prod_{s=r_{0}+1}^{r}\tau_{i_{s}}^{\alpha}\right)t^{\alpha}||g_{1}||_{0}^{0} C_{\alpha}(\overline{\Delta_{1}^{*}}\cap\{t_{1}\leq t\})} =$$

$$= \eta_{1}^{r_{0}}(\prod_{s=r_{0}+1}^{r}(\eta_{i_{s}1} + \delta_{1})\tau_{i_{s}}^{\alpha})t^{\alpha}||g_{1}||_{0}^{0} C_{\alpha}(\overline{\Delta_{1}^{*}}\cap\{t_{1}\leq t\})}, \tag{4.8}$$

and for  $1 \le r \le r_0$ 

$$||I_{i_{1}\cdots i_{r}}(x,t)||_{\mathbb{R}^{m_{1}}} \leq \eta_{1}^{r}(\tau_{i_{r}}\tau_{i_{r-1}}\cdots\tau_{i_{1}}t)^{\alpha}||g_{1}||_{\overset{0}{C}\alpha(\overline{\Delta_{1}^{*}}\cap\{t_{1}\leq t\})} \leq$$

$$\leq \eta_{1}^{r}t^{\alpha}||g_{1}||_{\overset{0}{C}\alpha(\overline{\Delta_{1}^{*}}\cap\{t_{1}\leq t\})}. \tag{4.9}$$

By (4.8), (4.9), and (4.6) we have: for  $r > r_0$ 

$$\|(\Lambda_{1}^{r}g_{1})(x,t)\|_{\mathbb{R}^{m_{1}}} = \left\| \sum_{i_{1},\dots,i_{r}} I_{i_{1}\dots i_{r}}(x,t) \right\|_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq \left( \sum_{i_{1},\dots,i_{r_{0}}} 1 \right)^{r_{0}} \eta_{1}^{r_{0}} \left[ \sum_{i=1}^{2} (\eta_{i1} + \delta_{1}) \tau_{i}^{\alpha} \right]^{r-r_{0}} t^{\alpha} \|g_{1}\|_{{}_{C_{\alpha}(\overline{\Delta_{1}^{*}} \cap \{t_{1} \leq t\})}^{0}} \leq$$

$$\leq C_{5} \gamma_{1}^{r} t^{\alpha} \|g_{1}\|_{{}_{C_{\alpha}(\overline{\Delta_{1}^{*}} \cap \{t_{1} \leq t\})}^{0}}, \tag{4.10}$$

and for  $1 \le r \le r_0$ 

$$\|(\Lambda_1^r g_1)(x,t)\|_{\mathbb{R}^{m_1}} \le C_6 t^{\alpha} \|g_1\|_{C_{\alpha}(\overline{\Delta_1^*} \cap \{t_1 \le t\})}^0, \tag{4.11}$$

where 
$$C_5 \equiv \eta_1^{r_0} \gamma_1^{-r_0} \Big( \sum_{i_1,...,i_{r_0}} 1 \Big)^{r_0}, C_6 \equiv \eta_1^r \Big( \sum_{i_1,...,i_r} 1 \Big).$$
  
Inequalities (4.10) and (4.11) finally imply

$$\|\varphi^{1}(x,t)\|_{\mathbb{R}^{m_{1}}} = \|(K_{1}^{-1}g_{1})(x,t)\|_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq \|g_{1}(x,t)\|_{\mathbb{R}^{m_{1}}} + \sum_{r=1}^{r_{0}} \|(\Lambda_{1}^{r}g_{1})(x,t)\|_{\mathbb{R}^{m_{1}}} + \sum_{r=r_{0}+1}^{\infty} \|(\Lambda_{1}^{r}g_{1})(x,t)\|_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq (1 + C_6 r_0 + C_5 \gamma_1^{r_0+1} (1 - \gamma_1)^{-1}) t^{\alpha} \|g_1\|_{C_{\alpha}(\overline{\Delta_1^*} \cap \{t_1 \leq t\})}^{0} =$$

$$= C_3 t^{\alpha} \|g_1\|_{C_{\alpha}(\overline{\Delta_1^*} \cap \{t_1 \leq t\})}^{0},$$

where  $C_3 \equiv 1 + C_6 r_0 + C_5 \gamma_1^{r_0+1} (1-\gamma_1)^{-1}$ . Hence we conclude that the operator  $K_1^{-1}$  is continuous in the space  $C_{\alpha}(\overline{\Delta_1^*})$  and therefore Lemma 4.1 is true.  $\square$ 

On the basis of this lemma we have

**Theorem 4.1.** Let conditions (3.6) be fulfilled. If  $\alpha > \rho_0$ , then problem (1.2), (2.4) is uniquely solvable in the space  $C_{\alpha}^{1,1,1}(\overline{D})$ .

*Proof.* First we solve the system of equations (3.1), (3.7) with respect to the unknown functions  $v \in \overset{0}{C}_{\alpha}^{1,1,1}(\overline{D})$  and  $\varphi^p \in \overset{0}{C}_{\alpha}(\overline{\Delta_p^*})$ , p=1,2, using the method of successive approximations.

Let

$$v_{0}(x,y,t) \equiv 0, \quad (x,y,t) \in \overline{D}; \quad \varphi_{0}^{p}(x,t) \equiv 0, \quad (x,t) \in \overline{\Delta_{p}^{*}}, \quad p = 1,2;$$

$$v_{q_{i}+j,k}(x,y,t) = \varphi_{q_{i}+j,k}\left(\omega_{i}^{1}(x,y,t), \omega_{i}^{2}(x,y,t)\right) +$$

$$+ \int_{\omega_{i}^{2}(x,y,t)}^{t} \left(\sum_{p'=1}^{m} b_{ijp'}v_{p',k-1}\right) \left(x_{i}(x,y,t;\tau), y_{i}(x,y,t;\tau), \tau\right) d\tau +$$

$$+ \widetilde{F_{ij}}(x,y,t), \quad 1 \leq i \leq 3, \quad 1 \leq j \leq s_{i},$$

$$(4.12)$$

where

$$\varphi_{q_{i}+j,k}(\omega_{i}^{1}(x,y,t),\omega_{i}^{2}(x,y,t)) = \begin{cases} \varphi_{q_{i}+j,k}^{1}(\omega_{i}^{1}(x,y,t),\omega_{i}^{2}(x,y,t)), & 1 \leq i \leq 2, \ 1 \leq j \leq s_{i}, \\ \varphi_{q_{i}+j,k}^{2}(\omega_{i}^{1}(x,y,t),\omega_{i}^{2}(x,y,t)), & i = 3, \ 1 \leq j \leq s_{i}, \end{cases} (x,y,t) \in \overline{D}.$$

The values  $\varphi_k^p(x,t)$  are defined by the equations

$$(K_p \varphi_k^p)(x,t) + (T_{2+p} v_{k-1})(x,t) = f^{2+p}(x,t),$$

$$(x,t) \in \overline{\Delta}_n^*, \quad p = 1, 2, \quad k \ge 1,$$

$$(4.13)$$

where the operators  $K_p$ , p = 1, 2, act by (4.1).

For convenience, system (4.12) is rewritten as

$$v_k(x, y, t) = \varphi_k(x, y, t) +$$

$$+\sum_{i=1}^{3} \int_{\omega_{i}^{2}(x,y,t)}^{t} \left(\Omega_{i} v_{k-1}\right) \left(x_{i}(x,y,t;\tau), y_{i}(x,y,t;\tau), \tau\right) d\tau + \widetilde{F}(x,y,t), \quad (x,y,t) \in \overline{D},$$

$$(4.14)$$

where the  $(q_i + j)$ -th component of the vector  $\varphi_k(x, y, t)$  is equal to  $\varphi_{q_i+j,k}(\omega_i^1(x,y,t),\omega_i^2(x,y,t))$ ,  $1 \le i \le 3$ ,  $1 \le j \le s_i$ ,  $k \ge 1$ ;  $\Omega_i$ , i = 1,2,3, and  $\widetilde{F}$  are respectively the well-defined matrices and vector-functions.

We shall now show that the following estimates are true:

$$||v_{k+1}(x,y,t) - v_k(x,y,t)||_{\mathbb{R}^m} \le M^* \frac{M_*^k}{k!} t^{k+\alpha}, \quad (x,y,t) \in \overline{D}, \quad (4.15)$$

$$\|\varphi_{k+1}^p(x,t) - \varphi_k^p(x,t)\|_{\mathbb{R}^{m_p}} \le M^* \frac{M_*^k}{k!} t^{k+\alpha}, \quad (x,t) \in \overline{\Delta_p^*},$$
 (4.16)

where  $M_*$  and  $M^*$  are well-defined sufficiently large numbers not depending on  $k, k \geq 1, p = 1, 2$ .

Indeed, by the assumptions for  $f_p$  and F we have  $f^{2+p} \in \overset{0}{C}_{\alpha}(\overline{\Delta_p^*})$ ,  $\widetilde{F} \in \overset{0}{C}_{\alpha}(\overline{D})$ , p = 1, 2. Hence, on account of inequalities (2.5) from §2, we conclude that the estimates

$$\|\widetilde{F}(x,y,t)\|_{\mathbb{R}^m} \le \Theta_1 t^{\alpha}, \quad (x,y,t) \in \overline{D},$$
 (4.17)

$$||f^{2+p}(x,t)||_{\mathbb{R}^{m_p}} \le \Theta_{1+p}t^{\alpha}, \quad (x,t) \in \overline{\Delta_p^*},$$
 $p = 1, 2, \quad \Theta_i = \text{const} \ge 0, \quad i = 1, 2, 3,$ 

$$(4.18)$$

are fulfilled.

By  $v_0 \equiv 0$ ,  $\varphi_0^p \equiv 0$ , p = 1, 2 and the conditions of Theorem 4.1 estimate (4.3) is true so that (4.13), (4.18) imply

$$\|\varphi_1^p(x,t) - \varphi_0^p(x,t)\|_{\mathbb{R}^{m_p}} = \|\varphi_1^p(x,t)\|_{\mathbb{R}^{m_p}} \le C_5\Theta_4 t^{\alpha}, \quad p = 1, 2,$$

$$C_7 = \max(C_3, C_4), \quad \Theta_4 = \max(\Theta_2, \Theta_3)$$
(4.19)

which in turn gives rise to

$$\|\varphi_{1}(x,y,t) - \varphi_{0}(x,y,t)\|_{\mathbb{R}^{m}} = \|\varphi_{1}(x,y,t)\|_{\mathbb{R}^{m}} =$$

$$= \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq s_{i}} |\varphi_{q_{i}+j,1}(\omega_{i}^{1}(x,y,t),\omega_{i}^{2}(x,y,t))| \leq$$

$$\leq \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq s_{i}} C_{7}\Theta_{4}(\omega_{i}^{2}(x,y,t))^{\alpha} \leq mC_{7}\Theta_{4}t^{\alpha}, \qquad (4.20)$$

since  $\sum_{1\leq i\leq 3}\sum_{1\leq j\leq s_i}1=m$  and, as shown in  $\S 3,\ 0\leq \omega_i^2(x,y,t)\leq t,\ i=1,2,3.$ 

By virtue of (4.17) and (4.20), from (4.14) we have

$$||v_1(x,y,t) - v_0(x,y,t)||_{\mathbb{R}^m} = ||v_1(x,y,t)||_{\mathbb{R}^m} \le ||\varphi_1(x,y,t)||_{\mathbb{R}^m} + ||\widetilde{F}(x,y,t)||_{\mathbb{R}^m} \le mC_7\Theta_4 t^{\alpha} + \Theta_1 t^{\alpha} = (mC_7\Theta_4 + \Theta_1)t^{\alpha}.$$
(4.21)

Now, assuming that estimates (4.15), (4.16) are fulfilled for k, k > 0, we shall show that they hold for k + 1 when  $M_*$  and  $M^*$  are sufficiently large. Using (4.13), for p = 1 we have

$$\{K_1(\varphi_{k+2}^1 - \varphi_{k+1}^1)\}(x,t) = -\{T_3(v_{k+1} - v_k)\}(x,t), \quad (x,t) \in \overline{\Delta_1^*}.$$
(4.22)

It is obvious that for the right-hand side of equation (4.22) we have the estimate

$$\|\{T_{3}(v_{k+1}-v_{k})\}(x,t)\|_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq \sum_{i=1}^{2} \int_{\widetilde{\omega}_{i}^{2}(x,t)}^{\omega_{3}^{2}(x,t,t)} \|\widetilde{B}_{i}\| \|v_{k+1}-v_{k}\|_{\mathbb{R}^{m}} (x_{i}(\omega_{3}^{1}(x,t,t),-\omega_{3}^{2}(x,t,t),\omega_{3}^{2}(x,t,t),-\omega_{3}^{2}(x,t,t),\omega_{3}^{2}(x,t,t),\tau),\tau)d\tau +$$

$$+ \int_{\omega_{3}^{2}(x,t,t)}^{t} \|\widetilde{B}_{3}\| \|v_{k+1}-v_{k}\|_{\mathbb{R}^{m}} (x_{3}(x,t,t;\tau),y_{3}(x,t,t;\tau),\tau)d\tau. \quad (4.23)$$

Denote by  $\xi_1$  the largest of the numbers  $\max_{x,t,\tau} \|\widetilde{B}_i(x,t,\tau)\|$ , i=1,2,3. Since  $0 \leq \widetilde{\omega}_i^2(x,t) \leq \omega_3^2(x,t,t) \leq t$ , by (4.15) we find from (4.23) that

$$\|\{T_{3}(v_{k+1}-v_{k})\}(x,t)\|_{\mathbb{R}^{m_{1}}} \leq$$

$$\leq \xi_{1}M^{*}\frac{M_{*}^{k}}{k!} \Big(\sum_{i=1}^{2} \int_{\widetilde{\omega}_{i}^{2}(x,t)}^{\omega_{3}^{2}(x,t,t)} \tau^{k+\alpha}d\tau + \int_{\omega_{3}^{2}(x,t,t)}^{t} \tau^{k+\alpha}d\tau\Big) \leq$$

$$\leq \xi_{1}M^{*}\frac{M_{*}^{k}}{k!} \Big(\sum_{i=1}^{2} 1+1\Big) \int_{0}^{t} \tau^{k+\alpha}d\tau \leq$$

$$\leq 3\xi_{1}M^{*}\frac{M_{*}^{k}}{k!} \frac{1}{k+\alpha+1} t^{k+\alpha+1} \leq 3\xi_{1}M^{*}\frac{M_{*}^{k}}{(k+1)!} t^{k+1+\alpha}. \tag{4.24}$$

Now (4.22), (4.24), and (4.3) (for p = 1) imply

$$\left\| \varphi_{k+2}^{1}(x,t) - \varphi_{k+1}^{1}(x,t) \right\|_{\mathbb{R}^{m_{1}}} \le 3C_{3}\xi_{1}M^{*} \frac{M_{*}^{k}}{(k+1)!} t^{k+1+\alpha}. \tag{4.25}$$

Similarly, (4.13) (for p = 2), (4.15), and (4.3) (for p = 2) give

$$\left\|\varphi_{k+2}^2(x,t) - \varphi_{k+1}^2(x,t)\right\|_{\mathbb{R}^{m_2}} \le 4C_4 \xi_2 M^* \frac{M_*^k}{(k+1)!} t^{k+1+\alpha}, \quad (4.26)$$

where  $\xi_2$  denotes the largest of the numbers  $\max_{x,t,\tau} ||E_i(x,t,\tau)||$ ,  $\max_{x,t,\tau} ||H_i(x,t,\tau)||$ , i=1,2.

Using the same arguments as in deriving estimate (4.20), from (4.25) and (4.26) we obtain

$$\|\varphi_{k+2}(x,y,t) - \varphi_{k+1}(x,y,t)\|_{\mathbb{R}^m} \le \xi_4 M^* \frac{M_*^k}{(k+1)!} t^{k+1+\alpha}, \quad (4.27)$$

where  $\xi_4 \equiv 4mC_7\xi_3, \, \xi_3 \equiv \max(\xi_1, \xi_2)$ .

We denote by  $\eta$  the largest of the numbers  $\max_{\overline{D}} \|\Omega_i\|$ , where the matrices  $\Omega_i$ , i = 1, 2, 3, are defined by (4.14). By (4.27) and (4.15), from system (4.14) we have

$$||v_{k+2}(x,y,t) - v_{k+1}(x,y,t)||_{\mathbb{R}^m} \le ||\varphi_{k+2}(x,y,t) - \varphi_{k+1}(x,y,t)||_{\mathbb{R}^m} + \sum_{i=1}^3 \int_{\omega_i^2(x,y,t)}^t ||\Omega_i|| ||v_{k+1} - v_k||_{\mathbb{R}^m} (x_i(x,y,t;\tau), y_i(x,y,t;\tau), \tau) d\tau \le$$

$$\le \xi_4 M^* \frac{M_*^k}{(k+1)!} t^{k+1+\alpha} + 3\eta \int_0^t M^* \frac{M_*^k}{k!} \tau^{k+\alpha} d\tau \le$$

$$\le (\xi_4 + 3\eta) M^* \frac{M_*^k}{(k+1)!} t^{k+1+\alpha}, \quad (x,y,t) \in \overline{D},$$

$$(4.28)$$

since  $0 \le \omega_i^2(x, y, t) \le t, i = 1, 2, 3$ .

If we set

$$M^* = mC_7\Theta_4 + \Theta_1, \quad M_* = \max (3C_3\xi_1, 4C_4\xi_2, \xi_4 + 3\eta),$$

then by (4.19), (4.21), (4.25), (4.26), (4.28) immediately imply that estimates (4.15), (4.16) hold for any integer  $k \ge 0$ .

It follows from (4.15), (4.16) that the series

$$v(x,y,t) = \lim_{k \to \infty} v_k(x,y,t) = \sum_{k=1}^{\infty} \left( v_k(x,y,t) - v_{k-1}(x,y,t) \right), \ (x,y,t) \in \overline{D},$$

$$\varphi^p(x,t) = \lim_{k \to \infty} \varphi^p_k(x,t) = \sum_{k=1}^{\infty} \left( \varphi^p_k(x,t) - \varphi^p_{k-1}(x,t) \right), \ (x,t) \in \overline{\Delta}^*_p, \ p = 1, 2,$$

converge in the spaces  $\overset{0}{C}\,_{\alpha}^{1,1,1}(\overline{D}),\,\overset{0}{C}\,_{\alpha}(\overline{\Delta_p^*}),\,p=1,2,$  and by (4.13), (4.14) the limit functions  $v,\,\varphi^p,\,p=1,2,$  satisfy system (3.1), (3.7). Finally, since problem (1.2), (2.4) is equivalent to system (3.1), (3.7) and the equality u=Cv holds, we conclude that the obtained function u(x,y,t) is really a solution of problem (1.2), (2.4) in the class  $\overset{0}{C}\,_{\alpha}^{1,1,1}(\overline{D}),\,\alpha>\rho_0.$  Now we shall show that under the conditions of Theorem 4.1 prob-

Now we shall show that under the conditions of Theorem 4.1 problem (1.2), (2.4) has no other solutions in the class  $\overset{0}{C}$   $^{1,1,1}_{\alpha}(\overline{D})$ . Indeed, if  $u \in \overset{0}{C}$   $^{1,1,1}_{\alpha}(\overline{D})$  is the solution of the homogeneous problem corresponding to (1.2), (2.4), then the corresponding functions v,  $\varphi^p$ , p = 1, 2, satisfy the homogeneous system of equations

$$v_{q_{i}+j}(x,y,t) = \varphi_{q_{i}+j}\left(\omega_{i}^{1}(x,y,t), \omega_{i}^{2}(x,y,t)\right) + \int_{\omega_{i}^{2}(x,y,t)}^{t} \left(\sum_{p'=1}^{m} b_{ijp'}v_{p'}\right) \left(x_{i}(x,y,t;\tau), y_{i}(x,y,t;\tau), \tau\right) d\tau, \ (x,y,t) \in \overline{D},$$

$$1 \le i \le 3, \quad 1 \le j \le s_{i},$$

$$\left(K_{p}\varphi^{p}\right)(x,t) + \left(T_{2+p}v\right)(x,t) = 0, \ (x,t) \in \overline{\Delta_{p}^{*}}, \ p = 1, 2.$$

$$(4.29)$$

We apply the method of successive approximations to system (4.29), assuming that  $v, \varphi^1, \varphi^2$ , are zero approximations. Since these values satisfy system (4.29), each next approximation will coincide with it so that we shall have  $v_k(x,y,t) \equiv v(x,y,t), (x,y,t) \in \overline{D}, \varphi_k^p(x,t) \equiv \varphi^p(x,t), (x,t) \in \overline{\Delta}_p^*$  for  $k \geq 1$  and p = 1,2. Recalling that these values satisfy estimates of form (4.17), (4.18) and arguing as in the case of deriving estimates (4.15), (4.16), we obtain

$$\begin{split} &\|v(x,y,t)\|_{\mathbb{R}^m} = \|v_{k+1}(x,y,t)\|_{\mathbb{R}^m} \leq \widetilde{M}^* \frac{\widetilde{M}_*^k}{k!} t^{k+\alpha}, \ (x,y,t) \in \overline{D}, \\ &\|\varphi^p(x,t)\|_{\mathbb{R}^{m_p}} = \|\varphi^p_{k+1}(x,t)\|_{\mathbb{R}^{m_p}} \leq \widetilde{M}^* \frac{\widetilde{M}_*^k}{k!} t^{k+\alpha}, \ (x,t) \in \overline{\Delta_p^*}, \ k \geq 1, \ p = 1, 2, \end{split}$$

whence, as  $k \to \infty$ , we find in the limit that

$$v(x,y,t) \equiv 0, \ (x,y,t) \in \overline{D}, \ \varphi^p(x,t) \equiv 0, \ (x,t) \in \overline{\Delta_p^*}, \ p=1,2.$$

Next, using inequality (4.15) and recalling that the value  $M^*$  is defined by  $\Theta_i$ , i = 1, 2, 3, which are given by the right-hand sides F and  $f_i$ , i = 1, 2, of problem (1.2), (2.4), we can readily show that for a regular solution of the considered problem the estimate

$$||u||_{C_{\alpha}^{0,1,1,1}(\overline{D})} \le c \left( \sum_{i=1}^{2} ||f_{i}||_{C_{\alpha}(\overline{\Delta_{i}})} + ||F||_{C_{\alpha}(\overline{D})} \right)$$
(4.30)

holds, where the positive constant c does not depend on  $f_i$ , i = 1, 2, and F. Estimate (4.30) implies that a regular solution of problem (1.2), (2.4) is stable in the space  $C_{\alpha}^{1,1,1}(\overline{D}), \alpha > \rho_0$ .

#### References

- 1. A. V. Bitsadze, Some classes of partial equations. (Russian) *Nauka*, *Moscow*, 1981.
- 2. S. S. Kharibegashvili, On one boundary value problem for normally hyperbolic systems of second order with variable coefficients. (Russian) *Differentsial'nye Uravneniya* **21**(1985), No. 1, 149–155.
- 3. I. M. Gelfand, Lectures on linear algebra, 4th edition. (Russian)  $Nauka,\ Moscow,\ 1971.$
- 4. S. L. Sobolev, On analytic solutions of systems of partial equations with two independent variables. (Russian) *Matem. Sb.* **38**(1931), Nos. 1, 2, 107–147.
- 5. V. P. Mikhailov, On analytic solution of the Goursat problem for a system of differential equations. (Russian) *Dokl. Akad. Nauk SSSR* **115**(1957), No. 3, 450–453.
- 6. V. P. Mikhailov, On non-analytic solutions of the Goursat problem for a system of differential equations with two independent variables. (Russian) *Dokl. Akad. Nauk SSSR* **117**(1957), No. 5, 759–762.
- 7. L. A. Mel'tser, On non-correct formulation of the Goursat problem. (Russian) *Mat. Sb.* **18(60)**(1946), No. 1, 59–104.
- 8. Z. O. Melnik, One nonclassical boundary value problem for hyperbolic systems of first order of two independent variables. (Russian) *Differentsial'nie Uravneniya* **17**(1981), No. 6, 1096–1104.
- 9. J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale Univ. Press, New Haven; Oxford Univ. Press, London, 1923.
- 10. J. Tolen, Probléme de Cauchy sur la deux hypersurfaces caracteristique sécantes. C. R. Acad. Sci. Paris, Ser. A-B **291**(1980), No. 1, A 49-A 52.
- 11. S. Kharibegashvili, On the solvability of a spatial problem of Darboux type for the wave equation. *Georgian Math. J.* **2**(1995), No. 4, 385–394.
- 12. O. Jokhadze, Spatial problem of Darboux type for one model equation of third order. *Georgian Math. J.* **3**(1996), No. 6, 547–564.

(Received 20.10.1995)

Author's address:

A. Razmadze Mathematical Institute

Georgian Academy of Sciences

1, M. Aleksidze St., Tbilisi 380093, Georgia