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ASYMPTOTIC SOLUTIONS FOR MIXED-TYPE
EQUATIONS WITH A SMALL DEVIATION


ZHANYUAN HOU AND J. S. CASSELL


Abstract. An asymptotic matrix solution is formulated for a class
of mixed-type linear vector equations with a single variable deviation
which is small at infinity. This matrix solution describes the asymp-
totic behavior of all exponentially bounded solutions. A sufficient
condition is obtained for there to be no other solutions.


§ 1. Introduction


We consider the equation


d
dt


x(t) = Ax(t− r(t)), (1.1)


where A is an N × N constant matrix, r is measurable on [τ,∞) with
−σ ≤ r(t) ≤ ρ for some constants σ > 0 and ρ > 0, and r satisfies a suitable
condition of smallness as t → ∞. Under the conditions that 0 ≤ r(t) ≤ ρ,
limt→∞ r(t) = 0 and either r ∈ Lp(τ,∞) for some p ∈ (1, 2) with dr/dt
bounded or r ∈ L(τ,∞), Cooke [1] showed for the scalar case of (1.1) that
every solution has the asymptotic form


x(t) = exp
{


At−A2
∫ t


0
r(s)ds


}


{c + o(1)} (1.2)


as t → ∞. Kato [2] proved that (1.2) holds also for N > 1, still with
0 ≤ r(t) ≤ ρ, if either r ∈ L(τ,∞) or r ∈ L2(τ,∞) provided, in the latter
case, r is either Lipschitzian or monotone for large t. This leaves open the
case of r ∈ Lp(τ,∞) with p > 2. Also, it would be desirable to have a clearer
indication of the size of the o(1) term in (1.2), particularly when c = 0. If,
further, we remove the restriction r ≥ 0, then another issue arises: in the
retarded case all solutions are O(e|A|t) as t → ∞ (see [3, §6.1]), but this
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need not be so for the mixed-type equation. These matters are all dealt
with in this present paper.


Our results for (1.1) generalize to equations of the form


d
dt


x(t) = A(t)x(t) + B(t)x(t− r(t)), (1.3)


where A(t) =
∑n


i=1 ai(t)Mi and B(t) =
∑n


i=1 bi(t)Mi, ai and bi are locally
integrable scalar functions and the constant matrices Mi all commute.


The contents of this paper are arranged as follows. We present two main
theorems in §2, but leave some of the proofs to §3. In §4 sufficient conditions
are given to exclude the possibility of solutions that grow faster than eγt


for every γ > 0. Equation (1.3) is dealt with in §5.


§ 2. Main Results


As we shall see later, (1.1) can be transformed, by a generalization of a
substitution of Kato [2], to an equation of the form


d
dt


x(t) = F (t)x(t) + G(t){x(t− r(t))− x(t)}, (2.1)


where F ∈ L(τ,∞) and G ∈ L∞(τ,∞). We shall give a result for (2.1)
before tackling (1.1).


It will be assumed that


M{t ≥ τ : |r(t)| > α} < ∞ for every α > 0, (2.2)


where bM denotes Lebesgue measure. This condition certainly holds if
r ∈ Lp(τ,∞) for some p ∈ [1,∞) or if limt→∞ r(t) = 0. For s ≥ T ≥ τ , let


µT (s) = M {t ≥ T : min{t, t− r(t)} ≤ s ≤ max{t, t− r(t)}} . (2.3)


Since (2.2) implies that, for α > 0,


lim
T→∞


M{t ≥ T : |r(t)| > α} = 0,


for any δ > 0 there exists Tδ ≥ τ such that M{t ≥ Tδ : |r(t)| ≥ δ/3} < δ/3.
Then, for s ≥ T ≥ Tδ, µT (s) < δ. Thus if


εT = sup
s≥T


µT (s), (2.4)


then εT is finite and tends to zero as T →∞.
A continuous vector function x : [T −ρ,∞) → CN is said to be a solution


of (2.1) on [T − ρ,∞) if, on [T,∞), it is locally absolutely continuous and
satisfies (2.1) almost everywhere. A solution is said to be exponentially
bounded if it is O(eγt) as t → ∞ for some γ > 0. By a large solution we
mean one that is not exponentially bounded. For any p ∈ [1,∞] and any
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f ∈ Lp(T,∞), we denote the norm of f by ‖f‖p or, to mark the relevance
of [T,∞), by ‖f‖p(T,∞).


Theorem 1. Assume that F ∈ L(τ,∞), G ∈ L∞(τ,∞), and (2.2) holds.
Then, for T ≥ τ satisfying


‖F‖1(T,∞) + εT ‖G‖∞(T,∞) < 1, (2.5)


(2.1) has solutions xn : [T − ρ,∞) → CN (n = 1, 2, . . . , N) such that


xn(t) = en + o(1) (2.6)


as t → ∞, where en is the nth coordinate vector, and xn is constant on
[T − ρ, T ]. Moreover, every exponentially bounded solution of (2.1) has the
asymptotic representation


x(t) = X(t)c + o
(


e−βt) (2.7)


for arbitrary β > 0, where X = (x1, x2, . . . , xN ) and c ∈ CN is a constant
dependent on x.


The proof of Theorem 1 is left to §3. The following two remarks also
apply to Theorem 2 given below.


Remarks. (i) Equation (2.1) may have large solutions which certainly
cannot be represented by (2.7). For instance, the equation


d
dt


x(t) = 2te−2t1/2−t−1
x(t + t−1/2)


meets all the requirements of Theorem 1 and it has a large solution x(t) =
et2 .


(ii) From representation (2.7) we see that, if every solution of (2.1) is
exponentially bounded, then the space of solutions on [T − ρ,∞) can be
decomposed as S1 ⊕S2, where S1 is N dimensional with a basis X, and S2
consists of solutions tending to zero faster than any exponential.


Extend r to all of R ≡ (−∞,∞) by putting r(t) = 0 for t < τ and, for
k = 0, 1, 2, . . . and t ∈ R, let


rk+1(t) =
∫ t−r(t)


t
|rk(s)|ds, (2.8)


Ak+1(t) = A exp
{ ∫ t−r(t)


t
Ak(s)ds


}


(2.9)


with r0(t) = r(t) and A0(t) = A.







110 ZHANYUAN HOU AND J. S. CASSELL


Theorem 2. Assume that (2.2) holds and rM ∈ L(τ,∞) for some integer
M ≥ 0. Then, for sufficiently large T ≥ τ , (1.1) has solutions xn on
[T − ρ,∞) satisfying


xn(t) = exp
{ ∫ t


T
AM (s)ds


}


{en + o(1)} (n = 1, 2, . . . , N) (2.10)


as t →∞. Moreover, every exponentially bounded solution of (1.1) has the
asymptotic representation (2.7) with X composed of N solutions (2.10).


Proof. Since each Ak in (2.9) can be expanded as a power series in A with
scalar functions as coefficients, they all commute with A and with each
other. Let


c0 = |A| and ck+1 = |A| exp {ck max{ρ, σ}} (k ≥ 0). (2.11)


Then, from (2.9) and (2.11),


‖A0‖∞ = c0,


‖Ak+1‖∞ ≤ |A| exp {‖Ak‖∞max{ρ, σ}} ≤ ck+1 (k ≥ 0).
(2.12)


Since (2.11) implies ck ≤ ck+1 (k ≥ 0) and, for any a and b in C,


|ea − eb| ≤ emax{|a|,|b|}|a− b|,


we have


|Ak+1(t)−Ak(t)| ≤ ck+1


∣


∣


∣


∣


∫ t−r(t)


t
(Ak(s)−Ak−1(s))ds


∣


∣


∣


∣


(k ≥ 0),


where A−1 = 0. Inductively, from this and (2.8), we obtain


|Ak+1(t)−Ak(t)| ≤ c0c1 · · · ck+1|rk(t)| (k ≥ 0). (2.13)


By the transformation


x(t) = exp
{ ∫ t


T
AM (s)ds


}


y(t) (2.14)


(cf. Kato [2, p163]), equation (1.1) can be rewritten as


d
dt


y(t) = (AM+1(t)−AM (t)) y(t) + AM+1(t){y(t− r(t))− y(t)}. (2.15)


Then, since AM+1 is bounded and (2.13), along with the condition rM ∈
L(τ,∞), implies AM+1 −AM ∈ L(τ,∞), the conclusion follows from Theo-
rem 1 and (2.14).
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Remark. T ≥ τ required in Theorem 2 can be chosen in advance. From
(2.5), (2.15), (2.13), and (2.12), we see that it is sufficient for T to satisfy


c0c1 · · · cM+1


∫ ∞


T
|rM (s)|ds + εT cM+1 < 1. (2.16)


Such a choice is possible since rM ∈ L(τ,∞) and εT → 0 as T →∞.


Corollary. Assume that r ∈ Lp[τ,∞) for some p ∈ (1,∞). Then rM ∈
L(τ,∞) and the conclusion of Theorem 2 holds for M ≥ p.


The proof of Corollary is left to §3.
Remarks. (i) If r ∈ L(τ,∞), then certainly we can take M = 0. If


r ∈ Lp(τ,∞) with p > 1 and r is either monotone or Lipschitzian (as in
Kato [2]), then rk ∈ Lp/(k+1)(τ,∞) for each k and hence rM ∈ L(τ,∞) for
M ≥ p − 1. This is a consequence of the following inequalities which can
easily be shown from (2.8) by induction:


(a) |rk(t)| ≤ |r(t)|k+1 if r ≤ 0 and r is increasing,
(b) |rk(t + kρ)| ≤ |r(t)|k+1 if r ≥ 0 and r is decreasing,
(c) |rk(t)| ≤ (µ + 1)k(k+1)/2|r(t)|k+1 if |r(t)− r(s)| ≤ µ|t− s|.


(ii) For any particular value of p ≥ 1, we can further simplify the ex-
pression (2.10). If p = 1, then M = 0 and xn(t) = eA(t−T ){en + o(1)}. If
p ∈ (1, 2] and M = 1, we have A1(t) = Ae−Ar(t) = A − A2r(t) + L, where
L stands for a function in L(τ,∞), and we can replace (2.10) by


x̂n(t) = exp
{


At−A2
∫ t


T
r(s)ds


}


{en + o(1)} (n = 1, 2, . . . , N) (2.17)


as (x1, x2, . . . , xN ) = (x̂1, x̂2, . . . , x̂N )E for an invertible constant matrix E.
Hence, in view of Remark (i), our result includes that of Kato referred to
in §1. If p ∈ (1, 2] and M = 2, then


A2(t) = A exp
{ ∫ t−r(t)


t
Ae−Ar(s)ds


}


= A−A2r(t)−A3
∫ t−r(t)


t
r(s)ds + L


and we can replace (2.10) by


x̂n(t) = exp
{


At−A2
∫ t


T


(


r(s) + A
∫ s−r(s)


s
r(u)du


)


ds
}


{en + o(1)}. (2.18)


Similarly, we can simplify (2.10) for p > 2.
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§ 3. Proofs of Theorem 1 and Corollary to Theorem 2


For t ≥ τ and each k ∈ {1, 2, . . . , N}, we consider the integral equation


x(t) = ek −
∫ ∞


t
{F (s)x(s) + G(s) (x(s− r(s))− x(s))} ds. (3.1)


Lemma 1. Assume that the conditions of Theorem 1 are met and that
T ≥ τ satisfies (2.5). Then, for each k ∈ {1, 2, . . . , N}, (3.1) has a solution
on [T − ρ,∞) satisfying limt→∞ xk(t) = ek and xk(t) = xk(T ) for t ∈
[T − ρ, T ].


Proof. Let S be the set of x in C([T −ρ,∞),CN ) satisfying x(t) = x(T ) for
t ∈ [T − ρ, T ], x ∈ L∞(T,∞) and x(· − r(·)) − x ∈ L(T,∞). Then S is a
Banach space under the norm ‖x‖S = max {‖x‖∞, β‖x‖0}, where


‖x‖0 =
∫ ∞


T
|x(t− r(t))− x(t)|dt


and β > 0 is chosen so that βεT < 1 and ‖F‖1(T,∞) + 1
β ‖G‖∞(T,∞) < 1.


For any x ∈ S let


Ax(t) = −
∫ ∞


t
{F (s)x(s) + G(s) (x(s− r(s))− x(s))} ds (t ≥ T )


and Ax(t) = Ax(T ) for t ∈ [T −ρ, T ]. Then Ax is continuous and bounded
with


‖Ax‖∞ ≤ ‖F‖1‖x‖∞ + ‖G‖∞‖x‖0 ≤ (‖F‖1 +
1
β
‖G‖∞)‖x‖S.


Further,


|Ax(t−r(t))−Ax(t)| ≤
γ(t)
∫


max{β(t),T}


|F (s)x(s) + G(s) (x(s− r(s))− x(s))| ds,


where γ(t) = max{t, t − r(t)} and β(t) = min{t, t − r(t)}, and so, with µT


defined by (2.3),
∫ ∞


T
|Ax(t− r(t))−Ax(t)|dt ≤


≤
∫ ∞


T
|F (s)x(s) + G(s) (x(s− r(s))− x(s))|µT (s)ds ≤


≤ εT (‖F‖1‖x‖∞ + ‖G‖∞‖x‖0) .


Thus
β‖Ax‖0 ≤ ‖F‖1‖x‖∞ + ‖G‖∞‖x‖0.


Hence A is a contraction on S and the conclusion follows.
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Lemma 2. Assume that f : [R− σ1,∞) → CN satisfies


|f(t)| ≤ ω(t)‖f‖[t−σ1,t+σ2] (t ≥ R), (3.2)


where ω : [R,∞) → (0, 1) is decreasing, σ1 and σ2 are positive constants,
and ‖f‖[a,b] = supa≤s≤b |f(s)|. If


f(t) = o
(


exp
{


− 1
σ2


∫ t−2σ2


R
ln ω(s)ds


})


(3.3)


as t →∞, then


|f(t)| ≤ exp
{


1
σ1


∫ t


R
ln ω(s)ds


}


‖f‖[R−σ1,R] (t ≥ R). (3.4)


Proof. From (3.2),


‖f‖[t,t+σ2] ≤ ω(t)‖f‖[t−σ1,t+2σ2]


and hence, since ω(t) < 1,


‖f‖[t,t+σ2] ≤ ω(t) max
{


‖f‖[t−σ1,t], ‖f‖[t+σ2,t+2σ2]
}


. (3.5)


We shall show by induction that, for all t ≥ R and non-negative integer k,


‖f‖[t,t+σ2] ≤


≤max


{


ω(t)‖f‖[t−σ1,t],


(


k
∏


j=0


ω(t+jσ2)


)


‖f‖[t+(k+1)σ2,t+(k+2)σ2]


}


(3.6)


and


‖f‖[t+kσ2,t+(k+1)σ2] ≤
≤ ω(t + kσ2)max


{


‖f‖[t−σ1,t], ‖f‖[t+(k+1)σ2,t+(k+2)σ2]
}


. (3.7)


For k = 0 these both reduce to (3.5). Suppose they hold for k. Then, from
(3.7) with t replaced by t + σ2,


‖f‖[t+(k+1)σ2,t+(k+2)σ2] ≤ ω(t + (k + 1)σ2)×
×max


{


‖f‖[t+σ2−σ1,t+σ2], ‖f‖[t+(k+2)σ2,t+(k+3)σ2]
}


. (3.8)


Further,


‖f‖[t+σ2−σ1,t+σ2] ≤ max
{


‖f‖[t−σ1,t], ‖f‖[t,t+σ2]
}


≤
≤ max


{


‖f‖[t−σ1,t], ‖f‖[t+(k+1)σ2,t+(k+2)σ2]
}


by (3.6), and this together with (3.8) implies (3.7) with k replaced by k +1.
By substitution we also obtain (3.6) with k replaced by k + 1.
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Now, from (3.3), for any ε > 0,


|f(t)| ≤ ε exp
{


− 1
σ2


∫ t−2σ2


R
ln ω(s)ds


}


for all sufficiently large t. Hence, for any t ≥ R and large enough k,


ω(t + σ2)ω(t + 2σ2) · · ·ω(t + kσ2)‖f‖[t+(k+1)σ2,t+(k+2)σ2] ≤


≤ ε exp
{ k


∑


j=1


ln ω(t + jσ2)−
1
σ2


∫ t+kσ2


R
ln ω(s)ds


}


≤


≤ ε exp
{


− 1
σ2


∫ t


R
ln ω(s)ds


}


,


and so, by letting k →∞ in (3.6), we have


‖f‖[t,t+σ2] ≤ ω(t)‖f‖[t−σ1,t].


From this it follows that ‖f‖[t,t+σ1] ≤ ω(t)‖f‖[t−σ1,t] for all t ≥ R and hence
that, for R + mσ1 ≤ t < R + (m + 1)σ1, where m is an integer,


|f(t)|≤
m
∏


j=0


ω(t−jσ1)‖f‖[R−σ1,R] ≤ exp
{


1
σ1


∫ t


R
ln ω(s)ds


}


‖f‖[R−σ1,R].


Remark. There are functions that satisfy (3.2) but not (3.3). For in-
stance,


f(t) = exp
{


− 1
σ2


∫ t+δ


R
ln ω(s)ds


}


(t ≥ R)


with f(t) = f(R) for t ∈ [R− σ1, R], is such a function for any δ ≥ 0.


With the help of Lemmas 1 and 2 and an adaptation of the method used
in Driver [4], we now complete the proof of Lemma 2.


Proof of Theorem 1. Since each solution of (3.1) is also a solution of (2.1), by
Lemma 1 (2.1) has solutions xn (n = 1, 2, . . . , N) with asymptotic behavior
(2.6) and X = (x1, x2, . . . , xN ) is a matrix solution of (2.1). With r1 given
by (2.8), since (2.2) implies limt→∞ r1(t) = 0, there is T1 ≥ T + 2ρ such
that X−1 is bounded and ξ < 1 on [T1 − 3ρ,∞), where


ξ(t) =
(


‖X‖∞‖X−1‖∞‖G‖∞
)2


sup
s≥t


|r1(s)|. (3.9)


The substitution of x = Xy into (2.1) leads to


d
dt


y(t) = X−1(t)G(t)X(t− r(t)){y(t− r(t))− y(t)} (t ≥ T1 − 2ρ). (3.10)
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Integration of (3.10) from t to t− r(t) produces


z(t) =
∫ t−r(t)


t
X−1(s)G(s)X(s− r(s))z(s)ds (t ≥ T1 − ρ),


where z(t) = y(t− r(t))− y(t). Thus z(t) satisfies


z(t) =
∫ t−r(t)


t
X−1(s)G(s)X(s− r(s))×


×
∫ s−r(s)


s
X−1(u)G(u)X(u− r(u))z(u)du ds (3.11)


for t ≥ T1. By (3.9) and (3.11),


|z(t)| ≤ ξ(t)‖z‖[t−2ρ,t+2σ] (t ≥ T1). (3.12)


Now suppose that x(t) = O(eγt) as t →∞ for some γ > 0. Then certainly


x(t) = o
(


exp
{


− 1
2σ


∫ t−5σ


T1


ln ξ(s)ds
})


(3.13)


as t →∞, and, by the boundedness of X−1, (3.13) also holds if x is replaced
by y. Hence, from the definition of z,


z(t) = o
(


exp
{


− 1
2σ


∫ t−4σ


T1


ln ξ(s)ds
})


.


By Lemma 2, z satisfies


|z(t)| ≤ exp
{


1
2ρ


∫ t


T1


ln ξ(s)ds
}


‖z‖[T1−2ρ,T1] (t ≥ T1). (3.14)


For any δ > 0 and t ≥ T1, (3.10) and (3.14) imply that


|y(t + δ)− y(t)| ≤ γ0


∫ t+δ


t
exp


{


1
2ρ


∫ s


T1


ln ξ(θ)dθ
}


ds


for some constant γ0. Since ξ decreases to zero as t →∞ and ξ(t) < 1, we
have


|y(t + δ)− y(t)| ≤ γ0


(


exp
{


1
2ρ


∫ t


T1


ln ξ(θ)dθ
})


×


×
∫ t+δ


t
exp


{


(s− t)(2ρ)−1 ln ξ(T1)
}


ds ≤


≤ γ1 exp
{


1
2ρ


∫ t


T1


ln ξ(θ)dθ
}


(t ≥ T1), (3.15)
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where γ1 is a constant. Further, for any β > 0,


exp
{


1
2ρ


∫ t


T1


ln ξ(θ)dθ
}


= o
(


e−βt) (3.16)


as t → ∞. Then, by (3.15), (3.16) and the Cauchy convergence principle,
there is c ∈ CN such that limt→∞ y(t) = c. Letting δ → ∞ in (3.15), we
obtain |y(t)− c| = o


(


e−βt
)


as t →∞. Thus


x(t) = X(t)(y(t)− c) + X(t)c = X(t)c + o
(


e−βt) ,


i.e., every exponentially bounded solution of (2.1) has form (2.7).


Remark. Any solution of (2.1) that is not of form (2.7) must fail to satisfy
(3.13). This, by (3.9), relates the separation of large solutions of (2.1) from
those in (2.7) to the rate at which r1 tends to zero.


Lemma 3. If r ∈ Lp(τ,∞) for some p ∈ [1,∞), then rn ∈ Lβn(τ,∞),
where


1
βn


=
n + 1


p
− n


p2 +
n− 1


p3 − · · ·+ (−1)n 1
pn+1 .


Proof. We show by induction that


|rn(t)| ≤ |r(t)|ηnqn(t), (3.17)


where


ηn = 1− 1
p


+
1
p2 − · · ·+ (−1)n 1


pn ,


for some function qn satisfying


‖qn‖[t−ρ,t+σ] ∈ Lβn−1(τ,∞). (3.18)


We take q0(t) = 1 for t ≥ τ and β−1 = ∞, and take qn(t) = 0 for t < τ and
all n. The conclusion of the lemma follows from (3.17) with (3.18) since


ηn


p
+


1
βn−1


=
1
βn


. (3.19)


Suppose then that (3.17) with (3.18) holds for a particular value of n. Then


|rn+1(t)| ≤ ‖qn‖[t−ρ,t+σ]


∣


∣


∣


∣


∫ t−r(t)


t
|r(s)|ηnds


∣


∣


∣


∣


≤


≤ ‖qn‖[t−ρ,t+σ]|r(t)|1−ηn/p
∣


∣


∣


∣


∫ t−r(t)


t
|r(s)|pds


∣


∣


∣


∣


ηn/p


by Hölder’s inequality. Thus we have


|rn+1(t)| ≤ |r(t)|ηn+1qn+1(t)
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with


qn+1(t) = ‖qn‖[t−ρ,t+σ]


∣


∣


∣


∣


∫ t−r(t)


t
|r(s)|pds


∣


∣


∣


∣


ηn/p


(t ≥ τ).


Then


‖qn+1‖[t−ρ,t+σ] ≤ ‖qn‖[t−2ρ,t+2σ]


∣


∣


∣


∣


∫ t+2σ


t−2ρ
|r(s)|pds


∣


∣


∣


∣


ηn/p


and there is in Lβn(τ,∞) by (3.19).


Proof of Corollary to Theorem 2. By Lemma 3, rn ∈ Lβn(τ,∞). We
have


1
βn


=
(n + 1)pn+2 + (n + 2)pn+1 + (−1)n


pn+1(p + 1)2
,


so βn ≤ 1 if n ≥ p. Thus rM ∈ L(τ,∞) for M ≥ p.


§ 4. Elimination of Large Solutions


In this section we give a condition under which (1.1) or (2.1) cannot have
any large solutions.


Lemma 4. Let {tn} be a real sequence satisfying tn → ∞ as n → ∞
and let ω : [R,∞) → (0, 1) be decreasing. If f : [R− σ1,∞) → CN satisfies


|f(t)| ≤ ω(t)‖f‖[t−σ1,tn] (4.1)


for each tn ≥ R and all t ∈ [R, tn], where σ1 > 0 is a constant, then
inequality (3.4) holds.


Proof. For each tn ≥ R and any t ∈ [R, tn], the conditions imply that


|f(t)| ≤ ‖f‖[t,tn] ≤ ω(t)‖f‖[t−σ1,tn].


Hence ‖f‖[t−σ1,tn] = ‖f‖[t−σ1,t] and


|f(t)| ≤ ω(t)‖f‖[t−σ1,t]. (4.2)


Since limn→∞ tn = ∞, (4.2) actually holds for all t ≥ R. The conclusion
follows as in the last part of the proof of Lemma 2.


Definition. A point t0 ≥ τ is said to be a zero-advanced point (ZAP)
of (1.1), (1.3), or (2.1) if t− r(t) ≤ t0 for all t ∈ [τ, t0].


Note that in the retarded case, r(t) ≥ 0, every point t0 ≥ τ is a ZAP.
As a simple illustration of the case when r changes sign, consider (1.1) with
r(t) = t−α sin βt, where α, β > 0. Clearly, the points t = (2n + 1)π/β are
ZAPs for all sufficiently large integer n, and the corollary of Theorem 4,
below, will apply.







118 ZHANYUAN HOU AND J. S. CASSELL


Theorem 3. Assume that (2.1) has a sequence {tn} of ZAPs satisfying
limn→∞ tn = ∞. Then, under the conditions of Theorem 1, every solution
of (2.1) has the asymptotic representation (2.7).


Proof. We refer to the proof of Theorem 1. Take any tk ≥ T1. Since
t− r(t) ≤ tk for all t ∈ [τ, tk], from (3.11) we derive


|z(t)| ≤ ξ(t)‖z‖[t−2ρ,tk] (T1 ≤ t ≤ tk) (4.3)


instead of (3.12). Then Lemma 4 implies (3.14). Therefore, every solution
of (2.1) on [T − ρ,∞) has representation (2.7).


Theorem 4. Assume that (1.1) has a sequence {tn} of ZAPs satisfying
limn→∞ tn = ∞ and that the conditions of Theorem 2 are met. Then every
solution of (1.1) has the asymptotic representation (2.7) with X composed
of N solutions (2.10).


Proof. By the proof of Theorem 2, (1.1) is transformed to (2.15). Then the
conclusion follows from Theorem 3.


Corollary. Assume that r ∈ Lp(τ,∞) for some p ∈ (1,∞) and that
(1.1) has a sequence {tn} of ZAPs satisfying limn→∞ tn = ∞. Then, for
M ≥ p, rM ∈ L(τ,∞) and (1.1) has N solutions of form (2.10). Moreover,
every solution on [T − ρ,∞) can be represented by (2.7) with X composed
of N solutions (2.10).


§ 5. Asymptotic Representation for Solutions of (1.3)


As a consequence of Theorems 1 and 3, some results for equation (1.3)
can be easily obtained. Extend A and B to R by letting A(t) = B(t) = 0
for t < τ and, for t ∈ R, let


Bk+1(t) = B(t) exp
{ ∫ t−r(t)


t
(Bk(s) + A(s)) ds


}


(k ≥ 0) (5.1)


with B0(t) = B(t).


Theorem 5. Let A and B have the forms stated at the end of §1. As-
sume that A and B are bounded, (2.2) holds, and rM ∈ L(τ,∞). Then, for
sufficiently large T ≥ τ , (1.3) has N solutions xn on [T − ρ,∞) satisfying


xn(t) = exp
{ ∫ t


T
(BM (s) + A(s)) ds


}


{en + o(1)} (1 ≤ n ≤ N) (5.2)


as t →∞, where BM is determined by (5.1). Moreover, every exponentially
bounded solution of (1.3) has the asymptotic representation (2.7) for arbi-
trary β > 0, where X is now composed of xn in (5.2). If, in addition, there
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is a sequence {tn} of ZAPs of (1.3) satisfying limn→∞ tn = ∞, then every
solution on [T − ρ,∞) has form (2.7).


The proof of Theorem 5 is similar to that of Theorems 2 and 4.
When A is not bounded, the conclusion of Theorem 5 may not be true.


However, it is possible to determine the asymptotic behavior of solutions of
(1.3) under other conditions. Let Ã(t) =


∫ t−r(t)
t A(s)ds.


Corollary. Assume that B and Ã are bounded, (2.2) holds, and rM ∈
L(τ,∞). Then, for sufficiently large T ≥ τ , (1.3) has N solutions xn on
[T − ρ,∞) satisfying


xn(t) = exp
{ ∫ t


T
(BM+1(s) + A(s)) ds


}


{en + o(1)} (1 ≤ n ≤ N) (5.3)


as t →∞, where BM+1 is given by (5.1). Moreover, if x is a solution of (1.3)


of order exp
{


∫ t
T A(s)ds + λt


}


for some λ > 0, then x has the asymptotic
form


x(t) = X(t)c + o
(


exp
{∫ t


T
A(s)ds− βt


})


(5.4)


as r → ∞, where X consists of N solutions (5.3), c ∈ CN depends on x
and β > 0 is arbitrary. Further, if there is a sequence {tn} of ZAPs of
(1.3) satisfying limn→∞ tn = ∞, then every solution on [T −ρ,∞) has form
(5.4).


Proof. Let


x(t) = exp
{∫ t


T
(B(s) + A(s)) ds


}


y(t).


Then (1.3) is changed to


d
dt


y(t) = −B(t)y(t) + B1(t)y(t− r(t)). (5.5)


The conclusion follows by applying Theorem 5 to (5.5).


Remarks. (i) The condition rM ∈ L(τ,∞) in Theorem 5 and its corollary
will be met for some M if r ∈ Lp(τ,∞) for some p ∈ [1,∞); M can be chosen
as in the corollary of Theorem 2 or the remark following that corollary.


(ii) We note that, if Λ is a diagonal matrix whose elements satisfy a
suitable dichotomy condition and if R and S are small at infinity, then the
equation


d
dt


x(t) = {Λ(t) + R(t)}x(t) + S(t)x(t− r(t)) (5.6)


can be treated by the methods of Cassell and Hou [5].
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