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ON THE BIFURCATION OF FLOWS OF A
HEAT-CONDUCTING FLUID BETWEEN TWO ROTATING

PERMEABLE CYLINDERS

L. SHAPAKIDZE

Abstract. Sufficient conditions are found for the bifurcation of flow
of a viscous heat-conducting fluid between two rotating permeable
cylinders.

This paper deals with second stationary flows generated in a heat-con-
ducting fluid contained between two permeable cylinders rotating in the
same direction. Among other papers where similar problems are treated
mention should be made of [1–4] for the case of a noncompressible fluid and
[5] for the case of a heat-conducting fluid. The permeability of the cylinders
changes the character of the obtained operator equations, which results
in nonsymmetricity of the kernels of the corresponding integral equations.
This fact necessitates to another method of investigation of this problem
and this is what we do here.

1. Let a homogeneous viscous heat-conducting fluid fill up the hollow
space between two rotating permeable cylinders heated up to different tem-
peratures. The radii, angular velocities, and temperatures of the internal
and outer cylinders are denoted by R1, Ω1, θ1 and R2, Ω2, θ2, respectively.
It is assumed that there are no external mass forces, the velocity of the
flow across the cross-section of the hollow space between the cylinders is
zero, and the fluid inflow through one cylinder is equal to the fluid outflow
through the other. The scales of length, velocity, and temperature will be
denoted by R1, Ω1R1, θ1, while the density scale will be understood as
the fluid density at the temperature θ1. Under these assumptions, if we
write the Navier–Stokes equations and heat conductivity equation in terms
of cylindrical coordinates (r,ϕ,z) with the axis z coinciding with the axis
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of the cylinders, then they will admit the following exact solution with the
velocity vector ~V0(v0r, v0ϕ, v0z), temperature T0, and pressure Π0:

v0r =
κ0

r
, v0ϕ =







arκ+1 + b/r, κ 6= −2,
a1 ln r + 1

r
, κ = −2,

v0z = 0, T0 = c1 + c2rκ1 ,

Π0 =

r
∫

1

{

[

1− βθ1(c1 + c2rκ1)
]

(

arκ +
b
r2

)2
r +

κ2
0

r3

}

dr;

(1.1)

here

a =
ΩR2 − 1
Rκ+2 − 1

, b = 1− a, a1 =
ΩR2 − 1

ln R
,

c1 =
θ −Rκ1

1−Rκ1
, c2 =

1− θ
1−Rκ1

, κ0 =
s

Ω1R2
1
, κ =

s
ν

,

κ1 =
s
χ

, θ =
θ2

θ1
, R =

R2

R1
,

s is the radial flow per cylinder length unit; β, ν and χ are, respectively, the
thermal expansion, kinematic viscosity, and heat conductivity coefficients.

Our task here consists in finding axisymmetric stationary flows which
differ from (1.1), are periodic with respect to z with period 2π/α0, and are
such that the velocity flow across the cross-section of the cylinder cavity is
zero.
2. To find solutions V ′, Π′, T ′ of our problem in the form ~V ′ = ~V0 +
~v(vr, vϕ, vz), T ′ = T0 + c2PT , Π′ = Π0 + Π/λ, we obtain the following
system of perturbation equations:

∆vr −
vr

r2 −
∂Π
∂r

= λ
[

(~v,∇)vr −
v2

ϕ

r
− 2ω1vϕ +

+
κ0

r

(∂vr

∂r
− vr

r

)

+ Raω2T
]

,

∆vϕ −
vϕ

r2 =λ
[

(~v,∇)vϕ+
vrvϕ

r
−g1(r)vr+

κ0

r

(∂vϕ

∂r
+

vϕ

r

)]

,

∆vz −
∂Π
∂z

= λ
[

(~v,∇)vz +
κ0

r
∂vz

∂r

]

,

∆T = λP
[

(~v,∇)T +
κ0

r
∂T
∂r

+ g2(r)vr

]

,

∂vr

∂r
+

vr

r
+

∂vz

∂z
= 0;

(2.1)

~v
∣

∣

r=1,R = 0, T
∣

∣

r=1,R = 0, (2.2)
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where Ra = βc2θ1P is the Rayleigh number, P = ν
χ is the Prandtl number,

λ = Ω1R2
1

ν is the Reynolds number, ω1 = v0ϕ

r , ω2 = ω2
1r, κ1 = κP ,

g1(r) =

{

−(κ + 2)arκ , κ 6= −2,

−a1

r2 , κ = −2,
g2(r) = κrκP−1,

(~V ,∇) = vr
∂
∂r

+ vz
∂
∂z

, ∆ =
∂2

∂r2 +
1
r

∂
∂r

+
∂2

∂z2 ,

and the components vr, vϕ, vz,T must satisfy the following conditions:
r
∫

1
vz(r, z)r dr = 0, ~V , T are periodic with respect to z with period 2π/α0;

vr, vϕ, T are odd functions, and vz is an even function with respect to z.
Problem (2.1)–(2.2) is written in terms of the Boussinesq approximation

[6] assuming that the flow velocity through the cylinder walls is such that
it is not influenced by perturbations arising in the fluid between the two
cylinders.

To flow (1.1) there corresponds a trivial solution of problem (2.1)–(2.2)
and we assume that for small λ this system has a unique solution ~v = T = 0.

The linearized problem corresponding to system (2.1)–(2.2)

∆ur −
ur

r2 −
∂Π1

∂r
= λ

[

− 2ω1uϕ +
κ0

r

(∂ur

∂r
− ur

r

)

+ Ra ω2T1

]

,

∆uϕ −
uϕ

r2 = λ
[

− g1(r)ur +
κ0

r

(∂uϕ

∂r
+

uϕ

r

)]

,

∆uz −
∂Π1

∂z
= λ

κ0

r
∂uz

∂r
,

∆T1 = λP
[κ0

r
∂T1

∂r
+ g2(r)ur

]

,

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0;

(2.3)

~u(ur, uϕ, uz)
∣

∣

r=1,R = 0, T1
∣

∣

r=1,R = 0 (2.4)

and the conjugate problem of (2.3)–(2.4) with respect to the scalar product

[~u, ~ψ] =

R
∫

1

π/α0
∫

−π/α0

~u · ~ψ r dr dz
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can be respectively written as

∆ψr −
ψr

r2 =
∂Q
∂r

+ λ
[

− g1(r)ψϕ −
κ0

r

(∂ψr

∂r
+

ψr

r

)

+ Pg2(r)T2

]

,

∆ψϕ −
ψϕ

r2 = λ
[

− 2ω1ψr −
κ0

r

(∂ψϕ

∂r
− ψϕ

r2

)]

,

∆ψz =
∂Q
∂z

− λ
κ0

r
∂ψz

∂r
,

∆T2 = λP
[

− κ0

r
∂T2

∂r
+

Ra
P

ω2ψr

]

,

∂ψr

∂r
+

ψr

r
+

∂ψz

∂z
= 0;

(2.5)

~ψ(ψr, ψϕ, ψz)
∣

∣

r=1,R = 0, T2
∣

∣

r=1,R = 0. (2.6)

Let us consider the set M of twice continuously differentiable solenoidal
pairs ~V {~v(vr, vϕ, vz), T} which are defined in the closed domain {1 ≤ r ≤ R,
−∞ < z < +∞} and which are axisymmetric, vanish for r = 1, R, have a
flow across the cross-section of the hollow space between the cylinders equal
to zero, and are such that vr, vϕ, T are even functions and vz is an odd
function with respect to z. Denote by H1 the Hilbert space obtained by
completion of the set M with respect to the norm generated by the scalar
product

(~V · ~V I)H1 = −
π/α0
∫

−π/α0

dz

R
∫

1

{(

∆vr −
vr

r2

)

vI
r +

+
(

∆vϕ −
vϕ

r2

)

vI
ϕ + ∆vz · vI

z + ∆T · T I
}

rdr, ~V I ∈ M.

Following [7], problem (2.1)–(2.2) can be reduced to the nonlinear ope-
rator equation

~V = λK~V . (2.7)

The linearized problem (2.3)–(2.4) and its conjugate problem will respec-
tively satisfy the operator equations

~U = λA~U, (2.8)

~Ψ = λA∗~Ψ. (2.9)

Applying the results of [7, 8], we easily ascertain that the operators K, A,
and A∗ are completely continuous in the space H1. The operator A is the
Frechet differential of the operator K at the point ~V = 0, and A∗ is the
conjugate operator of A in the space H1.



ON THE BIFURCATION OF FLOWS 571

To apply the bifurcation theory of nonlinear operator equations it is nec-
essary to investigate the spectrum of the linear operator A, since, as follows
from Krasnoselskii’s results [9], the bifurcation points of the nonlinear oper-
ator K can be only having the odd multiplicity (in particular, simple ones)
characteristic numbers of its Frechet differential at the point ~V = 0.

3. Theorem. Let the following conditions be fulfilled: κRa > 0 and the
functions ωk(r), gk(r) (k = 1, 2) are positive throughout the interval (1, R).
Then for all α0, except some countable set, the operator A has at least one
positive simple characteristic number λ0 which is the bifurcation point of the
nonlinear operator K. This characteristic number is less than the moduli of
all other characteristic numbers of the operator A.
Proof. Using a Fourier series expansion, the solution of the linear problem
(2.3)–(2.4) can be represented as a linear combination of solutions of the
form

{ur, uϕ,Π1, T1} = {u(r), v(r), p1(r), τ(r)} cos αz,

uz = w sin αz, α = nα0 (n = 1, 2, . . . ),

which leads us to the spectral problem
[

L− κ
r

( d
dr
− 1

r

)

− α2
]

(L− α2)u = λ(2α2ω1v − α2Ra ω2τ),

−
[

L− κ
r

( d
dr

+
1
r

)

− α2
]

v = λg1(r)u,

−
(

L− κP
r

d
dr

+
1
r2 − α2

)

τ = −λPg2(r)u;

(3.1)

u
∣

∣

r=1,R = v
∣

∣

r=1,R =
du
dr

∣

∣

∣

r=1,R
= τ

∣

∣

r=1,R = 0, (3.2)

where

L =
d
dr

( d
dr

+
1
r

)

, w(r) = − 1
αr

d
dr

(ru),

p1 = − 1
α

( d2

dr2 +
1− κ

r
d
dr
− α2

)

w.

We introduce the integral operators

Gkf =

R
∫

1

Gk
κ(r, ρ)f(ρ)ρ dρ (k = 1, 2, 3),

where Gk
κ are the Green functions of the operators on the left-hand sides of

system (3.1) at the boundary conditions (3.2).
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Denote by H0
1 the Hilbert space L2 with the weight σ(r) = r on the

segment [1, R] with the scalar product

(ψ1, ψ2)H0
1

=

R
∫

1

ψ1(r)ψ2(r)r dr.

Lemma 1. The kernels Gk
κ (k = 1, 2, 3) are nonsymmetric and oscilla-

tory.

The lemma can be easily proved by the methods of Krein [10]. The
kernels G1

κ and G2
κ are proved to be oscillatory in [11]. As for G3

κ, the fact
that it is oscillatory follows from the representation

−
(

L− κP
r

d
dr

+
1
r

)

τ =
rκP

ω0

d
dr

r1−κP ω2
0

d
dr

τ
ω0

,

where ω0 = IκP
2

is the modified Bessel function which is a solution of the
equation

(

L− κP
r

d
dr

+
1
r2 − α2

)

ω0 = 0.

By inverting the operators on the left-hand sides of system (3.1) we obtain

u = λ(2α2G1ω1(r)v −Ra α2G1ω2(r)τ),

v = λG2g1(r)u,

τ = −λPG3g2(r)u.
(3.3)

The spectral problem (3.3) is equivalent to an integral equation

u = µBu, (3.4)

where µ = 2α2λ2, B = B1 + B2,

B1 = G1ω1(r)G2g1(r), B2 =
1
2

Ra PG1ω2(r)G3g2(r).

Lemma 1 implies that the kernels of the integral operators B1 and B2

are nonsymmetric oscillatory ones.
Similarly, in finding a solution of the conjugate problem (2.5)–(2.6) in

the form

{ψr, ψϕ, Q, T2} = {u1(r), v1(r), q(r), τ1(r)} cosαz,

ψz = w1(r) sin αz,
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we come to the problem of defining the eigenfunctions:

(L− α2)
[

L +
κ
r

( d
dr

+
1
r

)

− α2
]

u1 = λα2g1(r)v1 − λα2Pg2(r)τ1,
[

L +
κ
r

( d
dr
− 1

r

)

− α2
]

v1 = −2λω1(r)u1,
(

L +
κP
r

d
dr

+
1
r2

)

τ1 = λRaω2(r)u1,
(3.5)

u1
∣

∣

r=1,R =
du1

dr

∣

∣

∣

r=1,R
= v1

∣

∣

r=1,R = τ1
∣

∣

r=1,R = 0, (3.6)

where

q = − 1
α

( d2

dr2 +
1 + κ

r
d
dr
− α2

)

w1, w1 = − 1
αr

d
dr

(ru1).

Thus the linearized problem (2.3)–(2.4), equivalent to the operator equa-
tion (2.8) in the Hilbert space H1, can be reduced, after separation of vari-
ables, to the integral equation (3.4). The characteristic numbers of the
operators A and B are related by the relation µ = 2α2λ2.

Lemma 2. If κRa > 0 and the functions ωk(r), gk(r) (k = 1, 2) are
positive throughout the interval (1, R), then the operator B is u0-positive in
the cone of non-negative functions.

The proof of this lemma follows from the results of [12] and Lemma 1.
Similar statements for the corresponding operator represented as the sum
of oscillatory operators can be found in [13].

Lemma 2 implies that for any value of α0 the operator B has at least one
positive simple characteristic number µ0 [12]. In particular, this means that
the rank of µ0 (i.e., dim(Ker (B − µ0I)), where I is the identical operator)
is equal to unity (see [7]).

Lemma 3. Let µ > 0 be the characteristic number of the operator B
whose rank is equal to unity. Then λ = ±

√

µ/2α2 is the characteristic
number of the operator A whose rank is also equal to unity.

To prove a similar lemma for the case of solid cylinders and a noncom-
pressible fluid [1, 2] it is essential to assume that the operator B is symmet-
ric, since the operators contained in it are symmetric. Then the correspond-
ing operator B is a symmetric oscillatory operator. In the presence of the
parameter s, i.e., when the cylinder walls are permeable, the symmetricity
of the operator B is violated and the corresponding operator B is a non-
symmetric oscillatory one [11]. In the case of a heat-conducting fluid and
permeable cylinder walls the corresponding operator B is, as shown above,
a nonsymmetric, u0-positive one in the cone of non-negative functions.
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Proof. We calculate the scalar product (~U ·~Ψ), where ~U , ~Ψ are the eigenvec-
tors of the operators A and A∗. Multiplying the equations of system (2.3)
by ψr, ψϕ, ψz, T2, respectively, and taking into account (3.1) and (3.5),
also performing integration by parts and some simple transformations we
obtain

(~U · ~Ψ)H1 = λ
π
α0

R
∫

1

{(

g1(r)u−
κ0

r

(dv
dr

+
v
r

))

v1 +

+
(

2ω1(r)v −Raω2(r)τ
)

u1 −
1
α2

κ0

r

(du1

dr
+

u1

r

)

(L− α2)u−

−
(κ0

r
dτ
dr

+ g2(r)
)

Pτ1

}

r dr =

= λ
π
α0

R
∫

1

{(

g1(r)u−
κ0

r

(dv
dr

+
v
r

))

v1 +
(

2ω1(r)v −Ra ω2(r)τ
)

u1 +

+
1
α2

κ0

r

( d
dr
− 1

r

)

(L− α2)u · u1 −
(κ0

r
dτ
dr

+ g2(r)u
)

Pτ1

}

r dr =

=
π
α0

R
∫

1

{ 1
α2 (L−α2)2u · u1−(L−α2)v · v1−

(

L+
1
r2−α2

)

τ · τ1

}

r dr.

Denote by H0
2 the Hilbert space of square-summable vector-functions

~V (u, v, τ) with the scalar product

(~V · ~V I)H0
2

=

R
∫

1

(u · u1 + v · v1 + τ · τ1)r dr, ~V I(u1, v1, τ1) ∈ H0
2 .

Since the characteristic number µ > 0 of the operator B is simple, one
can easily verify that ~V (u, v, τ) ∈ H0

2 , where (u, v, τ) is a solution of problem
(3.1)–(3.2), is also a simple eigenvector of this system.

Let us consider the linear space N of the vector-functions defined on
the segment [1, R] and satisfying the following conditions: u are continu-
ously differentiable functions on the segment [1, R] up to the fourth order

inclusive with the condition u|r=1,R =
du
dr
|r=1,R = 0; v, τ are continuously

differentiable functions up to the second order inclusive with the boundary
condition v|r=1,R = τ |r=1,R = 0.

Since the operators r(L−α2)2, −r(L−α2), −r(L+ 1
r2 −α2) are positive

definite, by closing the linear space N in the norm generated by the scalar
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product

(~V ·~V I)H2 =

R
∫

1

[ 1
α2 (L−α2)2u · uI−(L−α2)v · vI−

(

L+
1
r2−α2

)

τ · τ I
]

r dr,

~V (u, v, τ), ~V I(uI, vI, τ I) ∈ H2,

we obtain the complete energetic Hilbert space H2 (see [14]).
Rewrite problems (3.1)–(3.2) and (3.3)–(3.4) in the space H2 in the op-

erator form:
~V = λK1~V , ~V1 = λK∗

1
~V1, ~V , ~V1 ∈ H2,

where K1 and K∗
1 are completely continuous operators acting in the space

H2 and satisfying an additional requirement that the integral identities

(K1~V · ~Φ)H2 = λ

R
∫

1

{[

2ω1v +
κ0

rα2

( d
dr
− 1

r

)

(L− α2)u−

−Ra ω2τ
]

Φr −
[κ0

r

( d
dr

+
1
r

)

v − g1(r)u
]

Φϕ −

−
[

Pg2(r)u +
κP
r

d
dr

]

Φz

}

r dr,

(K∗
1
~V1 · ~Φ)H2 = λ

R
∫

1

{[

g1(r)v1 −
κ0

α2 (L− α2)
1
r

( d
dr

+
1
r

)

u1 −

−Pg2(r)τ1

]

Φr +
[

2ω1(r)u1 +
κ0

r

( d
dr
− 1

r

)]

Φϕ +

−
[

Ra ω2(r)u1 −
κP
r

dτ1

dr

]

Φz

}

r dr

be fulfilled for any vectors ~V , ~V1, ~Φ ∈ H2 (see [7]).
Performing integration by parts, we readily obtain the equality

(K∗
1
~V1, ~Φ)H2 = (~V1,K1~Φ)H2 .

Therefore K1 is the conjugate operator of K∗
1 in the space H2.

We use the results of [14], in particular the theorem stating that to each
element from H2 there may correspond only one element from H0

2 . Note
that in that case to different elements from H2 there correspond different
elements from H0

2 . Hence it is not difficult to show that if the equations

~V = λK1~V , ~W = λK1 ~W + ~V , ~V , ~W ∈ H2,
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where K1 is a completely continuous operator in H2, are fulfilled, then in
the space H0

2 the equations

~̃V = λK1
~̃V , ~̃W = λK1

~̃W + ~̃V , ~̃V , ~̃W ∈ H0
2 ,

will also have solutions.
Indeed, let us be given the equation

~V = λK1~V , ~V ∈ H2.

Let us consider a sequence ~Vn∈H2 such that

‖~V − ~Vn‖H2 → 0, ‖ ~̃V − ~̃V n‖H0
2
→ 0.

The existence of such a sequence follows from the proof of the above-
mentioned theorem from [14].

We write the equality

~V − ~Vn = λK1(~V − ~Vn) + δn, (3.7)

where ~Vn ∈ H2, δn = λK1~Vn − ~Vn.
Then we have

‖δn‖H2 ≤ ‖~V − ~Vn‖H2 + λ‖K1(~V − ~Vn)‖H2 .

Using the inequality from [14]

‖~V ‖H0
2
≤ ‖~V ‖H2

we find that ‖δn‖H2 → 0 implies ‖δn‖H0
2
→ 0.

Passing in (3.7) to the limit in H0
2 , we obtain

~V − ~̃V = λ(K1~V −K1
~̃V )

which gives
~̃V = λK1

~̃V ,

where ~̃V ∈ H0
2 .

By a similar reasoning one can ascertain that if the equation

~W = λK1 ~W + ~V , ~V , ~W ∈ H2,

has a solution, then the corresponding equation

~̃W = λK1
~̃W + ~̃V , ~̃V , ~̃W ∈ H0

2 ,
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will be fulfilled in H0
2 , which is impossible because ~V ∈ H0

2 is a simple
eigenvector and, accordingly, λ is a simple characteristic number of problem
(3.1)–(3.2). Hence it follows that (~V · ~V1)H2 6= 0 [7]. Now we obtain

(~U · ~Ψ)H1 =
π
α0

(~V · ~V1)H2 6= 0.

Therefore the rank of the characteristic number λ of the operator A is
equal to unity.

Next, using the arguments from [1], we show that λ0 =
√

µ0

2α2
0

is the

simple characteristic number of the operator A.
Since the operator B is u0-positive, the characteristic number µ0 is less

than the moduli of all other characteristic numbers of the operator B [9].
But in that case λ0 is less than the moduli of all other characteristic numbers

λ =
√

µ
2α2 of the operator A.

Thus we have shown that under the conditions of the theorem the opera-
tor A has at least one simple characteristic number which is the bifurcation
point of the operator K. In that case the main flow (1.1) gives rise to
secondary axisymmetric stationary flow bifurcations.

One can easily verify that the conditions of the theorem are fulfilled
when the temperature of the internal cylinder exceeds the temperature of
the external cylinder (θ < 1) in the case of fluid inflow through the external
cylinder (κ < 0), and, conversely, when the temperature of the external
cylinder exceeds the temperature of the internal cylinder (θ > 1) in the
case of fluid inflow through the internal cylinder (κ > 0), while the angular
velocities and radii are related through the relation 0 < Ω < 1

R2 .
Note that if Ra = 0 then for any κ the condition 0 < Ω < 1

R2 is the
sufficient one for secondary axisymmetric stationary flows to arise in the
noncompressible fluid between two rotating permeable cylinders. Moreover,
for each α0 we have a sequence of simple characteristic numbers of the
operator A, each of which is the bifurcation point of the corresponding
nonlinear operator [11].
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