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ON MCELIECE’S THEOREM

N. LOMADZE

Abstract. A new simple proof of the well-known theorem of McEliece
about the complete weight enumerators of ternary self-dual codes is
given.

0. Introduction. Let C be a ternary linear code of length n. The complete
weight enumerator of C is the homogeneous polynomial

WC(x0, x1, x2) =
∑

i+j+k=n

Aijkxi
0x

j
1x

k
2 ,

where Aijk stands for the number of codewords that consist of i zeros, j
ones, and k twos. One knows well that the function WC(x0, x1, x2) satisfies
the MacWilliams identity

WC(x0, x1, x2) =

= WC

( 1√
3
(x0 + x1 + x2),

1√
3
(x0 + ωx1 + ω2x2),

1√
3
(x0 + ω2x1 + ωx2)

)

(here and below ω = e2πi/3); in other words, the polynomial WC is invariant
under the linear transformation

α =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 .

Further, since the weight of any codeword of C is divisible by 3, one has

WC(x0, x1, x2) = WC(x0, ωx1, ωx2);
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this is equivalent to saying that the polynomial WC is invariant under the
linear transformation

β =





1 0 0
0 ω 0
0 0 ω



 .

Thus the complete weight enumerator of the ternary self-dual code C is
invariant relative to the group generated by the matrices α and β. Let G
denote this group. This is a group of cardinality 96. (See [1].)

The question of describing all invariants of this group arises naturally.
This was done by McEliece using the method of invariant theory for finite
groups. (See [1,2].) In this way McEliece obtained

Theorem. Let x = x0, y = x1 + x2 and z = x1 − x2. Then

WC(x0, x1, x2) ∈
5
⊕

k=0
hkz2kC[f, ψ3, z12],

where

f = x4 + xy3, ψ = y(8x3 − y3), ϕ = 8x6 − 20x3y3 − y6,

h0 = 1, h1 = ϕψ, h2 = ψ2, h3 = ϕ, h4 = ψ, h5 = ϕψ2.

The goal of this paper is to carry out a proof of this important theorem
which, we believe, is much simpler and clearer than that given by McEliece
[1].

Our approach is based on the following observation. The whole space on
which G acts splits up into a direct sum of two invariant irreducible sub-
spaces, two-dimensional and one-dimensional ones. The “restriction” of G
on the two-dimensional subspace is therefore a two-dimensional group gen-
erated by reflections. Finding invariants of such a group (both absolute and
relative) is very easy. Knowledge of all such invariants leads immediately
to McEliece’s result.

It should be pointed out that the idea to apply invariant theory of finite
groups to coding theory goes back to Gleason. Gleason himself described
complete weight enumerators of binary codes. McEliece’s theorem is one of
the most interesting generalizations of Gleason’s theorem.

Concluding the introduction, we would like to thank the anonymous re-
feree for useful suggestions.

1. Preliminaries. We recall here the definitions and facts concerning in-
variant theory which are needed. For details we refer to [3–6]. We restrict
ourselves to the two-dimensional case.

Let V be a two-dimensional complex vector space, and let R = C[x, y] be
the ring of polynomials in the variables x and y with complex coefficients.
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Fix a basis (e1, e2) in V and identify via it transformations of V with non-
singular complex 2×2 matrices, and polynomials in R with complex valued
functions on V .

The group GL2(C) of all nonsingular 2 × 2 matrices acts on R in the
following way. If

M =
(

a b
c d

)

∈ GL2(C) and f = f(x, y) ∈ R,

then
Mf = f(ax + by, cx + dy).

Let Γ be a finite subgroup in GL2(C). A polynomial f ∈ R is said to be
an invariant of Γ if

Mf = f for all M ∈ Γ.

Clearly, the invariants of Γ form a subring in R, denoted by RΓ.
A character of the group Γ is a homomorphism of Γ into the multiplicative

group of complex numbers. If χ is a character of Γ, then a polynomial f ∈ Γ
is called a χ-invariant of Γ if

Mf = χ(M)f for all M ∈ Γ.

It is clear that the χ-invariants of Γ form a RΓ-submodule in R which is
denoted by RΓ

χ.
A reflection of V is a transformation one of whose eigenvalues is equal to

1 and the other is distinct from 1. If P is a reflection, then the eigenvectors
corresponding to 1 form a one-dimensional subspace in V , i.e., a line. This
is called the reflecting line of P .

From now on we assume that Γ is generated by reflections. Let χ be a
character of Γ and H be a line. Denote by Γ(H) the subgroup in Γ consisting
of those transformations which are identical on H. The determinant induces
an injective homomorphism of Γ(H) into the group C∗ and hence Γ(H) is
cyclic. Let s(χ,H) denote the least nonnegative integer s such that

χ(P ) = (det P )s, (1.1)

where P is any generator of Γ(H). This is well defined. Let LH be any
linear form which determines the line H. This is determined uniquely up
to a constant factor. For any character χ of Γ, set

hχ =
∏

H

Ls(χ,H)
H , (1.2)

where H runs over different reflecting lines of reflections in Γ.
We shall need the following two lemmas.
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Lemma 1.1. Suppose that the Molien series of Γ is

Φ(λ) =
1

(1− λd1) · (1− λd2)
,

where d1 and d2 are nonnegative integers. If Θ1 and Θ2 are algebraically
independent homogeneous invariants of Γ having degrees d1 and d2, respec-
tively, then

RΓ = C[Θ1, Θ2].

Lemma 1.2. Let χ be a character of Γ. Then RΓ
χ is a free RΓ-module

of rank 1 and
RΓ

χ = hχRΓ.

2. Group G. Let G denote the group generated by the matrices

A =
1√
3

(

1 1
2 −1

)

and B =
(

1 0
0 ω

)

.

Notice that A2 = E and B3 = E. For any integers k and l, set

A(k, l) = BkABl =
1√
3

(

1 ωl

2ωk −ωk+l

)

.

One can easily check that

A(k, l) ·A(m,n) =











Bk+n if l + m ≡ 0 (mod 3),
iA(k + 2, n + 2) if l + m ≡ 1 (mod 3),
−iA(k + 1, n + 1) if l + m ≡ 2 (mod 3).

This computation leads to

Lemma 2.1. G is a disjoint union

G =
{

iαA(k, l)
}

∪
{

iβBm}

,

where 0 ≤ α, β ≤ 3, 0 ≤ k, l, m ≤ 2.

This lemma implies in particular that G consists of 48 elements.
It is clear that among the transformations iβBm only B and B2 are

reflections. A transformation iαA(k, l) is not identical and therefore is a
reflection if and only if 1 is a root of its characteristic polynomial, i.e., when

1 +
iα√
3
(ωk+l − 1)− (−1)αωk+l = 0.

Considering separately the cases α = 0, 1, 2, 3 we find that iαA(k, l) is a
reflection if and only if (α, k, l) is one of the following:

(000), (021), (012), (200), (221), (212),

(110), (101), (122), (320), (311), (302).
(2.1)
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Thus we have

Lemma 2.2. The group G possesses 14 reflections. These are

A0 = B, A1 = A, A2 = B2AB, A3 = BAB2,

A4 = −A, A5 = −B2AB, A6 = −BAB2, A7 = iBA,

A8 = iAB, A9 = iB2AB2, A10 = −iB2A, A11 = −iBAB,

A12 = −iAB2, A13 = B2.

The vector ae1 + be2 ∈ V is invariant under the reflection iαA(k, l) if and
only if

(iα −
√

3)a + (iαωl)b = 0.

Hence the reflecting line of iαA(k, l) is given by the linear form

L = (iα −
√

3)x + (iαωl)y. (2.2)

It is obvious that the reflecting line of both B and B2 is given by the linear
form L = y.

Denote by Hi the reflecting line of Ai and by Li the corresponding linear
form. Here i = 0, ..., 13. Substituting the triples (α, k, l) from table (2.1)
into (2.2) we get the linear forms Li (i = 1, ..., 12). It is easy to see that

H0 = H13, H7 = H12, H8 = H10, H9 = H11.

Thus we have

Lemma 2.3. The reflections of G have 10 different reflecting lines de-
termined by the following linear forms:

L0 = y, L1 = (1−
√

3)x + y,
L2 = (1−

√
3)x + ωy, L3 = (1−

√
3)x + ω2y,

L4 = (1 +
√

3)x + y, L5 = (1 +
√

3)x + ωy,
L6 = (1 +

√
3)x + ω2y, L7 = (i−

√
3)x + iy,

L8 = (i−
√

3)x + iωy, L9 = (i−
√

3)x + iω2y.

3. Absolute Invariants of G. To begin with we remark that the group
Gtr obtained from the group G by transposing its matrices was considered
by Gleason when he studied the Hamming weight enumerator of a self-
dual linear code over GF (3). (See [1,3].) In particular, he computed the
Molien series of this group. Since the transposition does not change the
characteristic polynomial of a matrix, we can use his result. Letting Φ
denote the Molien series of G we have

Φ(λ) =
1

(1− λ4)(1− λ12)
.
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The series tells us that there are two algebraically independent invariants
of degrees 4 and 12.

Lemma 3.1.
(a) The polynomial f = x4 + xy3 is a unique (up to a nonzero constant

multiple) homogeneous invariant of degree 4.
(b) The polynomial g = y3(8x3 − y3)3 is a unique (up to a nonzero con-

stant multiple) homogeneous invariant of degree 12 which does not contain
the term x12.

Proof. We remark that a polynomial which is invariant with respect to B
must be a linear combination of monomials of the form

xiy3j .

(a) A homogeneous invariant of degree 4 has the form ax4 + bxy3 where
a and b are the complex numbers and at least one of them is not zero. Since
this polynomial is invariant with respect to A, we have

f = x(ax3 + by3) =
1√
3
(x + y)h(x, y), (3.1)

where h(x, y) = A(ax3 + by3). Putting y = 1 in (3.1) we get x(ax3 + b) =
1√
3
(x + 1)h(x, 1). It follows that the number −1 is a root of the binomial

ax3 + b, and so a = b. Taking a = b = 1 we get the polynomial f . Indeed,
f is an invariant of A and B. This can be easily checked.

(b) A homogeneous invariant of degree 12 which does not contain x12

has the form

g = y3(ax9 + bx6y3 + cx3y6 + dy9), (3.2)

where a, b, c, d are the complex numbers and at least one of them is not
zero. The condition that this is invariant with respect to A implies that

y3(ax9 + bx6y3 + cx3y6 + dy9) =
1

3
√

3
(2x− y)3h(x, y), (3.3)

where h(x, y) = A(ax9 + bx6y3 + cx3y6 + dy9). Putting y = 1 in (3.3) we
get

ax9 + bx6 + cx3 + d =
1

3
√

3
(2x− 1)3h(x, 1).

We see that the number 1/2 is a root of the polynomial ax9 + bx6 + cx3 + d
of multiplicity 3. Hence 1/2 is a root of this polynomial and of its first and
second derivatives as well.
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We therefore have










a(1/2)9 + b(1/2)6 + c(1/2)3 + d = 0,
9a(1/2)8 + 6b(1/2)5 + 3c(1/2)2 = 0,

72a(1/2)7 + 30b(1/2)4 + 6c(1/2) = 0.
(3.4)

Solving this system of linear equations we find that

a = −83d, b = 3 · 82d, c = −3 · 8d.

System (3.4) has only one solution (up to a constant factor)

a = 83, b = −3 · 82, c = 3 · 8, d = −1.

Substituting these values into (3.2) we get the polynomial g. It is easily
checked that g is an invariant.

Lemma 3.2. The polynomials f and g are algebraically independent.

Proof. We recall that the main term of a polynomial is defined to be the first
term in its standard representation (see [3], for example.) Let

∑

i,j cijf igj =
0, where cij ∈ C. The main term of f is x4, and the main term of g
is 83x9y3. Hence the main term of f igj is 83jx4i+9jy3j . It is clear that
different summands in the

∑

i,j cijf igj have different main terms. From
this it follows that all cij are equal to 0.

Applying now Lemma 1.1 we get

Proposition 3.1.
RG = C[f, g].

4. Relative Invariants of G. The determinant clearly induces a character
of G. Let χ denote this character. Since det A = −1 and det B = ω, the
image of χ is the group µ6 = {±1,±ω,±ω2}. This is a cyclic group. Let
G1 be the kernel of χ. Clearly, G/G1 is a maximal abelian quotient group
of G, and since it is cyclic, we have

Lemma 4.1. The characters of G are χk (k = 0, . . . , 5).

Let us describe all RG-modules

RG
k = RG

χk =
{

f ∈ R|Mf = χk(M)f, ∀M ∈ G
}

(k = 0, . . . , 5).

We have

G(H0) = {B, B2, E}, G(Hi) = {Ai, E} (i = 1, . . . , 6),

G(H7) = {A7, A12, E}, G(H8) = {A8, A10, E}, G(H9) = {A9, A11, E}.
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For any integer k and any positive integer m denote by k (mod m) the
least nonnegative residue of k modulo m. Applying (1.1) and Lemma 4.1,
it is easy to see that

s(χk,Hi) = k (mod 2) (i = 1, . . . , 6; k = 0, . . . , 5),

s(χk,Hi) = k (mod 3) (i = 0, 7, 8, 9; k = 0, . . . , 5).
(4.1)

By (1.2) we have

hk = hχk =
9

∏

i=0

Ls(χk,Hi)
i (k = 0, . . . , 5).

Applying Lemma 2.3 and (4.1) we find that

hk = ϕk (mod 2)ψk (mod 3) (k = 0, . . . , 5),

where

ϕ = −
2

∏

j=0

(

(1−
√

3)x + ωjy
)(

(1 +
√

3)x + ωjy
)

= 8x6 − 20x3y3 − y6,

ψ =
y
i

2
∏

j=0

(

(1−
√

3)x + iωjy
)

= y(8x3 − y3).

So we have

h0 = 1, h1 = ϕψ, h2 = ψ2, h3 = ϕ, h4 = ψ, h5 = ϕψ2.

Applying now Lemma 1.2 we get

Proposition 4.1. For k = 0, . . . , 5,

RG
k = hkC[f, ψ3].

5. Proof of McEliece’s Theorem. Let us introduce new variables

x = x0, y = x1 + x2, z = x1 − x2.

The matrix α becomes then

1√
3





1 1 0
2 −1 0
0 0

√
3i



 .

The matrix β does not change. Take any polynomial P ∈ C[x, y, z] and
write it as

P =
∞
∑

k=0

pkzk

with pk ∈ C[x, y]. Certainly, for all but finitely many k, pk = 0.



ON MCELIECE’S THEOREM 459

We have

αP =
∞
∑

k=0

αpk · αzk =
∞
∑

k=0

ik(Apk)zk,

βP =
∞
∑

k=0

βpk · βzk =
∞
∑

k=0

ωk(Bpk)zk.

We see that P is invariant with respect to the transformations α and β
if and only if, for all k = 0, 1, 2, . . .

{

pk = ikApk,
pk = ωkBpk.

(5.1)

Notice that if p is a nonzero polynomial in C[x, y] such that p = ikAp for
some k, then k must be even. This is because A2 = E. Thus system (5.1)
takes the form

{

pk = i2kApk,
pk = ω2kBpk.

This is equivalent to
{

Apk = (−1)kpk = χk (mod 6)(A)pk,
Bpk = ωkpk = χk (mod 6)(B)pk.

(5.2)

System (5.2) is equivalent to the condition

pk ∈ RG
k (mod 6).

Hence P is an invariant of G if and only if

P =
∞
∑

k=0

pkz2k,

where pk ∈ C[x, y]. By Proposition 4.1,

pk = hk (mod 6)rk, rk ∈ C[f, ψ3].

Therefore

P =
∞
∑

k=0

hk (mod 6)rkz2k =

=
5

∑

k=0

hkz2k
(
∞
∑

i=0

rk+6iz12i
)

∈
5
⊕

k=0
hkz2kC[f, ψ3, z12].
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It follows that the ring of invariants of the group G is

RG =
5
⊕

k=0
hkz2kC[f, ψ3, z12].
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