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UPPER ESTIMATE OF THE INTERVAL OF EXISTENCE
OF SOLUTIONS OF A NONLINEAR TIMOSHENKO

EQUATION

DRUMI BAINOV AND EMIL MINCHEV

Abstract. Solutions to the initial-boundary value problem for a non-
linear Timoshenko equation are considered. Conditions on the initial
data and nonlinear term are given so that solutions to the problem
under consideration do not exist for all t > 0. An upper estimate of
the t-interval of the existence of solutions is obtained. An estimate of
the growth rate of the solutions is given.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω and Ω = Ω ∪ ∂Ω.
It is assumed that the divergence theorem can be applied on Ω. Let

Lq(Ω) =
{

u : ‖u‖q,Ω =
( ∫

Ω

|u(x)|qdx
)1/q

< +∞
}

.

Denote by u the complex conjugate of u.
We consider the initial-boundary value problem (IBVP) for the nonlinear

Timoshenko equation

utt − ϕ(‖∇u‖22,Ω)∆u + ∆2u = |u|p−1u, t ≥ 0, x ∈ Ω, (1)

u(0, x) = u0(x), x ∈ Ω, (2)

ut(0, x) = u1(x), x ∈ Ω, (3)

u(t, x)
∣

∣

∣

x∈∂Ω
= 0, t ≥ 0, (4)

∆u(t, x)
∣

∣

∣

x∈∂Ω
= 0, t ≥ 0, (5)
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where p > 1 is a constant, ϕ : R+ → R+, R+ = [0, +∞), u0, u1 : Ω → C are
given functions.

Equations of type (1) appear in a variety of models describing nonlinear
vibration of beams. This kind of equations is the object of long-standing
interest. We should mention the papers [1]–[6], as well as the monograph [7].

In the present paper we investigate the blowing up of solutions [8] of the
initial boundary value problem for the nonlinear Timoshenko equation.

2. Main Results

Theorem 1. Let the following conditions hold:
1. u is a suitably smooth classical solution of the IBVP (1)–(5);

2. ϕ ∈ C(R+,R+) and mΦ(s) ≥ sϕ(s), ∀s ≥ 0, where Φ(s) =
s
∫

0
ϕ(k) dk,

m ≥ 1;
3. Re

∫

Ω
u0u1 dx > 0;

4. E(0) = ‖u1‖22,Ω + Φ(‖∇u0‖22,Ω) + ‖∆u0‖22,Ω − 2
p+1 ‖u0‖p+1

p+1,Ω ≤ 0;
5. p > 2m− 1.
Then the maximal time interval of the existence [0, Tmax) of u can be

estimated by

Tmax ≤ T0 =

∞
∫

‖u0‖22,Ω

[

C1 − 4mE(0)ξ +
4C

p + 3
ξ

p+3
2

]− 1
2

dξ < +∞,

where

C1 =
[

2Re
∫

Ω

u0u1 dx
]2

+ 4mE(0)‖u0‖22,Ω −
4C

p + 3
‖u0‖p+3

2,Ω ,

C = 2
p + 1− 2m

p + 1

(

1
mesΩ

)
p−1
2

and if Tmax = T0, then

lim
t→T−0

‖u(t)‖22,Ω = +∞

and

lim
t→T−0

(T0 − t)‖u(t)‖
p−1
2

2,Ω ≤ 2
p− 1

√

p + 3
C

.
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Proof. We multiply both sides of equation (1) by u, take the real parts of
both sides, and integrate to obtain

1
2

d2

dt2

(

‖u‖22,Ω

)

−‖ut‖22,Ω+ϕ(‖∇u‖22,Ω)‖∇u‖22,Ω+‖∆u‖22,Ω =‖u‖p+1
p+1,Ω. (6)

On the other hand, if we multiply both sides of equation (1) by ut, take
the real parts of both sides, and integrate, we get the energy identity

‖ut‖22,Ω + Φ(‖∇u‖22,Ω) + ‖∆u‖22,Ω −
2

p + 1
‖u‖p+1

p+1,Ω = E(0). (7)

Thus, from (6), (7) and condition 2 of the theorem we conclude that

1
2

d2

dt2

(

‖u‖22,Ω

)

≥ ‖ut‖22,Ω − ‖∆u‖22,Ω + ‖u‖p+1
p+1,Ω + m‖ut‖22,Ω +

+ m‖∆u‖22,Ω −
2m

p + 1
‖u‖p+1

p+1,Ω −mE(0) ≥

≥ −mE(0) +
p + 1− 2m

p + 1
‖u‖p+1

p+1,Ω ≥

≥ −mE(0) +
p + 1− 2m

p + 1

(

1
mesΩ

)
p−1
2

‖u‖p+1
2,Ω ,

where we have used the Hölder inequality in the last step.
Denote X(t) = ‖u(t, ·)‖22,Ω. Then we have the differential inequality

d2X
dt2

≥ −2mE(0) + CX
p+1
2 , (8)

and

X(0) = ‖u0‖22,Ω,
dX
dt

(0) = 2 Re
∫

Ω

u0u1 dx.

It is easy to prove that X ′(t) > 0 wherever X(t) exists. If this conclusion
is false then the set Q = {t : X ′(t) ≤ 0} is nonempty. Denote t0 = inf Q.
By integrating, we obtain

0 = X ′(t0) ≥ X ′(0)− 2mE(0)t0 + C

t0
∫

0

X
p+1
2 (τ) dτ > 0,

which is a contradiction. We multiply both sides of (8) by X ′(t) and inte-
grating twice we conclude that

Tmax ≤ T0 =

∞
∫

‖u0‖22,Ω

[

C1 − 4mE(0)ξ +
4C

p + 3
ξ

p+3
2

]− 1
2

dξ < +∞.



222 DRUMI BAINOV AND EMIL MINCHEV

If Tmax = T0 then limt→T−0
‖u(t)‖22,Ω = +∞ and from (8) we have

T0 − t ≤
∞
∫

X(t)

[

C1 − 4mE(0)ξ +
4C

p + 3
ξ

p+3
2

]− 1
2

dξ ≤

≤
√

p + 3
4C

4
p− 1

1

[X(t)]
p−1
4

, t ∈ [T0 − ε, T0),

where ε > 0 is sufficiently small. Thus we obtain

lim
t→T−0

(T0 − t)‖u(t)‖
p−1
2

2,Ω ≤ 2
p− 1

√

p + 3
C

.

Remark 1. When ϕ(s) = 1 + s we have m = 2 and p > 3.
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