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PARAMETRIZATION OF A FAMILY OF MINIMAL
SURFACES BOUNDED BY THE BROKEN LINES IN R?

R. ABDULAEV

ABSTRACT. Consideration is given to a family of minimal surfaces
bounded by the broken lines in R? which are locally injectively pro-
jected onto the coordinate plane. The considered family is bijectively
mapped by means of the Enepper—Weierstrass representation onto a
set of circular polygons of a certain type. The parametrization of
this set is constructed, and the dimension of the parameter domain
is established.

The Dirichlet problem for an equation of minimal surfaces in the non-
convex domain does not always have a solution even under infinitely smooth
boundary conditions. Geomerically, this means that a minimal surface
bounded by a given curve injectively projected onto the coordinate plane is
not always injectively projected onto the same plane. For references on this
topic see [1] and [2]. One way to investigate the problem of projecting a min-
imal surface onto the plane is as follows: instead of studying the solvability
of an individual Dirichlet boundary value problem one should consider a
sufficiently well surveyable set of spatial curves and find out which part of
this set is filled up by the curves for which the above problem is solvable.

The first step in this direction was made in [3] where it was shown that
there exist no minimal surfaces which are bounded by four ribs of a tetra-
hedron of variable height and injectively projected onto the tetrahedron
base.

In this paper, for some family of spatial broken lines we investigate a
subfamily of such broken lines, which bound the minimal surfaces locally
injectively projected onto the coordinate plane. The parametrization of
this subfamily is constructed and the dimension of the parameter domain
is established.
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§ 1. INTRODUCTION

Let S be a simply connected minimal surface parametrized by an in-
finitely smooth mapping = : E = {|z]? = €2 + n? < 1} — R3. We denote
by 7 the orthogonal projection 7 : R® — I = {z € R?, 23 = 0} and call
S the d-surface if 7 o x is a homeomorphism, and the c-surface if Tox is a
local homeomorphism. Since z — (z,2(z)) is a homeomorphism, S is the
d-surface iff 7|, (g is injective. Assume that S is the c-surface, z € C (E),
and the set of values of the restriction 7|ss consists of boundary points
of the bounded simply connected domain ). We shall show that under
these assumptions S is the d-surface. Indeed, it is easy to show that since
mox: E — Il is a local homeomorphism, we have (7 o z)(E) N (II\Q) = @
because otherwise x would be unbounded in E. Therefore 7oz is an unlim-
ited non-ramified covering of the domain @ by a circle. The mapping 7 o x
is injective by virtue of the theorem on monodromy [4].

In this paper the mapping = will be represented by the following Enneper—
Weierstrass formulas [2]:

211 (2) = Re/F’(t)(l —WA(t))dt + ¢y,
0

~—

222(2) = Re i/F’(t)(l +w2(8)dt + e, (1
0

z

23(2) = Re | F'(t)w(t)dt + c3,
/

where F(z) and w(z) are the holomorphic functions in E, ¢;, j = 1,3, are
the real constants.

If a minimal surface is the c-surface, then for any point M € S there
exists a neighborhood V(M) such that 7|y, (ar) is injective, and therefore the
surface Vi (M) can be represented as 2° = u(x!,2?), (2!, 2?) = 7(V,(M))
where u € C?(7(V,(M))) and

(1+ uiz)uml$1 — 2Ugig2Up1Ug2 + (1 + ’U,il)’u,zzmz =0. (2)
Introducing the notation p = u,1, ¢ = uz2, W = /1 +p2+¢? for an

appropriate orientation of the surface, we obtain [2] the following expression
of the unit normal vector #(M) = (v1(M),v1(M),vs(M)):

2Re w(z) 2Imw(z) |w(2)]* - 1) _
w(Z)]? + 17 w(z)]? + 17 |w(2)]* + 1

L (p(r (M), g(m(M)), -1). (3)

7(M) =
= [W(x(M))]



PARAMETRIZATION OF A FAMILY OF MINIMAL SURFACES 203

Let us show that for S to be the c-surface it is necessary and sufficient that
F'(2) #£0, |w(z)| # 1, z € E. We write 7 o z in the form

z

-
() =)+ i) = 5| [Fai- [ Ptars e vial.
0 0

Hence ¢, = %F’(z)7 (, = —%F'(z)wQ(z) and d¢ = F'(2)dz — F'(2)w?(2)dz,

= = 1

11?2 — |G5)? = E‘F,(Z)P(l — |w(2)|?). The latter equality provides the
sufficiency of the conditions. Let S be the c-surface and |w(zo)| = 1. This
equality can be fulfilled only when W (7w o 2(29)) = oo, which contradicts
the definition of the c-surface. If |w(zg)| < 1 but F’(29) = 0, then on a
sufficiently small circumference z = zy + ee*? we shall have

Cy=Fy(1— Fy(zo + ee)(Fy(z0 + £e™)) 'w?(20 + e€”)).

Hence, taking into account |Fl9w2 (Fj)~!| < 1, we obtain 5= f()% dArg(y =
S OQW d Arg Fy > 2, which also contradicts the fact that the mapping m o«
is a local homeomorphism.

In what follows, by a curve we shall mean both a class of the equivalence
of continuous mappings of a segment and an individual representative of
this class. The curve will be called an arc if it is an injective mapping. For
l: [a,b] — R™ we shall denote by [° the restriction of I on (a,b). The set
of values of the curve [ will be denoted by [I] (if a = b, then [I°] = @). By
l1 - l5 we shall mean the product of curves in the usual sense when the end
point of the curve [y coincides with the initial point of the curve ly. The
notation 75(l1,12), |8(l1,12)| < 1 will denote the angle between the positive
tangent at the end point of I; and the positive tangent of Iy at the initial
point and counted from ;. Finally, |I| will denote the length of I.

Let T be a closed broken line in R? not lying in one plane and satisfying
the following condition: if w(x1) = w(a2), 21 € T, z3 € T, then z; and
x2 belong to the same segment of [. This condition immediately implies
that 7[['] cuts the plane into two components. We orient I' so that the
orientation induced on ol would be positive with respect to the unbounded
component. Let us number the vertices M; of I' according to the chosen
orientation and denote by I'; the oriented segment of I' whose initial point
is M; and whose end point is M;11 (Mp+1 = M1). By T; = (X;,Y:Z;) we
denote the unit vector co-directed with fz It is assumed that M;, M;,,
M, 1o are not collinear and therefore T; # T;11. Moreover, since [ does not
lie in the plane, among the vectors T; there are three noncomplanar vectors
with successive indices, and without loss of generality we can consider T}, o,
Tn_1, T, as such.
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Denote by G a set of broken lines possessing the following property: if
the initial point and orientation of I' are appropriately chosen, then I'; is co-
directed with I';. We denote by A a subspace of R™ defined by the equation
SoiaNT; = 0. Let A G — ALANRYE, MT) = (|T4],[Tef,..., [Thl).
Since T),_2, Tn—1, T, are noncoplanar, the mapping 7 : Ay — Rf_‘S
T(A1, A2,y ) = (A1, Aa,..., A\p—3) is injective. The definition of A
readily implies that A/, = (70 A)(G) is an open connected convex subset in
Rn73

Slnce for y € A/, and t > 0 we have ty € A/, after introducing the
notation A = A, NSt 4 where S™* is the unit sphere in R"3, we shall

have the injective mapping p : G — A

1
(Zm) (1L D, Tacsl).

We denote by G, the subset of G consisting of broken lines bounding the
minimal c-surfaces, and by & the set of minimal c-surfaces bounded by the
broken lines of the family G.. Let P(S) = (po70A)dS, P = P(6).

8 2. w-IMAGES OF SURFACES OF THE FAMILY &

If a minimal surface is parametrized by formulas (1), g is the Gaussian
mapping of the surface, and o is the stereographic projection, then w =
cogox [2].

Let tj :.’Eil(Mj) :ewi, 0<b,<by<--- < 2m, lj :{t:eie,éj <0<
0j1+1}. The function w(z) is analytically continuable through l?, 7 = 1,n,
and, by virtue of (3), satisfies on l? the equation

2X; Re w(t) +2Y; Imw(t) + Z;(Jw(t)]* — 1) = 0. (4

~—

There exists the following representation [5]:

z

22(2) = Re / [@2(t) — W2(1)]dt + or,
=Re i )+ U2(t)]dt + ca, (5)
[

23(2) =Re [ ®(t)T(t)dt + c3,
0/
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where ®2(2)dz and W?(z)dz are the holomorphic differentials in E. The
following equalities are fulfilled in the neighborhood of ¢;:
17y 1T
(I)(Z) = Cl(z - tj) 2 <I’1(z) + C2(Z — t]‘) 2 ‘I’l(z) (6)
1— 1

U(z) = Cylz — t5) 7 Do(2) + Culz — ;)" 2 Wy(2),

where C;, j = 1,4, are the constants; C1Cy — CoC3 = 1; ®4(2), ®2(2),
U,(z) and Uy(z) are a holomorphic in the neighborhood V; of the point

tj, 0 <~; <1, while (z — tj)il% is holomorphic branch in V; N E. The
relation of F(z) and w(z) with ®(z) and ¥(z) is given by the equalities
F'(z) = ®?(2) and w(z) = ®72(2) - ¥2(2). This immediately implies that,
firstly, w’(2) can have only a finite number of zeros on l?, j = 1,n, and,
secondly, w(z) has a finite or infinite limit w(¢;) = w; for z — ¢;. Hence on
account of the chosen orientation of the surface and equation (4) we conclude
that if X; 1Y; — X;Yj_1 # 0, then lim, _,, w(z) = (9 + i) (1= )1,
where (1/9), I/éj), Véj)) = —sign(X;1Y; — X;Y; 1) |Tj_1 x Ty 1 T—1 x Tj.
The case X;_1Y; — X;Y;_; = 0 will be considered below.

Let aj, |aj| < 1, j = 1,n, be the numbers defined by the equalities
Sin’/TO[j = (er,l,Tj,I/(j)), cosmmay; = Lj—1 - Tj.

Lemma 1. Let S € & and o; < 0. Then the plane passing through
[[';_1] and [I';] crosses S in any neighborhood of the point M.

Proof. The formulation of the lemma implies that without loss of generality
it can be assumed that I'j_; and I'; lie in the plane II and M; = 0. By the
symmetry principle the harmonic function 23(z) = Re [ F'(t)w(t)dt + c3
continues through the arc 6;_; < 6 < 6,11, while the holomorphic function
F’'(z) in the semi-neighborhood V(¢;) N E of the point ¢; can be written
in the form F'(z) = (z — t;)~* Fy(z), where Fy(z) is holomorphic and
non-vanishing [6]. Since in ¢; the function F’(z)w(z) cannot have zero of
nonintegral order, by virtue of the boundedness of the harmonic function
w(z), z%(z) has zero of at least second order at the point ¢;. Hence, on
account of the familiar result ([7, Theorem 2.1]) we conclude that z3(2)
changes its sign in V(¢;) N E. O

Let now S € & and X;1Y; — X;Y;_1 = 0, i.e., the plane @ passing
through [I';_] and [I';] is orthogonal to II. Then by the proven lemma, for
any 0 > 01in V5(M;,0) = B(M;,6)NS, where B(M, ¢) is the ball with center
M and radius 6, there are points lying in different half-spaces into which R3
is divided by @. We take two such points and connect them by the curve
I, [I] C V5(MMj,9), intersecting @ in some point py and let p; € [[';_1] U [Ty]
m(p1) = 7(po). Let II; = {z € R3, az! + bz? = ¢} be the plane orthogonal
to the plane IT and passing through po, ¢ = € = z1(py), 20 = 2~ *(po),
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I' [I'l € E be the curve %[RefOZF'(l —w2)dt+cl} + S[Re ify F'(1+

w?)dt + 02} = ¢ connecting the points 29 and ¢, and I” = x o l’. Assuming

I” to be parametrized by the natural parameter z = z(s), 0 < s < sp,
x(0) = po, z(s0) = p1, we shall consider the function d(s) = |7 (p(s)) —m(p1)|
on 0 < s < sp. Since d(s) > 0, d(s) € C([0, so]) and d(0) = d(sg) = 0, there
exists s*, 0 < s* < sg, such that d(s*) is a maximum value. It can be easily
verified that the point z(s*) cannot have in S a neighborhood in which 7 is
injective. If however d(s) = 0, then I” is a segment. Thus if S € &, then it
is necessary that (T;_1,T},v;) > 0, which uniquely fixes the position of w;
for |w;| = 1.

Denote by B; a circumference described by equation (4). Let w; # wjy1.
Denote by Ej an arc of B; with the initial point w;, the end point wjy;
and wholly lying in the closed unit circle. Such arcs are available, since
|w;| <1 and B; are the stereographic images of circumferences of a sphere.
If w; = wjt1, then [b;] = wj. Let bj,, by, ... ,ijo be all the arcs of positive
length. B B

It will always be assumed here that b =[]}, b;, is a Jordan curve.

Denote by Dy the component C\[b] which lies in the unit circle.

Lemma 2. If w parametrizes S € &, then w(z) is univalent in Dy and
w(E) - DQ.

Proof. Since [b;] C [B;], where b; =w o l;, for w ¢ _Gl[Bj] we have
j:

2

27
1< 2i /dArg(w(eie) —wp) = S /dArg(w —wp)
™
0

b

which, by virtue of the Jordanian property of E, implies
~ 1 17 wp € DOa (7)
ind,, b= — /dArg(w —wp) = o
2T 7/
J 0, wy € CDy. (7)
b

The latter equality implies w'(E)\ U [B;] C Dy. On assuming that there

ICs

Jj=1

is a point 2z’ € E such that w(z’) € 'Gl[Bj] N CDy and recalling that the
j=
mapping w is open, there will exist z” € E, w(z") ¢ ALnJl[Bj] such that
j=
w(z") e CDy. O

If & # @, then equality (7) holds for any wg € Dy and can be regarded
as a necessary condition for the family & to be nonempty. In this connec-
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tion note that for the family of boundaries considered in [3] the topological
indices corresponding to these boundaries are negative.

Let us discuss the degree of freedom of function w(Z). Writing S in terms
of isothermic coordinates

z

27 (2) :Re/goj(t)dt—i—cj, ji=13,
0

where ¢;(z) are holomorphic in E, we obtain [2] w(z) = ¢p3(2)- (p1 — i) .

Therefore w(z) is defined up to a conformal automorphism E and hence for
uniqueness of w(z) we should use some way of normalizing the mapping
x. But since normalization of x is equivalent to the normalization of w =
o ogox, we can use one of the standard ways of normalizing the conformal

homeomorphism w. Namely, we choose the points wg € Do\ ‘61 [B;] and
j=
w1 € b, and normalize w(z) by the condition
w(0) =wp, w(l)=w;. (8)

The function w corresponding to the surface S and normalized by the con-
dition (8) will be denoted by ws(z).

8 3. ADMISSIBLE BOUNDARIES

Denote by Q a class of functions w(z) univalent holomorphic in E and
continuous in E, which are normalized by (8) and satisfy the following
conditions:

(a) lw(2)| <1, z € E

(b) for each w(z) € Q there exist n points (depending on w) t;(w) =
e j =Tn, 0<60(w) < < 0(w) < 2, such that w(z) is ana-
lytically continuable through 19(w), where l;(w) = {t = e, f;(w) <0<
41 (w)}: a

(C) w(t) € [Bj]v te lja Jj=1mn, 0n+1 = 0.

Denote by p,(2) the order of zero of w’ at the point z.

Lemma 3. For w € Q) we have
(1) po(2) <1, 2€13, j=1,n;
(2) Soewmolz) <2, j =T

Proof. (1) Let p(z0) > 2, zo € 19. Then in the neighborhood U(z) of the
point 2o we have w(z)—w(2) = (2—20)**1v(z), where v(z) is a nonvanishing
holomorphic function in U(zp). Denote by v;(z) an arbitrary regular branch
of **/v(z) in U(zp). As can be easily verified, { = (z — 2z9)v1(2) - ((2) is
a univalent function in some neighborhood Uj(%p). Denoting by z = h((),
¢ € ¢(U1(2)) the inverse function of (z), we obtain w(h(z1))—w(zo) = ¢*+1,
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which means that w(h(z)) cannot be a univalent function in any component
of ((U1(20)\[l;]). Thus, taking into account that ¢(z) is univalent, we obtain
a contradiction with the assumption that w(z) is univalent.

(2) Let tj,k = ewj*k, k= l,mj -1, Gj = 03',0 < 0;‘71 < 0]'72 < 0]'73, e <
0j.m; = 0;41, be the critical points of w on l?. Let ;= {t = e, O <0<
O; k1), k=0,m; — 1, and b; y = wol; k. Since w(e®) € [B;], ¥ € l; and,
as it was proved, all critical points are simple, we obtain w(U(e%1) N E) D
U(w(e™1))N[bj 0], and hence [b9,]N[b9 ] # @. If we assume that w(e32) €
[b;0], then we have w(U(e%5:2)) N E) D U(w(e®)\[b;.1], where 69 < 0’ <
6;.1, which contradicts the assumption that w(z) is univalent. Therefore
w(e®3:2) & [b;o]. Since w(U(e2)NE) D U(w(e™2))\[69,], we have [b9 5]N
[09,] # @ and therefore either w(e™3) € [b9,] or w(e®1) € [bY 4]. In both
cases, repeating the above reasoning, we come to a contradiction with the
property that w(z) is univalent. [

Lemmas 2 and 3 imply that if on l? there are two critical points, then
w(e®i2) & [b o] U [Zj] Denote by n; the number of critical points w(z) on
19. Let w € Q, [bj| # 0. If nj = 0, then b; = b;. If n; = 1, then cither
[bjo] D [gj], or [bj1] D [EJ] In the former case b; = Ejb;ll -bj 1, in the latter
case b; = bjo - brg - bj. If ny =2, then by = bjo-b; g by - b3 bjo. For
|bj| = 0, by the definition of the class € we have n; > 1, and thus we obtain
bj = bj,0~bj_73 forn; =1and b; = bjﬁo.b;é b;% -bj 2 for ng = 2. Introducing
the notation b, - b;é = p2j—1 and

by -bja for n;=1,
L T B A
2 05,2 10T Mj =

in all cases we shall have b; = pgj,lgjpgj, where each of the factors can have
a zero length but [b;| # 0. Note that if |b;| # 0, then [pa;] N [p2;—1] = @. If
however |b;| = 0 and |pg;_1| - |p2;| = @, then [pg;_1] N [p2;] = w;.

Let wj 1 # wj =wjy1 =+ = Wiy, # Wjtw,+1, Y5 = 1. We write it in
the form j € T and introduce the notation j = {j,j +1,...,j + vj — 1},
FF={2—-2,2j—1,...,2j+2u; —1}.

Let By _1 2= par—1(5), 0 < s < dap_1, Bhy : 2 = par(s), 0 < s < dap,
war—1(0) = wk, @ar(0) = wis1 be the arcs of the circumference By of
positive length, satisfying the following conditions:

(a) If @i (s’) ¢~D0a then @, (s) %DOa s <5< s
(b) [Byy—1] N [bk] = wi, [Byi] N [bi] = wier1, [(Byy—1)°1 N [(By,)°] = 25
(c) If k € j, then B(bj_1, Bly_,) > 0.
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We denote the restriction of BJ, on [0,s] by Bj,(s). Let o, = maxs :
{s €10,0m], om(s) € Dg. Let V denote a subset of the set N, = {1,2,...,n}
such that 09, 2 >0, me V.

We denote by L the set of curves of the form

L= H by, = H p2k—1gkp2k7 (9)
k=1 k=1

where p,, = B, (s)-(B.,(s))"%, 0 < s < 8, < 0y, and for which there exists
w € Q such that L = w o OF when the initial point of OF coincides with
t1(w). The curves contained in £ are called admissible boundaries.

Theorem 1. For the set L to be non-empty it is necessary and sufficient
that, together with condition (7), for each j € T there would exist a set P;,
P; C j*, such that

(1) o >0 for m € P;j;

(2) Pn{2j+2k—1,2j+2k} #0, k=0,vj_1;

(3) for k,m € P; and k < m there holds

B(bj-1By) > B(bj-1By,)- (10)
Proof. The necessity of condition (7) is proved by repeating the arguments
used in proving Lemma 2. Let £ # &, L € £, and wr,(z) € § be the function
conformally mapping E onto Do\[L]. Let j € T. As P; we shall choose a
subset of m € j* for which |p,,| # 0. Conditions (1) and (2) will be fulfilled
by virtue of the definition of the class 2. To prove (3) we choose, on 2, a
point zj and connect it with ¢;_;(w) by a simple curve v in E. Let D, be
the domain lying in F and bounded by the arc v and the arc of the unit
circumferece from ¢;_; to 2, and containing the point ¢;. The assumption

B(b;_1,By) < B(b;_1,B),) would imply [°] N D, # @, which obviously
contradicts the fact that the function w is univalent.
To prove the sufficiency we choose € > 0 so small as to make the set

2n
Do\ U [B;,(€)] connected. Next we consider a curve of form (9), where
0 < |pm| < 2e, me U (P)), and |py,| =0 for m ¢ U P;. Let again wr,(2)
JeT JeT

be the function conformally mapping F onto the domain Dy = Dg\[L]
and normalized by condition (8), Ax = ¢r(e), k € _UTPj, and g1 > 0
Je

be so small that U(Ag,e1)\[Bj(¢)] C Di. Let a(w) be a homographic
transformation corresponding to the rotation of the sphere mapping the
point (X, Yy, Z) into (0,1,0). The function f(z) = /a(w(z)) — a(Ax)
maps w™ (U (Ag,e1))\[By.(¢)] onto the semi-circle and therefore f(z) ana-
lytically continues through the arc of the unit circumference. But w(z) =
a"*(f?(z) + a(Ax)) and hence w(z) is holomorphic in the neighborhood of
w™1(Ag). Moreover, since L consists of a finite number of circumference
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arcs, then each point of L is an accessible point for D; and therefore w(z)
continues up to the homeomorphism w* : E — Dy UL* [8], where L* denotes
the set of prime ends of the domain D;. By inequality (10) and the assump-
tion that w is univalent, the pre-image of the prime end wy will precede the
pre-image of the prime end w,, when L is described in the positive direc-
tion with respect to D;. Denoting by [l an arc of the unit circumference
having initial point at (w*)~!(wy) and end at (w*)~!(wri1) and described
counteclockwise, we shall have w* o [, = B} (¢) - (Bj(¢))~!. O

Theorem 1 (as follows from its proof) gives a criterion for of a curve of
form (9) to belong to the set £ : L € L # @ iff Dy\[L] is connected, |b,| # 0,
k =1,n, and for any k € j*, m € j*, o > 0, 0 > 0, k < m and |px(L)],
|pm (L)| # 0 there holds

B(bj—1,px(L)) > B(bj—1,pm (L)) (11)

Moreover, in view of the equality ﬁ(gj_l, Bl,) = ﬁ(gj,l, B}, ) —1, the
proven theorem readily implies

Corollary 1. If L € L # @ and for k € 7, |p2k—1(L)| # 0, then

|pam (L)| = 0, m = j,k—1. If |par(L)| # 0, then |pem—1(L)] = 0, m =
k‘-i—l,]—‘rl/J

Corollary 2. If L € £ # @ and Bi(L) = B(bk—1(L),bx(L)) < 0, then
o2k—2 > 0 and |pag—1(L)| = |p2r—2(L)| = 0.

8 4. PARAMETRIZATION OF THE SET [

Let I : £ — Na, ={1,2,...,2n}, where I(L) = {ik,,ik,,- - -, ik, } is the
ordered set of indices of curves p;, (L) of positive length contained in L € L.
We introduce the notation Fy, = {2k—1, 2k} and assume that iy, € Fj_ . Let
further 7 = I(L), 8~ (L) be a subset of the set {81(L),B2(L),...,Ln (L)},
consisting of negative numbers and I~ (L) = {i € N,,, 5; < 0}, (L) =
card 8~ (L).

Two curves Ly € £ and Ly € £ will be called equivalent (L; ~ Lg) if
I(Ly) = I(Lg). We denote by L; the equivalence class I(L) =i if ¢ € 7.
Since p(L1) = p(L2) and 3(L1) = 3(Ls) obviously hold for Ly ~ Lo, the
notations p(i) and (i) are correct.

Let a C Ng,, i € Z, and aNi = @. We write a € £(i) if iUa € T.
Let a C Nop, i € Z and a C i. We write a € R(i) if i\a € Z. i € T is
called maximal if £(i) = @. The set of maximal ¢’s is denoted by Z'. For
R(i) # @, i is called reducible.
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Let L = szlpgk_lgkpgk € L, i, € I(L) and ¢ > 0. Denote by rﬁk (L)
the curve defined by the following conditions:

[P (75, ()| = [pm(L)], M # iy
i (1, (L)] = tlpi, (L)]-

It is obvious that for any L € L there exists ¢ > 0 such that r} (L) € L,
l—e<t<l+e, it € I(L). From the definition of R(i) it follows that
a = {imysimys---im, } € R(i) iff 7o(L) =1rY, ord o- --r%p(L) eL.

Let now B, (L) € 87 (L) # @, L € L. By virtue of Corollary 2 of Theorem
1 o9k—2 > 0 and therefore there exists €, 0 < € < min(oag_2,02k—1), such
that a curve e5, (L) of form (9) defined by the conditions |p,,(e5,_o(L))| =
|pm(L)], m # 2k — 2, |pog—2(€5,_o(L))| = €, belongs to £. In a similar
manner we define 5, (L):

[Pm (€501 (L)) = [pm (L), m # 2k =1, [pag—1(edy_1 (L)) =&

We introduce the notation Hy = {2k — 2,2k — 1}. Let i € Z, 8~ (i) =
{ﬁknﬁkza""ﬁ%(i)}’ {kji,k‘é,,k;n} S I_(L), Lel;,a= (a'l,a'Q,...,ain
€ Hy; x Hyr X+ -xHy, . For L € L; we write the notation e; = 62/'06220' -0
er (L). It can be easily verified that r, (i) = I(r2(L)) and e, (i) = I(e5(L))
do ot depend on an order of r), and ezz in the definition of r,(L) and
es(L).

Lemma 4. If (a) oo = 0 or (b) B((Bb,_5)~', Bax) > 0, 2k — 3 € j*,
2k € j* holds for any k 65, jeT, thening* =4 Nj* foranyi € T,
i"eT.

Proof. In the case (a) we have |pax—1(L)| # 0, L € £ and therefore for
j < m <k, by virtue of Corollary 1 of Theorem 1, we obtain |pe,,(L)] =0
for any L € L. If o2, > 0 holds for some m, £ < m < j 4+ v; — 1, then

B(bj—1,B5,,) +1 > ﬁ(gj,l,Bék_l) and hence |pa,—1(L)| = 0 for arbitrary
m, k <m < j+v;—1,and any L € L. In the case (b), by Corollary 2 we
have |par—2(L)| = |pak—1(L)| = 0 and thus |pax—3(L)| - |p2x(L)| # 0 holds
also forany L€ £. O

Lemma 5. i € 77 iff »(i) =0, i € Z.

Proof. Let (i) = 0. As the preceding lemma suggests, it is of inter-
est for us to consider only the case where k € ;, j €T, oogp—a > 0,
ﬁ((Bék_g)_l7 Bsy,) < 0. Then either Fj,_; C ¢ and FNi = 2k and therefore
2k—1¢ (i) or F, C i and F_1 Ni =2k — 3 and hence 2k — 2 & £(i), i.e.,
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i € I'. Conversely, let 8 < 0. Then by Corollary 2 we have 2k — 2 € £(i),
2k —1€ &) for L € £L; and

Br(esp—1(L)) >0, PBrle (L)) >0. O (12)
From the definition of r, () and e, (7) and inequalities (12) it follows that

#(rq (1)) = 2(i) + carda, p(rq(i)) = (i) — card a,

»#(eq (7)) = (i) — carda, pleq(i)) = (i) + card a. (13)

Lemma 6. If in T there exists a maximal non-reducible multi-index 17,
then T = 1.

Proof. Let ij_ € i. Since i is non-reducible, we have ks & V, |st| =0 and
ik, = Fr, Ni = 2ks — 1. Therefore ix, € ' for any ¢/ € 7, i.e., i C ¢’ for any
i € Z. But since 4 is maximal, we obtain i =4'. [J

Theorem 2. p(i) + (i) = p = const, i € L.

Proof. First, we shall prove p(i) = const, i € I'. As suggested by Lemma
6, we should consider only the case with reducible ¢ € 7'. Let i, € R(4),
i € Z'. Then by Corollary 2 card(iN Hy,,) = 1. Therefore p(i) = p(i'), 3,7’ €
Z'. If however i ¢ 7', then (i) > 0 and therefore there exists B (i) < 0.
But then eg;—1(2) € Z, and by (13) we have p(e2r—1(i)) + s(egr—1(i)) =
p(i) + »(i). O

Let i € 7/, and 7; : I’ — N, be the order preserving bijection. We define
the mapping y : L = UI L; — R, as follows:
1€L’

—1
xm(L) = (=1)7¢ (™. Pyt (y (L), m €N, where T =7z,

Let us show that y is injective. The statement is obvious for L; ~ La.
If I(Ly) # I(Ls), then since for k € j C V, I(Ly) N Hy, # I(L2) N Hy, there
exists m € N, such that Tgll(m) € Hy, ;' (m) € Hy, Tgll(m) # 7';21(m)
and therefore x,,(L1) and X, (L2) will have different signs. Let now L € £,
i ¢ T, a€ Hpy X Hpy X - X Hy_, . my € I"(L), j = 1,5(L). Then

I(e5(L)) € T'. Define x(L) by setting

on(D) = {xméez(m :%L)<m> € I(L),
’ (D)

(14)

It is obvious that x defined in this manner does not depend on the choice
of a. The injectivity of the mapping x defined by (14) is proved similarly.

Theorem 3. x(L) is a domain.



PARAMETRIZATION OF A FAMILY OF MINIMAL SURFACES 213

Proof. We shall show that x (L) is open. Let x(L) = (x1(L),...,x,(L)), L €
L, and xx(L) # 0. We introduce the notation Uy = {xx = xx(r'(L)),1 —
er <t <1+ep}, where e > 0 is so small that Do\[er(k) (L)] is connected
for any ¢, |t — 1| < e. If xx(L) = 0, then, taking ¢ > 0 so small that
Do\[e5(L)], a € Hpy X Hpy X -+ X Hp, (1, is connected, we find that
T;Zl(L)(k) is equal either to 2m; — 2 or to 2m; — 1, m; € I~ (L). We write

Uf ={x; = x5(L), j # K xi = xu(eh, 5(L), 0<t<e},
U ={x; =x5(L), 5 # ks xi = Xn(€hy, 1 (L)), 0 <t <e},
U, =UuU, .

It can be easily verified that U(L) = Uy x Uy x - x U, C x(£) is the
neighborhood of x(L).
Now we shall show that x(L) is connected. Fix gy > 0 such that

2
Do\ Lj: [By,(g0)] is connected. Let p(L)= mliglL) |p;, (L)| and assume that
m= is€

Ly~Ly, I(Ly)=14 € 7'. Fix the number &1, 0<ey <min (e, [p(L1)], |p(L2)|).
Let () be a monotonically decreasing function on [s—1, 8], ¥s(s—1) =1,
$u(s) = 21+ p, (o (L)l L, 5 = T, p. Denote by g, (Ly) a segment g,(Ly)

{Xm - Xm(Lk)vm 7& Tz(ls)a Xri(is) = Xri(is )( w « )(Lk)) By COI’IStl"uCtIOH,
l9s(Lk)] € x(£), k=1,2, s = 1,p, and therefore the graph of the broken
line g(L1, L2) = g(L1) - (9(L2))~", where g(Ly) = [15_, gs(Lx) and which
connects x(L1) and x(Ls), is contained in yx(L).

Let now I(L1) € Z', I(Ls) € Z', I(L1) # I(L2). We write L} =
X Hg(Li)(p)), k = 1,2. As suggested by Lemma 4, it is of interest for us
to consider only the case where I(Ly)Nj* # I(Ly)Nj*, oop >0,k €j C V,
and B((Bly,_5)~", Bhy) < 0 for any k € j, 2k — 3 € j*, 2k € j*.

Let Fy, C I(Ly), Fo, C I(Ly), k1 € j, ka € j, ki < k. Then by
Corollary 1 of Theorem 1 we have 2m—1 € I(L1), j <m < ky, 2m & I(L1),
J<m<ki—-L2m—-1¢I(L1),ki+1<m<j+v;—1;2me I(L),
Bi+1<m<j+v,—12m—1¢€ I(Ly), j <m < ko; 2m € I(Ly),
J<m<ko—1;,2m—1¢&I(Ly), ko+1<m<j+v;—1; 2m € I(Ls)
ka+1<m<j+wv; —1. Since 2k; € R(I(L1)), the segment

2)s

hak, (L1) = {xq = Xq(L), ¢ # 7, (2k1); Xrs, (200) =
(t)
XTLl(Zkl)(T;Dljfl (Lil))}7

where o, (t) is a decreasing function on [0,1], wak, (0) = 1, @or, (1) =
1

is contained in x(£), including the point hag, (1), and S, (rf,jfl(l)( )
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Br, (r), (L5')) < 0. Therefore 2k; +1 € £(r9,, (LT")) and hence the segment

h§k1+1 = {Xq = Xq(rgkl(Li))a q # 11, (2k1),
®aky+1(F)

Xroy (2k1) = Xy (200) (2ty 11 (P2 (L)},
where 3, . (t) is an increasing function on [1,2], ¢35, (1) = 0,

©51,41(2) = €1, is contained in x(£), including the end point. By con-

struction, we have Fj, 41 C I(eggfﬂl@)(rgkl (L)) € Z'. Continuing the
process, after a finite number of steps we shall obtain the broken line
h = hog, - Ry, 1+ hoky+2 - h3y, 137 hok,—2 - Ry, connecting the points
X(L1) and x(Lz) in x(£).

Finally, let L € £, I(L) ¢ 7', and I~ (L) = {m1,ma,..., M)}, a €
Hpy X Hpy X ... X Hy, . Then the broken line f=rfi-forfur),
where f, is a segment in x(£) : fs = {xq = xq¢(L), ¢ # Teil(L)(as);

Xresoy(an) = Xroer oy (an) (€02 V(€52 | 0 ++-e5t (L)), where o,(t) is an in-

creasing function on [s — 1, ], o(s — 1) =0, o(s) = &1, is also contained in
X(£). By construction, I(eg!  oeg! =~ o---eg) €I" and we have thus

proved the connectedness of x(L). O

8 5. CONSTRUCTION OF A MINIMAL SURFACE BY A GIVEN ADMISSIBLE
BOUNDARY

Let S € & be represented by formulas (1). By differentiating (1) with
respect to 0, e € 12, k = 1,n, we obtain

(1) = —5 Im F/()(1 — w2(e))e”,
(1,2)9 — _% ReF!(eiG)(l + w2(6i6))6i6, (15)
(2%)g = —Im F’ (") w(e')e®.

Since S € & we have ((z1)g, (2%)g, (23)g) = dp(0)T, dy > 0 for € € 1.
Consider (15) as a system of equations with respect to Re F'(e?’) and
Im F’(e%?). The compatibility condition of system (15) is expressed by equa-
tion (4) and hence is fulfilled automatically. By solving (15) we obtain

X — 1Y, + ka(ew)

F'(e) = —2i e e dy(0) (16)

or
Re(Q(¢)tF'(t)) = 0, (17)

where

Q(t) = X + iV + Zyw(t), tee cly, k=T,n. (18)
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Thus F’(z) is a solution of the Riemann-Hilbert boundary value problem
(17) with a piecewise-continuous coefficient Q(¢) which is analytic on each
arc 19. Moreover, as follows from [6], F'(z) is bounded in the neighborhood
of the points 3, (w), j = 1,a~, corresponding to the negative values of «;
or, speaking in terms of [9], F’(z) belongs to the class h(ty, ,th,,. .. st )
The number o~ of points in whose neighborhood F”(z) is bounded is defined
by the initial broken line I and does not depend on L € L.
We rewrite (17) as

QOEF'(t) + Q(1)TF (t) = 0.

Since F'~(z) = F(1/Z) is bounded at infinity, (F~(2))’ has zero of second
order at infinity. Moreover, for z = 1/¢ we have

dF G dF~
) = 2 19
( dz ) d¢ (19)
dF+ dF
and therefore on the unit circumference the boundary values 0
dF~
and e will be connected through the relation
dF+ G dF™
— = —t— 20
dt dt (20)
which makes it possible to rewrite the boundary conditon (17) as
+ . —
dF _ €2i Arg Q(t) dF (21)

dt dt -

By direct calculations we ascertain that sin Arg(Q(tx — 0))/Q(tx + 0)) =
—sinmoy, cos Arg(Q(tx — 0))/Q(tx +0)) = cosmay, k = 1,n, thp1 = t1.
On each arc I, we choose a branch Arg Q(t) such that

%[Arg@(tk —0) — Arg(ty + 0)] = —a,.

By simple calculations we obtain [ Arg Q(t1 — 0) — Arg(t1 +0)] =2 — as.
Let us rewrite the boundary condition (21) as

dF~+ 621' ArgQ(t) ) dF—

= t 22

dt 12 dt (22)

Introducing the notations ®*(z) = % and ®~(2) = 224~ and recalling
that 22% is bounded at infinity, we find that the index of the boundary

value problem in the class of functions bounded at infinity and belonging
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t0 Atk , thy,- - - ’tkaf) is equal to zero. Thus a general solution of problem
(22) is given by the formula

2m

®(z) = Cexp %/

0

Arg Q(e??) — 0

if
T de*, (23)

where C' is an arbitrary complex constant. From (23) we have

27
dF* 1 [ArgQ(e?) -0 . .
— = Cexpf/rgc’.?(;)de’e, |z| <1,
dz T et — 2
27 (24)
dF— 1 1 [ArgQ(e?) -6 .
— = —Cexpf/wdew, |z] > 1.
dz 22 s el — 2

0

Condition (19) is fulfilled by an appropriate choice of the constant C.
Using simple transformations [9], we find that C' must satisfy the equality

Cexp ( - %/ [Arg@(em) —0]do = —C. (25)
0

Assuming C' = \ge*?, \g > 0 we obtain

2m
1 - ™
a:—%/[ArgQ(ee)—G}dOig. (26)
0
The substitution of (25) into (24) gives
2
dF 1 — e 4 o

0

Let now S“ be a minimal surface defined by (1), where F'(z) and Q(t) are
given by (27) and (18), respectively. In (27) we take the sign “—” to show
that S* € &. For t € [ (27) implies

Arg F'(t) = Arg(X), — iVi + Zo(t)) — g —0. (28)

On account of (28), (4), and the equality | X — Y} + Zw| = 1 we obtain by
direct calculations
A . .
(@')o = ng\F’(ew)Kl + |w(e)?),

(@) = VP ()1 + (e )?)
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A

3 0

x = —

(@) = 5

Thus S“ € & and heence we have the bijection 6 : & — ¢.
Denote by I' the boundary S¢. Passing to the limit in (27) as z — ¢ # {y,
we obtain [9]

Zi[F' ()| (1 + |w () ).

27
|F'(e™)] = \g exp ;/ [Arg@(ew) — 0] ctg%d&,
™
0

which implies [2]

Okt 2
A . o |
g =22 / exp{%/[ArgQ(eze)—0]cthwd9}(1+|w\ew))2)dt/).
O 0

Fix Ao so that 3>-7-7|%| = 1. We obtain the bijective mapping P o § o
X HL) : x(£) — P and hence the parametrization of the set P by the
domain x(L£).

§ 6. DIMENSION OF THE DOMAIN x(£).

Let L € £, wr(z) and F! (z) be the functions constructed in the preceding
sections. For each k, k € N,, the vector (wg(e"?))g is oriented along the
tangent to circumference (4) at the point ¢t = € and hence Xy + Y} +
Zrw(t) = ifi(t)(wr(e™))s, where fi(t), t € Iz, is the real function. This
gives us

0 = Re (Xy, + i¥s + Zew (D)) LF () = fie(t) Im tF" (£)(wp(e7))o

de (t)
dt

so that Im F'(t)t(wr,(t))edf? = 0, from which in view of (wy,(t))g =t
we obtain
Im F'(t)w' (t)t2d6? = —Tm F'(t)o' (t)dt* = 0.

Thus the quadratic differential n(z) = F'(2)w’(2)dz? is analytically con-
tinuable onto the entire Riemann sphere if for the point z* symmetric to
z with respect to the unit circumference we set [10] n(z*) = n(z). Taking
into account that w} (z) # 0, |z| < 1, and in the neighborhood of the point
tr we have w) (2) = (z — t) "y, (2), where wy(2) is holomorphic and
nonvanishing, in this neighborhood [11], and recalling the behavior of F’(z)
in this neighborhood [6], we conclude that zeros and poles of the differential
1(z) are located on the unit circumference. Moreover, by the definition of
oy and (B and also on account of Lemma 3 the poles and zeros of n(z)
can be only simple. Let I(L) € Z’. Then by virtue of Lemma 5 s(L) = 0
and therefore 7(z) cannot have zero at any of the points tx(w), k = 1,n.
The poles of n(z) coincide with t; corresponding to oy > 0. Hence the
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number P(7) of the poles of 7(z) on the unit circumference (and on the
entire sphere) is equal to n — a~. Furthermore, the differential 7(z) cannot
have zero at any of the points ¢;(w) and hence the number N(7) of zeros

of n(z) coincides with the number of critical points wy(z) on leg or, as

follows from Theorem 2, with the number p. On the other hand, we have
the equality [10] ordn(z) = N(n) — P(n) = —4. Recalling that p is constant
on I and substituting N () = p and P(n) = n— ™ into the above equality,
we obtain

Theorem 4. If L # &, then p=n—a~ —4.
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