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ON THE SOLUTION OF THE DIRICHLET PROBLEM FOR
AN ELLIPTIC EQUATION DEGENERATING ON THE

BOUNDARY

A. JVARSHEISHVILI

Abstract. The Dirichlet problem for the equation

y∆W + αWy = −F

is studied in the semi-circle x2 +y2 < 1, y > 0. The restrictions on F
are established under which the problem is uniquely solvable in the
definite generalized sense.

Let K =
{

(x, y) : (x, y) ∈ R2, x2 + y2 < 1, y > 0
}

, and let ∂K be the
boundary of K. Denote ∆W = Wxx + Wyy and consider the equations

y∆W + αWy = −F (x, y), (x, y) ∈ K, (1)

y∆W + αWy = 0, (x, y) ∈ K. (2)

The classical Dirichlet problem for these equations is formulated as fol-
lows: Find in the domain K a regular solution u = u(x, y) of the given
equation which is continuous in K = K ∪ ∂K and satisfies the boundary
condition u(x, y) = f(x, y) for (x, y) ∈ ∂K, where f(x, y) is the known
continuous function on ∂K. Bitsadze [1] investigated the existence and
uniqueness of the solution of the Dirichlet problem for equations of more
general type than (1), while the solutions of boundary value problems for
equations of more general type were studied by Keldysh [2]. In [3] Nikol’sky
and Lizorkin considered some boundary value problems for degenerating
elliptic equations. Weinstein [4], [5] constructed fundamental solutions for
equation (2). As is well known (see, e.g., [6]), using fundamental solutions
one can construct a Green function of the Dirichlet problem for equation
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(1) which has the form

G(x, y; ξ, η; γ)y1−α = [Z0(x, y; ξ, η; γ)−
−ρ−γZ0(x, y; ξ/ρ2, η/ρ2; γ)]y1−α = [Z0 − Z1]y1−α,

Z0 =
1
2π

∫ π

0
sinγ−1 θ[r2 + 4yη sin2 θ/2]−γ/2dθ,

ζ, z∈K with ζ = ξ + iη, z = x + iy, ρ= |ξ|, r= |z − ζ|, γ =2−α.

(3)

A unique solution for the classical Dirichlet problem of equation (1) can
be represented by the following

Theorem A. Let 0 < α < 1, and let the function F satisfy the conditions

|F (x1, y1)− F (x2, y2)| ≤ c
{

|x1 − x2|δ + |y1 − y2|δ
}

,

0 < δ ≤ 1, (xk, yk) ∈ K, k = 1, 2.

Moreover, F (x, y) = 0 when 0 ≤ y ≤ ω, where ω > 0 depends on F .
Then for any function f continuous on ∂K there exists a unique function
W = W (x, y) which is continuous on K, W (x, y) = f(x, y), (x, y) ∈ ∂K,
and satisfies equation (1) in K. For all (x, y) ∈ K we have [7]

W (x, y) = y1−α
∫

K
F (ξ, η)G(x, y; ξ, η; 2− α) dξ dη +

+ (1− α)y1−α
∫ 1

−1
f(t, 0)G(x, y; t, 0; 2− α) dt−

− y1−α
∫ π

0
f(ϕ) sin ϕ

∂G(x, y; cos ϕ, sinϕ; 2− α)
∂n

dϕ =

= J1(F, x, y) + J2(f, x, y) + J3(f, x, y), (4)

where ∂G
∂n is the derivative with respect to the outer normal to ∂K and

f [ϕ] = f(cos ϕ, sin ϕ), 0 ≤ ϕ ≤ π.
The aim of this paper is to show that expression (4) is a solution of the

Dirichlet problem of equation (1) for a wider class of given functions F and
f . In the sequel we shall use the following propositions.

Proposition 1. Let γ < 0. Then for all (x, y) ∈ K, (ξ, η) ∈ K we have

Z0(x, y; ξ, η; γ) ≥ C(y · η)−γ/2
∫ π/4

0
θ−1dθ = ∞,

where C ∈ (0,∞) is a constant independent of x, y, ξ, η.

Proposition 2. For each (a, b) ∈ (0, 1]×(0, 1] and a fixed p ∈ (0,∞) the
inequality ` ≤ (a+b)p

ap+bp ≤ L holds with ` = min[1, 2p−1], L = max[1, 2p−1].
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Proposition 3. For all (x, y) ∈ K, (ξ, η) ∈ K, 0 < α < 2, there exists
a constant C ∈ (0,∞) such that

|G(x, y; ξ, η; 2− α)| ≤ C
r2−α .

Proposition 4. If z = x + iy ∈ K, ζ = ξ + iη ∈ K, ζ = ρeiϕ, ζ∗ =
ξ∗ + iη∗ = 1

ρeiϕ, then |z − ζ| ≤ |z − ζ∗|,

lim |ζ| |z − ζ∗| = 1, lim |ζ|2 · y · η∗ = 0 as |ζ| → 0.

Below we assume that F is summable on K, F (x, y) = 0 if (x, y) /∈ K,
and for any point (x, y) ∈ K we have

∫ 2π

0
|F (x + ρ cosϕ, y + ρ sin ϕ)| dϕ ≤ C[1 + | ln ρ−1|] = C ln+ ρ, (L)

where C ∈ (0,∞) is a constant depending on F only.

Theorem 1. Let 0 < α < 2, and let F satisfy the condition (L). Then
for all (x, y) ∈ K there exists, in the Lebesgue sense, an integral

∫

E
|F | |G(x, y; ξ, η; 2− α)| dξ dη, E ⊆ K,

which is absolutely continuous with respect to the measurable set E uniformly
for all (x, y) ∈ K. If, however, y = 0, 0 < α < 1, then for an arbitrary
summable function F (x, y) we have J1(F, x, 0) = 0, −1 < x ≤ 1.

Theorem 2. Let 0 < α < 1 and let F satisfy the condition (L). Then
for all (x0, y0) ∈ ∂K, x0 6= ±1 we have

lim y1−α
∫

K
F (ξ, η)G(x, y; ξ, η; 2− α) dξ dη = 0 as x → x0, y → y0. (5)

Thus for the function F satisfying on K condition (L) there exists an
expression J1(F, x, y) for all (x, y) ∈ K, and at every point (x0, y0) ∈ ∂K,
x0 6= ±1, equality (5) is fulfilled. As for the function G(x, y; ξ, η; γ), we are
aware of the following inequalities ([4], [5]).

Proposition 5. Let us introduce the functions h and N defined by the
equalities

G(x, y; ξ, η; γ) =
1
2π

(y ·η)−γ/2 ln r−1+N(z, ζ, γ) = h(y, η) ln r−1+N(z, ζ, γ)

with z, ζ ∈ K. For all 0 < ω ≤ y, η ≥ ω, 0 < r ≤ ω we have

|N | ≤ Cω, |Ny| ≤ Cω, |Nx| ≤ Cωr| ln r−1|,
|Nξ| ≤ Cωr| ln r−1|, |Nη| ≤ Cωr| ln r−1|,

(6)
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where Cω ∈ (0,∞) is a constant depending on ω.

To study boundary properties of the integral

J3(f, x, y) = −y1−α
∫ π

0
f [ϕ]

∂G(x, y; cos ϕ, sin ϕ; 2− α)
∂n

sin ϕdϕ

let us introduce an angular neighborhood of the point eiϕ0 ∈Γ=∂K\(−1, 1),
0 < ϕ0 < π. We say that the point z belongs to ∆1(ϕ0, δ) if

| arg z − ϕ0| < δ(1− |z|), δ > 0, (7)

where δ is an arbitrarily fixed positive number. From (7) we obtain that for
z ∈ ∆1(ϕ0, δ),

(a) |z − eiϕ0 | ≤ Cδ(1− |z|) with a constant Cδ > 0; (8)

(b) there exist constants m > 0, n > 0 depending on δ such that for all
ψ ∈ (ϕ0 − δ, ϕ0 + δ)

m|z − eiψ| ≤ |z − eiϕ0 | ≤ n|z − eiψ|; (9)

(c) m|x− cos ψ| ≤ |x− cos ϕ0| ≤ n|y− sin ψ|, ψ ∈ (ϕ0− δ, ϕ0 + δ). (10)

Let f be a function which is summable on [0, π] and assume that

˜f(ϕ0) = sup
[

∣

∣

∣

(

ϕ0−ε
∫

0

+

π
∫

ϕ0+ε

) f [ϕ]
ϕ− ϕ0

dϕ
∣

∣

∣, ε > 0
]

,

M(f, ϕ0) = sup
[

∣

∣

∣

1
h + k

ϕ0+k
∫

ϕ0−h

|f [ϕ]| dϕ
∣

∣

∣, h > 0, k > 0
]

,

J3(f, ϕ0) = sup
[

|J3(f, z)|, z ∈ ∆1(ϕ0, δ)
]

.

Suppose that the arbitrarily fixed numbers introduced in (7) and in Propo-
sition 5 are equal, i.e., δ = ω = λ > 0. Introduce the set I(λ) = (λ, π

2 −λ)∪
(π

2 + λ, π − λ), |I(λ)| = π − 4λ > 0, λ < π
8 . Let ϕ0 ∈ I(2λ), in particular,

ϕ0 ∈ (2λ, π
2 − 2λ). Let 0 < α < 1, and let f be summable on [0, π]. Using

Proposition 5 and relations (7)–(10), we can estimate the expression

∣

∣

∣

∣

ϕ0+λ
∫

ϕ0−λ

y1−αf [ϕ]
∂
∂n

(h · ln r−1) sin ϕ dϕ
∣

∣

∣

∣

≤

≤ Cλ

[
ϕ0+λ
∫

ϕ0−λ

|f [ϕ]| | ln r−1| dϕ +
∣

∣

∣

∣

ϕ0+λ
∫

ϕ0−λ

f · h ∂ ln r−1

∂n
dϕ

∣

∣

∣

∣

]

.
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For z ∈ ∆1(ϕ0, λ), z = |z|eiψ = x + iy, r = |z − eiϕ| we have

∂h ln r−1

∂n
=

1
ϕ− ϕ0

+ R(x, y, ϕ) ln |ϕ− ϕ0|,

where R(x, y, ϕ) is the bounded measurable function of x, y, ϕ, z = x+ iy ∈
∆1(ϕ0, λ). Thus from the latter relations we get

∣

∣

∣

∣

ϕ0+λ
∫

ϕ0−λ

y1−αf [ϕ]
∂
∂n

(

h · ln r−1) sin ϕdϕ
∣

∣

∣

∣

≤

≤ Cλ

[∣

∣

∣

∣

ϕ0+λ
∫

ϕ0−λ

f1[ϕ]
ϕ− ϕ0

dϕ
∣

∣

∣

∣

+ M(f, ϕ0)
]

≤

≤ Cλ[ ˜f1(ϕ0) + M(f, ϕ0)], |f1[ϕ]| ≤ |f [ϕ]|, ϕ ∈ (ϕ0 − λ, ϕ0 + λ), (11)

where Cλ ∈ (0,∞) is a constant depending on λ only. Further, using
inequalities (6)–(10), we can easily get the following inequalities:

∣

∣

∣

∣

ϕ0−λ
∫

0

y1−αf [ϕ]
∂
∂n

(

h · ln r−1) sin ϕ dϕ
∣

∣

∣

∣

≤ CλM(f, ϕ0),

∣

∣

∣

∣

π
∫

ϕ0+λ

y1−αf [ϕ]
∂
∂n

(

h · ln r−1) sin ϕ dϕ
∣

∣

∣

∣

≤ CλM(f, ϕ0),

∣

∣

∣

∣

π
∫

0

y1−αf [ϕ]
∂N
∂n

sin ϕdϕ
∣

∣

∣

∣

≤ CλM(f, ϕ0), z = |z|eiψ, r = |z − eiϕ|.

(12)

Analogous inequalities are also valid for the rest of the summands.
Let f be summable on [−1, 1], and let ∆1(x0, λ) be an angular neighbor-

hood of the point x0 ∈ [−1, 1], i.e., z = x + iy ∈ ∆1(x0, λ) if

|x− x0|/y ≤ λ. (13)

Using the previous arguments and all the inequalities provided by (13),
we obtain the following inequality: let f be summable on [−1, 1], 0 < α < 1,
−1 < x0 < 1. Then

|J2(f, x0)| ≤ CλM(f, x0), (14)

where Cλ ∈ (0,∞) is a constant depending on λ > 0 only, while

J2(f, x0) = sup
[

|J2(f, z)|, z ∈ ∆1(x0, λ)
]

.

On the basis of (14), (12) and (11) we obtain



114 A. JVARSHEISHVILI

Proposition 6. Let 0 < α < 1. Let f be summable on ∂K = Γ∪ (−1, 1)
and let λ > 0 be an arbitrarily fixed number, Γλ = {eiϕ, ϕ ∈ I(λ)}. Then
for any point t ∈ Γλ ∪ (−1, 1) we have

J3(f, t) + J2(f, t) ≤ Cλ[M(f, t) + ˜f1(t)], |f1(t)| ≤ |f(t)|. (15)

Theorem 3. Let 0 < α < 1, and let f be summable on ∂K. Then for
almost all t ∈ Γ ∪ (−1, 1) we have

lim[J2(f, z) + J3(f, z)] = f(t), z → t, z ∈ ∆1(t, λ), (16)

where λ > 0 is an arbitrarily fixed number.

Proof. By virtue of Theorem A and Theorem 2 for all t0 = (x0, y0) ∈ ∂K,
x0 6= ±1 and any function g continuous on ∂K we have

lim[J2(g, z) + J3(g, z)] = g(t0), z → t0, z ∈ ∆1(t0, λ). (17)

Let f be a function summable on Γ ∪ (−1, 1) and suppose that (16) is not
fulfilled. Then there exist sufficiently small λ0 > 0 and ε0 > 0 and a set E,
where either |E ∩ Γλ0 | ≥ 16ε0 or |(−1, 1) ∩ E| ≥ 16ε0, such that for every
point t0 ∈ E there exists a sequence zn → t0, zn ∈ ∆1(t0, λ0), n ≥ 1, and

∣

∣[J2(f, zn) + J3(f, zn)]− f(t0)
∣

∣ ≥ 3ε0, n ≥ 1. (18)

On the other hand, for ε0 > 0 and for the function f there exists a
function g continuous on Γ ∪ (−1, 1) such that

∫

∂K
|f(t)− g(t)| dt ≤ ε2

0

Cλ0

, |f(t)− g(t)| < ε0, t ∈ E. (19)

Next, on the basis of the well-known Kolmogoroff inequality ([8], [9]) we
have

∣

∣

{

t ∈ Γ ∪ (−1, 1); ˜f1(t) + M(f, t) > µ
}∣

∣ ≤

≤ 4
µ

∫

∂K
(|f1(t)|+ |f(t)|) dt =

8
µ

∫

∂K
|f | dt, |f1| ≤ |f |. (20)

Using relations (15), (17)–(20), we get

16ε0 ≤ |E| ≤ |{t0 ∈ E; |J2(f, zn) + J3(f, zn)− f(t0)| ≥ 3ε0}| ≤
≤|{t ∈ E; |J2(f − g, zn)+J3(f−g, zn)|>ε0}|+|{t ∈ E; |f−g|>ε0}|+
+ |{t ∈ E; |J2(g, zn) + J3(g, zn)− g(t0)| > ε0}| < 8ε0.

This contradiction proves the theorem.
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For our further investigation let us consider a maximal function for the
function of two variables (see [8]).

Let f be the function summable on K. Assume that for (x0, y0) ∈ K

M1(f, x0, y0) = sup
{

1
|σ|

∫

σ
|f | dx dy : |σ| > 0

}

,

σ = {(x− x0)2 + (y − y0)2 ≤ δ2}.

Using (6) and the relation ∆[u, v] = v ·∆u + 2[ux · vx + uy · vy] + u ·∆v,
we can prove the following

Proposition 7. Let 0 < α < 1, and let the function Ψ satisfy the con-
dition (L). Then for all

(x0, y0) ∈ Kδ = {(x, y) ∈ K; x2 + y2 ≤ (1− δ)2, y ≥ δ},

where δ > 0 is an arbitrarily fixed number, we have

|∆[J1(Ψ, x0, y0)]| ≤ CδM1(Ψ, x0, y0),
∣

∣

∣

∂
∂y

J1(Ψ, x0, y0)
∣

∣

∣ ≤ CδM1(Ψ, x0, y0).
(21)

Here the constant Cδ ∈ (0,∞) depends on δ only.

According to Kolmogoroff [9] the inequality

∣

∣

{

(x, y) ∈ K; M1(Ψ, x, y) > µ
}∣

∣ ≤ θ
µ

∫

K
|Ψ| dx dy (22)

holds, where the constant θ ∈ (0,∞) does not depend on µ and Ψ.

Proposition 8. Let 0 < α < 1, and let f be summable on ∂K. Then
for all (x, y) ∈ Kδ we have

∣

∣∆[J2(f, x, y) + J3(f, x, y)]
∣

∣ ≤ CδM1(f, x, y), (23)
∣

∣

∣

∂
∂y

[J2(f, x, y) + J3(f, x, y)]
∣

∣

∣ ≤ CδM1(f, x, y). (24)

Repeating now the arguments from the proof of Theorem 3 and taking
into account relations (24), (23), (22), (21) and (20), we obtain the main
result.

Theorem 4. Let 0 < α < 1. Let F satisfy the condition (L), and let f
be a function summable on ∂K. Then we have

y∆[J1(F, x, y) + J2(f, x, y) + J3(f, x, y)] +

+α
∂
∂y

[J1(F, x, y) + J2(f, x, y) + J3(f, x, y)] = −F (x, y)
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for almost all (x, y) ∈ K and

lim W (x, y) = lim[J1 + J2 + J3] = f(x0, y0) as z = x + iy → x0 + iy0,

z ∈ ∆1(ϕ0, λ), eiϕ0 = x0 + iy0,

for almost all (x0, y0) ∈ ∂K, where λ > 0 is an arbitrarily fixed number.
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