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ON DIFFERENTIAL BASES FORMED OF INTERVALS

G. ONIANI AND T. ZEREKIDZE

In memory of young mathematician
A. Berekashvili

ABSTRACT. Translation invariant subbases of the differential basis B2
(formed of all intervals), which differentiates the same class of all non-
negative functions as By does, are described. A possibility for extend-
ing the results obtained to bases of more general type is discussed.

1. DEFINITIONS AND NOTATION

A mapping B defined on R" is said to be a differential basis in R™ if, for
every x € R™, B(x) is a family of open bounded sets containing the point
such that there exists a sequence { Ry} C B(x), diam R — 0 (k — 00).

For f € Ljp.(R™) the numbers

- o 1
B ( / f’ (E) diam R_}{){lReB(QL‘) |R| /R f

1
D /f,x = lim 7/ f
B< ) diamR—)O,REB(a:)|R| R

are said to be respectively the upper and the lower derivative of the integral
of f at the point z. If the upper and the lower derivative coincide, then their
common value is called the derivative of the integral of f at the point x, and
we denote it by Dp( [ f,x). They say that the basis B differentiates the
integral of f if Dp ( |7, x) = f(z) for almost all x. The set of those functions
f € Lioe(R™), f > 0, whose integrals are differentiable with respect to the
basis B will be denoted by Fg . Under Mp we mean the maximal operator

and

1 n n
Mp(f)@) = sw /R | (f € Lie(®™), @ € B™),
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corresponding to the basis B. It will be assumed here that B = |J B(z).
zeR™

B is said to be a subbasis of B’ (writing B C B’), if B(x) C B'(x)
(x € R™). The basis B is said to be translation invariant or the T'I-basis, if
B(z) ={z+ R: R € B(O)} (x € R") (here O is the origin in R™). Let us
have the bases B and B’. We shall say that the family B is locally regular
with respect to the family B’ (writing B € LR(B’)), if there exist § > 0
and ¢ > 0 such that for any R € B, diam R < §, there is R’ € B’ such that
R C R and |R'| < ¢|R|.

We shall agree that I™ = [0,1]" and f € L(I"), if f € L(R™) and
supp f C I™.

2. TI-BASES FORMED OF INTERVALS

Let B be the basis in R? for which By(z) (z € R?) consists of all two-
dimensional intervals containing the point x.
The theorem below characterizes B C B, T'I-bases for which F g = FEZ.

Theorem 1. Let B C By be a TI-basis. Then the following conditions
are equivalent:

(a) Fff = Ff,;

(b) for every f € L(R?), f >0, a.e. on R?

Da( [ 5.0) =D [ 1.2) and Dy( [ f5) = Dy, ( [ 1.0)

(¢) By is locally regular with respect to B.

The implication (b) = (a
suffices to show that (a) = (
The implication (a) = (c)

) is evident. Therefore to prove Theorem 1 it
c

) and (c) = (b).

follows from the following assertion.

Theorem 2. Let B C B be a T1-basis. If By is not locally regular with
respect to B, then there exists a function f € L(I?), f >0, such that

z) =00 ae. on I?
BQ( 1 ) ;
DB(/f,x) = f(x) a.e. on I

Before proving Theorem 2 we shall give several lemmas.
For the interval I we denote by al (o > 0) the interval H(I), where H
is the homothety with the coefficient o whose center is the center of I.

Lemma 1. Let I € By and h > 1. Then {Mg,(hx,) > 1} C (2h+ 1)I
and |[{Mp,(hx,) > 1}| > h(Inh)|I|.
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The validity of this lemma can be shown by a direct checking.
Projections of I onto the ﬁxl— and oz?-axes will be denoted by pr; I and
pry I, respectively. For I € By and h > 0 we have

Ri(I,h)=(2h+1)pry I x 3pry 1,
Ro(I,h) =3pry; I x (2h+ 1) pry 1,
R(I,h) = Ri(I,h) U Ra(I,h).
It is clear that |R(I, h)| < 18h|I|.
Lemma 2. Let B C By be a TI-basis; h > 1. Suppose that for I € By

there is mo J € B, J D I, such that |J| < h|I|. Then {Mp(hy,) > 1} C
R(I,h).

Proof. Let J € B and (1/]J]) [, hx, > 1. From the condition of the lemma
we can easily find that either

lpriJ|1 < |pry |1 or |pryJ]y < |pryl|, (1)

where | - |1 is the Lebesgue measure on R.

By Lemma 1, J C (2h + 1)I, which by virtue of (1) implies that either
J C Ri(I,h) or J C Ry(I,h), so that we have J C R(I,h). It follows from
the latter inclusion that {Mg(hx,) > 1} C R(I,h). O

It can be easily seen that the following two lemmas are valid.

Lemma 3. Let I,J € By; h > 1. If either |pry J|1 > h|pr, J|1 or
|pry J|1 > h|pry J|1, then h|J NI| <|I N R(I,h)|.

Lemma 4. Let I,J € By. If JNI # @ and J\R(I,h) # @, then either
|pry Jl1 = [pry |1, or |pry J|y = [pry s

The following lemma is also valid.

Lemma 5. Let B C By; h > 1, and let Iy,...,I;, € By be the equal
intervals. If

{MB(hXIm) > 1} C R(Imvh) (m = 17k)’
R(Imah) N R(Im’vh) =9 (m 7& ml)7

then

{MB( Ek: hx,m) > 1} c | R, ). 2)
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Proof. Inequality (2) is equivalent to the following inequality: if
k
x¢ U R(Im,h) and I € B(z), then

m=1

k
1
T DL 3)
m=1

Let = ¢ U R(Im7 h) and I € B(z). Then we may have three cases. Let

us con51der each of them separately.

(i) I intersects none of the intervals I,,, (m = 1, k); in this case the validity
of (3) is evident.

(ii) I intersects only one interval I, (m = 1, k).

Let I,, be the interval for which I N1, # &. = & R(I,,,h), and therefore
by the condition of the lemma,

m/hxfn < Mp(hx,,)(z) <1,

from which, taking into account the equality I N I,, = @ (m # n), we
obtain (3).

(iii) I intersects more than one interval I,,, (m = 1,k).

It follows from the equality R(I,,, h) N R(Ly, h) = & (m # m’) that

Ch+ DI, NLy =9 4)
Denote P = {m € [1,k] : INI,, # @}. By (4) we have
INL,#@, IN\2h+1)L,#@ (meP),
which gives either
|pry Il1 = hlpry Im|1 or |pryI|y > hlpry In|i (m € P).
Now according to Lemma 3 we can conclude that
hINIy| <|INR(y,h)| (meP).

From the obtained inequality, taking into consideration the pairwise non-
intersection of R(I,,h) (m = 1,k), we write

k
/ Z hXI1n -
I m=1

Thus inequality (3) and Lemma 5 are proved. [O

/hX,m ST AINL, <Y TR, b)| < |1,

meP meP meP
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Lemma 6. Let B C By, h > 1, and for every m € [1, k] let {1, 4}om; C
Bs be a family of equal intervals. If
{Mgp(hx,,, ) > 1} C Rug
(Rin,q = R(Imq, h);m = LE) ¢=1,qm),
Riyq N Ry =@ (m,q) # (m,q'), (6)
|pry Imal1 > bl pry Iy,
| pry I ,1l1 > bl pry Lngrals,

(m=1,k-1) (7)

then

(X S, ) =2h e U Ut

m=1 qg=1 m=1qg=1
Proof. The inclusion we have to prove is equivalent to the following inequal-

k  am
ity: f e ¢ U U Rm,q and I € B(x), then

m=1qg=1
Th5S
7 hXI,” q <2 (8)
|I| I'm=1 q=1 Y
k  aqm
Assume z € |J U Rm,q and I € B(z). It is clear that (8) is fulfilled for
m=1qg=1

INL,,=9 (m=1k q=1,q,). Denote otherwise n = min{m € [1,k] :
(g =1,qm), I NI 4 # @} and consider first the case with 1 < n < k.
By virtue of Lemma 5 (see (5) and (6)), we write

an

My (Y h,, ) @) <1,

q=1
which implies

dn dn

/, S hx, = S BIA Ll < 1. (9)
q=1

q=1

For some q € [1,¢,] I N1, 4 # @, it is clear that I\R, 4 # @. Therefore,
according to Lemma 4, we have either

|pry Iy > [pry Lngli or |pro |1 > [pry Ly gl

Taking into account that the intervals {I, 4}o7; (m = 1,k) are equal
and using (7), we can write that either

|pry Iy > hlpry Imghh (n<m <k, ¢=1,¢n)
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or
|pr2I|12h|pr2‘[m,q|1 (n<m§k7 q:17Qm)»

whence by Lemma 3 we get

MINTpg SINRmgl (n<m <k g=1,qm). (10)

Clearly, IN Iy, =@ (n <m <n; ¢ =1,qn), so that by (6), (9), (10)
and 1 < m < n we have

k  am k  qm n—1 qm
/Z S ohxy, =D MINTngl=> > ANyl +
I'm=1 g=1 m=1qg=1 m=1qg=1
n k qm
D AINT g+ Y >INy, =
q=1 m=n+1qg=1
k Gm
= A1+ A+ As <O+ + D Y TN Ry gl < I+ 1] = 211].
m=n+1qg=1

Inequality (8) can be proved in a simpler way for n = 1 or n = k, since
in these cases we do not have the terms A; and As. [

For the basis B let us define the operator

* 1 n n
M) = sup | [ ] (7 € (R0 € RY).
reB(z) R JR

Lemma 7. Let the basis B differentiate the integrals of the functions
fr € LR™) (k€ N), 352, [[fully < oo. If

D HME(fr) > Midle < oo,

k=1

where A\, >0 (k € N), >°0°, A\ < 00 and || is an outer measure, then B
differentiates the integral of the function > o, fr-

Note that since M5 (f) < Mgp(f) (f € L(R™)), the conclusion of Lemma
7 will be the more so valid when the inequality Y po y [{Mp(fi) > M }te < 00
is fulfilled.

Proof. Let us note that:

(1) Sre i [Ifelli < oo; therefore the set Ag = {x € R™ : > 12, |fu(x)| <
oo} is of measure 0;

(ii) B differentiates [ fi (k € N), i.e., the sets Ay, ={z€R":Dp([ f,z)=
f(z)} (k € N) have a complete measure on R™.

(i) Yor, M5 (fr) > Ak}e < oo; therefore the set limy oo {M5(fx) >
Ak} is of measure 0.
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It follows from (i)—(iii) that the set A = |J A\ (limp—oo{Mp(fr) >
k=1

At UAp) is of complete measure. Let us show that for every = € A we

have DB(fZ;O:l feoz) = > ey fr(z), which will prove the lemma.
Let £ € A and € > 0. From the inclusion x € A we can conclude that:
1) there is kg € N (kg = k(z,¢)) such that z ¢ () {M5(f) > A},
k=kq

Dk M < €/3and 37 | fi(x)] < e/3;
2) there is § > 0 such that for every R € B(x), diam R < ¢

ko—1 ko—1

1
W/I%I;fk_;fk(x)

According to 1) and 2) we can write that for every R € B(z), diam R < 6,
ko—1 ko—1

1 > > 1

=1 % ~
+ 3 gl [+ X vl <eroe 3tz +

k=ko

<e/3.

< +

+e/3<2/3+ ) M <e.
k=ko

Since ¢ > 0 is arbitrary, we conclude that the equality

DB(IZE‘; fk,:v) =30, frlz) is valid. O

Proof of Theorem 2. Let k > 3. Choose hj such that %ln %’“ > 18 . 22k,

Let o, = %ln %/22(k+2)hk. Obviously, 0 < ay, < 1.

For I € By and h > 0 denote Q°(I,h) (2h + 1)I. Let 27™ <
|pry Q°(1, k)| < 27™*! and 2-m < |pry QU(I, h)|1 < 2-m'+1 where
m,m’ € N. Denote by Q(I,h) the interval concentric with Q°(I,h), and
Iprl Q(I’ h)|1 = 2—m+1’ | pry Q(Ia h)|1 = 2_m/+1'

For the basis B denote by M} (r > 0) the operator

MP(D@ = sw o 1] (e L@, ce R
ReB(xz),diam R<r |R| R

Ba ¢ LR(B), since there is I € By such that:

1) there is no J € B, J D I for which |J| < 2Fhi|1];

2) diam Q(I, 2%hy) < 1/k.

Divide I? into intervals equal to Q(I,2%hy) and denote them by @1,
(1 <q¢g<q). Take I 4 (1 < ¢ < ¢1) equal to T,(I), where T, is a shift
translating Q(I, 2hy,) to Q1,4
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Let the families {11 4}0L; ... {Imq}o, consisting of equal intervals be
already constructed. Consider the sets

m g5

b = UMD (i x,, ) > B,
j=1lg=1
m  qj

Ag@ = U URJ}q (Rjq = R(Ijq, 2khk:))-
j=1lg=1

1 1
If [AL| > 11— T then we stop the construction. If [AL | <1 — T then

we shall construct the family {I,,11,4}or1" as follows:

Consider the set A, = I? = I?\(AL, U A2)) which, obviously, can be
represented as G1 UG5, where (1 is open and G5 consists of a finite number
of smooth closed lines. It is clear that there is 6 € (0,1/k) such that if we
divide I? into equal intervals {.J;} with diameters less than 4, then

Ann U 5 2(1—%)|Am|.

Jj CA'm

Bo ¢ LR(B), since there is I € By such that:

1) there is no J € B, J D I for which |J| < 2Fhy|I];

2) diam Q(I, 2%hy) < 6;

3) | pry Imaln > 28hy| pry I)1 and | pry Iy 1|1 > 28hy | pry 11

Divide I? into intervals equal to Q(I, 2¥hy). Denote the intervals included
in Am by Qm+1,q (1 < q < qm+1)~ Take Im-‘rl,q (1 < q < qm+1) equal to
T,(I), where T, is a shift translating Q(I,2%hy) to Q1.4

By our construction we obtain

dm+1

g
> - — .
Ap N qL:Jl Quira| = (1 - )1 4m| (11)
By Lemma 1,- for ¢ =1, ¢41
h,
{MBz (thIm_'_l‘q) > k} - (2? - 1>Im+1,q C Qm+17q7 (12)
hi, h
(M, (hix,, ., ) > K3 > 25 = T, (13)

Since diam Q41,4 < 1/k (¢ =1, gm+1), because of (12) we have

(Mg, (hix,,, ) >k} = {MG/ x| ) >k} (@=T,qmi1). (14)
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It can be easily seen that (see (13), (14))

|{M31/k) hix, ) > k}| > | Qmiirql (@ =1,¢ms1),

m+1,q
which by (11) readily implies

dm+1

1/k)
‘LJ{A@! (hix,, ., ) >k”>q%’LJQmH4‘Z
q=1 q=1
Qe Qg
> - L - .
> (1= 2 )[4 > FEJAn| (15)

According to the construction and Lemma 2 we have for ¢ = 1, ¢yn41
{Mp(hix,,,,, ) >1/2°} C Rusrg (Rmsr,q = B(Ims,0:2" ).

On account of our choice of hy, because of (13) and (14) we write

m+1,q

[0 (i, ) > B > 2 Rnigl (0= L),
whence
1/k i
’ U {M( / ) thIerl,q) > k}‘ > 2’6’ U Rm+1,q’- (16)
q=1

Let us show that for sufficiently large mk the construction ceases, i.e.,
we shall have the inequality

mE dm
1/k 1
‘ U1U1{M( M) (h WXi, ) > k}‘ >1- (17)
m=1lq

1
Assume the contrary, i.e., |AL | < 1— Z (m € N). Introduce the notation

dm
a2 = I (e, ) > k),
=l (m € N)
Ay = JBmg

q=1

Clearly, (15) and (16) will be valid for all m € N, and therefore we write

Al > 1Al = S (1 Z|A3UA4|)
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which by the equality [A},| = 37", [A},| implies that [A},| > 1 — >

1
2k—1
1
1 — = for sufficiently large m. From this contradiction we conclude that
(17) is valid.
Consider the function fi, = > %, 2y hix,,, - Cleatly, fi € L(I?%)
and fr > 0. From (17) we get

1

1/k

{ME P (fe) > K} >1- (18)
From the construction we can easily see that 2Fhj and the families

{hgtec,, .. {Imk,q}qm’“ satisfy all the conditions of Lemma 6. Therefore

by Lemma 6 we write

{Mp(fr) >1/2""} = {Mp (2" fi) > 2} =

mr Qqm MmE 4m
- {MB( Z ZQkhkxlmyJ > 2} c U U Rone- (19)
m=1g=1 m=1qg=1

Obviously, (16) is fulfilled for all m € [1,my — 1], so that taking the
construction into account, we have

mpg 9m

U U

m=1q=1

Due to (19) and (20) we write

mp dm

U U/ P hx,, ) > k)

m=1q=1

2~ < <1. (20)

{(Ms(f) > 1/247| < 2ik (21)

It can be easily seen that

mg qm

U Uz

m=1qg=1

dm

U MG/ (haex,,, ) > &Y

m=1qg=1

—ln— < <1,

Mg 9m

Hence, due to our choice of hj, we obtain
U Una

<1/k ka. (22)
m=1qg=1

Consider the function f = Y72, fx. Clearly, f € L(I?) (see (22)) and
[ =0.

. . . T 1/k Y [eS)
It is obvious that if z € kli)n;o{Méz/ )(fk) > k}, then DBz(kazg fres m) =

[ frlls = hu

oo. Because of (18) klim {M,(B,lz/k)(fk) > k} has a complete measure on I2.

Therefore the latter equality holds almost everywhere on I2.
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It is clear that B differentiates [ fz (k € N). Moreover, owing to (21)
we get >0 o {Mp(fi) > 1/2871} < Y32, 5% < oo, which by Lemma 7
implies that B differentiates [ f. O

After making some technical changes in the proof of Theorem 2 we can
obtain the following generalization.

Theorem 3. Let B C By be a TI-basis. If By is not locally regular
with respect to B then for any function f € L\LIn" L(I?), f > 0, there
is a Lebesque measure-preserving and invertible mapping w : R2 — R2,
{z:w(z) # 2} C I? such that

sz</wa,$) =00 a.e. on I
DB</fow,:L'> = (fow)(z) a.e. on I
To prove the implication (¢) = (b) let us show the validity of

Lemma 8. Let B C By be a TI-basis. If By is locally regular with
respect to B, then for every f € L(R?)

AH (A>0,0<r <),

(M) () > Ny < 25|{ M7 () >

where 6 and c are the constants from the definition of local regularity of By
with respect to B.

Proof. Note first that if I and I’ (I C I') are the one-dimensional intervals
and I* is either the left or the right half of the interval I, then for the point
y € I'theset E ={z € R: (I'+2—y) D I*} possesses the following
properties:

1) E is an interval;

2) ENI # o

3 Bl = 11 = 51 2 5171,

It follows from these properties that

)5ES T
is likewise valid.

Let f € L(R?). Denote by P the set of all two-dimensional intervals

) cr )\ . .
E € B, such that E C {MJ(B )(f) > @} and show the inclusion

(M) >xrc [Js5E (A>0,0<r <), (23)
EecP
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Let z € {Mé?(f) > A} (A >0, 0 <7 <§). Then there is I € Ba(x)
such that diam I < r and

ﬁﬁmm. (24)

Since By € LR(B), there is an interval I’ from B such that I C I’ and
|I'| < ¢|I|. Then it is obvious that diam I’ < c¢diam7 < cr. Let y € I’
be the point for which I’ € B(y). Divide the interval I into four equal
intervals. Because of (24) the integral mean will be greater than \ at least
on one of these intervals. Denote this interval by I*. Thus

Tl MUESS (25)

Consider the set E = {z € R?: (I"+2—y) D I*}. By virtue of the above
discussion we can easily note that

1) FE € By;

2N ENI £ o,

1

3 |El = L1

4)5EST.

Since x € I C I', then to prove (23) it suffices to show that E € P. Let
z € E. Then (I' + z — y) D I*. Since B is the T'I-basis and I’ € B(y), we
have (I' + z — y) € B(z). Moreover, owing to (25), we have

1 1 1 1 A
B — me/mz—/uw—T/m>a
'+ 2=yl Jryay | J - ] Jr- cAlI*| Jr- 4c

from which by the inequality diam(I’ + z — y) < c¢r, we conclude that
cr )\ . . .
z € {Ml(3 )(f) > 4—} Hence E € P. Thus inclusion (23) is proved.
c

Now, using (23) and Lemma 1 from [2], we will have

s >0 = | Yo < 0] o] <25 )
Ecp EeP

for A\>0,0<r<d. [

The basis B is said to be regular if there is a constant ¢ < oo such that for
every R € B there exists a cubic interval Q with the following properties:
QD R, Q| < c|R|.

According to the well-known Lebesgue theorem on differentiability of
integrals, the regular basis B differentiates L, i.e., DB(ff7 x) = f(x) a.e.
on R™ for every f € L(R™).

We shall say that the basis B possesses property (E) if for every f €
L(R™), Dp( [ f,z) < f(z) < Dp( [ f,z) ae. on R".
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Obviously, the basis B, containing a regular subbasis, possesses the prop-
erty (E).

It directly follows from the relation Bo € LR(B) that B contains a regular
subbasis, and hence possesses property (E). Now, to prove the implication
(b) = (e), it suffices to consider the following assertion.

Lemma 9. Let B be a subbasis of Ba with property (E). Suppose that
there exist positive constants c1,ca,c3 and & such that for every f € L(R?),

5)() > 3| <e[{mf0 () > 2 (>0, 0<r <)

C3

Then for every f € L(R?), f >0,

QB</f,x DB /f, and Dp /f, EBQ(/f,x

a.e. on R2.

The proof of Lemma 9 is based on the well-known Besicovitch theorem
on possible values of upper and lower derivative numbers (see [1], Ch.IV,
§3) and is carried out analogously to the proof of Theorem 1 from [2].

3. ON A POSSIBILITY OF EXTENDING THEOREM 1 TO MORE GENERAL
BASES

It should be noted that beyond the scope of T'I-bases Theorem 1 becomes
invalid. Moreover, even for bases which are similar enough to TI-bases
the local regularity of By with respect to B is insufficient for the equality
Fg = ng to be fulfilled.

A basis B will be called a TI*-basis if for every x € R", R € B(z) and
y € R™ there is a translation T such that T'(R) € B(y).

The following theorem is valid.

Theorem 4. There is a TI*-basis B C By with the properties:
1) By is locally reqular with respect to B, and B(O) = B2(0);
2) there is a function f € L(I?), f >0 such that

DBZ(/f,x) =000 a.e. on I?,
DB(/f,x) = f(x) a.e. on I

Proof. Consider the sequences oy T 00, ag > 0 and h T oo, hy > 10 with
the properties

k=1
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Let g, = 2™, where m; € N (k € N) and my ] oo. For every k,
we divide I? into q,% equal square interval and denote them by I,aq. The
length of square intervals sides will be denoted by Ay. For every I 2 o let us
consider the square interval Iy , concentric with I, ,3 o having the side length
0k = Ag/(2hy, +1). We shall assume g, T 0o so that o > Ay (k € N).

Let fi, = sup{akhkxlm tq=1,¢} (keN)and f =57, fr. Clearly,
f > 0. It can be easily checked that

2
qp dx
1 ag
= aih ‘ I, .| = aih S iy
£l = | Tng| = oxhi Y ol + 1)2| gl < i
q=1 q=1
which according to (26) implies
171 < Sl < 30 0% < oo,
k=1 k=1
ie., f e L(I?%).
By Lemma 1 for k € N, ¢ = 1, ¢7 we have
{MB, (O‘khkxlkyq) > ot C (2h + I)Ik,q = Igﬁq, (27)
and
|{M32(akhk><1kvq) > Oék}| > hy lnhk|Ik,q\.
Thus we write
ai ai
U{Ma, (arhix,, ) > ax}| =Y [{ M, (arhix,, ) > ar}] >
q=1 q=1
ai ak 112
ol In Ay,
> hiInhg|I; | = hiInh 2
’;knklk"” ;knk(Qhk+l)2>9hk (28)
for kK € N.
For every k € N let us consider those intervals I? g (¢=1,q¢} 4+1) which
ai
are contained in |J {Mp,(axhix,, ) > ai}. Denote their union by Oy. It
q=1 ’q

can be easily seen that if {¢x} tends rapidly enough to oo, then

2
k.
1

Okl 2 5 UM, (awhix,, ) > ax}| (k €N). (29)

q=1
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Using the property of dyadic intervals, we can see that {Oy} is the se-

quence of independent sets, i.e., for every n > 2 and for arbitrary pairwise
different natural numbers ki, ks ..., k,,

n
o
m=1

Owing to (26), (28), and (29), > re, Ok > > i,

now Borel-Kantelly’s lemma, we get

n

= II 10x.I-

m=1

1lnh
5;17: = 00. Using

klim Oy, has a complete measure in I2. (30)

From (27) we have for k € N, ¢ =1,¢3

{Mp, (akhix,, ) > on} = {Mj(ﬁk)(akhkxlk,q) >y},
which for £ € N implies

a
O C |J{Ms, (arhix,, ) > ar} =

q=1
N A A
= U{M](B’zk)(akhkxlrk'q) > ap} C {M,(gf)(f/c) > g}
qg=1
Because of (30), from the latter inclusion we obtain
klim {Méfk)(fk) > ay} has a complete measure in 1. (31)
Since ai T oo, Ar | 0 (k — o0), we can easily see that if z €

klingo{Méi‘k)(fk) > oy}, then Dp,( [ f,z) = co. By virtue of (31) we

conclude that the latter equality holds a.e. on I2.
Assume k to be fixed. For every I, (¢ = 1,¢}) let us consider the
intervals Ji. . (pry J3 , = 3pry Irg, pro Ji,, = (0,1)) and JZ , (pry J7, =

G
(0,1), pry Ji , = 3pry I 4). Denote Gj, = U1J£’q (i=1,2), Gy = G+ UGx.
Pt

It can be easily verified (see (26)) that Y ;- | |Gx| < co which implies that
lim Gy, has zero measure.

k—o0

Determine now an unknown basis B. If z € (klim Gk) UQ? U (R2\1?)
(Q is a set of rational numbers), then we put B(z) = Ba(z). For z €
I2\<klim Gp U Qz) choose B(x) such that if dr is the length of the lesser
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side of the interval I 5> z, and df ¢ |J [k, Ar/2] (for x & kliimGk, k(x)
k>k(x) —00

is the number with the property x ¢ Gy, for k > k(z)), then I € B(x), while
if dy € [0y, Ay /2] for some k > k(z), then I € B(z) iff either NG}, = @ or
INGi =0

It can be easily verified that for every I € By and z € R? there is a
translation T, T'(I) € B(x); this implies that B is the TT*-basis. The local
regularity of By with respect to B is also easily checked. By proving the
inclusion f € F g the proof of the theorem will be completed.

Denote Ay, = {x € R" : Dp( [ fr,z) = fu(z)} (k € N). Clearly, A, (k €

N) has a complete measure on R?. Denote A = (12 nN Ak)\(klim G U
k=1 —o0

Qz). Since f(z) = 0 for z ¢ I?, B differentiates [ f on R*\I?; A is the set
of a complete measure on I2. Therefore to prove the inclusion f € F g , it
suffices to show the differentiability of [ f with respect to B on the set A.

Let 2 € A and & > 0. Find 6 > 0 for which ‘(1/|1|) flf—f(x)’ < ¢ when
I € B(z), diam I < 4. Consider k’'(z) > k(x) for which

> 16llfill <e/2. (32)
E>k ()
It is clear that > po, fe(z) = k (x) ' fu(z), and B differentiates

fzk (@)~ fk at the point . This 1mp11es that there is § € (0, Ap(2)/2)
such that

k'(z)—1 k'(z)—1

‘|I|/ Z Je — Z fr(x ‘<5/2 for I € B(x), diam I < 6.(33)

Consider an arbitrary interval I € B(xz), diamI < 6. For k; € N let
Ag,11/2 < df < Ay, /2. Clearly, kr > k'(x). By virtue of the inequality
Apy1 < 0 (k € N) and the condition « &€ Gy (k > k(z)), we have I N
supp fr = @ for k' (z) < k < k; — 1, which gives

/fk:() for k,(I) Skgk‘]*l (34)
I

Analogously, [, fr, = 0 if d; < &, while if 6, < df < Ay, /2, then
fI fr; = 0 because I Nsupp fr, = & by construction of the basis B. Thus

/ for = 0. (35)
I
Let is show that

|1 Nsupp fi| < 161| [supp fi| for k >k +1. (36)
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To this end it is sufficient to consider the following easily verifiable facts:

1) df > Ag/2 for k > kr + 1;

2) let Py be a set of vertices of the squares If , (¢ = Tqi) If the vertices
of the interval J C I? belong to the set Py, then |JNsupp fx| = |I|| supp fxl;

3) for every interval J C I?, dy > Ay/2 there is an interval J' O J,
|J/| < 16|J] with vertices at the points of the set Pj.

By (36) we can write that for k > ky + 1,

/fk — I N supp fil < L6cwhulI] |supp fil = 16111 || el
I

which, owing to (32) and the inequality ky > k’(x), implies
1 1 1
AP e 020 6l el < </2. 37
T e>kr+1 k>ki+1 71 k>ki+1

By virtue of relations (33)—(35) and (37) (it should also be noted that
fe(x) =0 for k > k'(x)), we have

k' (xz)—1

fr(z)

oo

ﬁ S h- S fula)
k=1

< +

1 k'(z)—1
- o —
2 il 2
1 all 1 5 5
Jr*/ karf/ fr+ fel) < z+0+-+0=c¢.
1), 2 fer ) 2 S 2 o< g a0+

k=k'(z) k>kr+1 k>k'(x)

k=

Due to the arbitrariness of x € A and € > 0, we conclude that Dpg ( [ 1, :E) =
f(z) for every x € A. O

4. REMARKS

(1) Let us consider one application of the obtained results. Let Bz be
the basis in R? for which Bz(z) (z € R?) consists of all intervals I > =,
D% < d; < Dy <1, where D; and d; are the lengths, respectively, of the
greater and of the lesser side of I. This basis was introduced by Zygmund
and it was he who initiated (see [1], Ch. VI, §4) the study of the differential
properties of Bz.

Morion showed (see [1], Appendix IV) that for the integral classes Bz
behaves like Bs, i.e., Bz does not differentiate a wider integral class than
Lln" L.

A question arises: does there exist in general a function whose integral
does not differentiate By and differentiates Bz7 From the above proven
theorems the answer is positive.

By is the TI-basis. The fact that By ¢ LR(B,) is easily verified. By
Theorem 1 this implies that the strict inclusion F gz C ng holds. Moreover,
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Theorem 3 implies that by perturbing the values w of any function f €
I\LIn* L(I?), f > 0, one can get the function f ow with the following
properties: Dp,( [ fow,z) =00 a.e. on I?, and By differentiates [ f ow.

Thus, for the integral classes the bases By and Bz behave similarly, while
for individual nonnegative functions the basis By behaves better than the
basis Bs.

(2) The bases B and B’ are said to be positive equivalent (B & B') if
for every f € L(R"), f >0, Dp( [ f,2) = Dp/( [ f,x) and Dp( [ f,z) =
Dy ([ f,z) ae. on R" (ie., condition (b) in Theorem 1 means that the
bases B and B’ are positive equivalent).

B is said to be a Busemann-Feller type basis (BF-basis) if for any R € B
and x € R we have R € B(z).

We shall say that B exactly differentiates ¢(L) (writing B € D(p(L)) if
B differentiates ¢(L) and does not differentiate a wider integral class than
@(L).

For integral classes the behavior of B C By, BF', T'I-bases was studied
by Stokoloc in [3], where he introduced the property (S) and proved that
if B possesses the property (S), then B € D(LIn" L), and if B does not
possess this property, then B € D(L).

One can easily see that ignoring the BF property, this result remains
valid. Thus, for the integral classes B C Bs, the T'I-basis behaves like By
or By (B is the basis formed of square intervals). The Byz-basis illustrates
that an analogous fact does not hold for nonnegative individual functions
and, generally speaking, if we combine Stokoloc’s assertion and Theorem 1,
then we shall have:

1) if By € LR(B), then B & By;

2)if By ¢ LR(B) and B possesses the property (S), then B € D(LIn" L)
and F;rz C Fj (strictly);

3) if B does not possess the property (S), then B € D(L).

(3) Let B C By be a TI-basis. Consider the intervals I € B of the type
I = (0,2%) x (0,2%). Denote the set of points (x!,22) by Ap. The set Ap
indicates how rich the family B is.

One can easily prove the following criterion of local regularity of By with
respect to B : (By € LR(B)) & (Im,ky € N : Ag N ([1/m*,1/m*~1) x
[1/m*  1/mF 1)) # & for k, k' > ko).

(4) The basis B is said to be invariant (H I-basis) with respect to homo-
theties if for every x € R™ and every homothety H centered at x we have
B(z)={H(R): R € B(x)}.

If B is locally regular with respect to B and, moreover, if § is equal to
00, then B is called regular with respect to 7.

For the basis B C By define the sets: Ry g = {r >1:3I1 € B, |pr, I|; =
r|lproIl1}, Rep={r>1:3I € B, |pryI|; =r|pr; I1}.
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For the basis B C Bs which is simultaneously the TI- and HI basis
one can easily verify that (By € LR(B)) < (Ba is regular with respect to
B)=« (3meN: R, gN[m* m™t) £ keN, i=1,2).

(5) Let By (Bz = B3(R™)) be the basis in R" for which By (z) (z € R™)
consists of all n-dimensional intervals containing the point x.

Theorems 1—4 are also valid for B C Ba(R™) (n > 3), TI-bases. Proofs
for the n-dimensional case are similar to those for the two-dimensional case.

(6) Let 6, 1 0,...,87 | 0 (k— 00). Denote A} = [(m—1)d},md},) (i =
T,n;k,m € N). Let B be the basis in R" for which B(z) = { [T{_, A i ¢
H?:l A;m >z kt,mt € N). Such bases are sometimes called nets. We
call them N-bases.

Let B be the N-basis in R™ (n > 2). Denote by By the least TI-basis
containing B. For B the following analogue of Theorem 1 is valid: the

following conditions are equivalent: (i) Fg = F §2; (ii) B & By; (iii) Bs is
locally regular with respect to Br.

Obviously, (ii)=-(i), the implication (i)=-(iii) follows directly from Theo-
rem 1. Thus it remains only to show that (iii)=-(i). To this end, note that
using Lemma 1 of [2] one can easily obtain the inequality

5)() > M <3 M () > | (f € L@ > 0)

271

From this and Lemma 5 we get the upper bound of the distribution func-
tion of M 1(32) (f) by means of the distribution function of M gr) (f). It easily
follows from the relation By € LR(B) that B contains a regular subba-
sis. Hence B possesses the property (E). Next, we obtain the implication
(iii)=(ii) from Lemma 6.

Note that for 6. = 1/2* (i = T,n; k € N) the relation B & B, was proved
earlier in [2].

(7) The basis B constructed in Theorem 4 is not a BF-basis, which is
not a casual fact. In particular, the following assertion is valid: let B C By
(B2 = B2(R™)) be a BF-basis and let By € LR(B). Then B & B,.

To prove the above assertion we have to consider the following facts which
easily follow from the Busemann-Feller property of the basis B and from

the relation By € LR(B: (i) B contains a regular subbasis; (ii) for every
f e LR"),

G > M < [{ME0 () > 2} >0, 0<r <),

where ¢ and ¢ are the constants from the definition of local regularity of By
with respect to B.
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From (i) we have that B possesses the property (E). Now, taking into

account (ii) and using Lemma 6, we can conclude that the relation B & B,
is valid.
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