ON DIFFERENTIAL BASES FORMED OF INTERVALS

G. ONIANI AND T. ZEREKIDZE
In memory of young mathematician

A. Berekashvili

Abstract

Translation invariant subbases of the differential basis B_{2} (formed of all intervals), which differentiates the same class of all nonnegative functions as B_{2} does, are described. A possibility for extending the results obtained to bases of more general type is discussed.

1. Definitions and Notation

A mapping B defined on \mathbb{R}^{n} is said to be a differential basis in \mathbb{R}^{n} if, for every $x \in \mathbb{R}^{n}, B(x)$ is a family of open bounded sets containing the point x such that there exists a sequence $\left\{R_{k}\right\} \subset B(x), \operatorname{diam} R_{k} \rightarrow 0(k \rightarrow \infty)$.

For $f \in L_{\text {loc }}\left(\mathbb{R}^{n}\right)$ the numbers

$$
\bar{D}_{B}\left(\int f, x\right)=\varlimsup_{\operatorname{diam} R \rightarrow 0, R \in B(x)} \frac{1}{|R|} \int_{R} f
$$

and

$$
\underline{D}_{B}\left(\int f, x\right)=\lim _{\operatorname{liam} R \rightarrow 0, R \in B(x)} \frac{1}{|R|} \int_{R} f
$$

are said to be respectively the upper and the lower derivative of the integral of f at the point x. If the upper and the lower derivative coincide, then their common value is called the derivative of the integral of f at the point x, and we denote it by $D_{B}\left(\int f, x\right)$. They say that the basis B differentiates the integral of f if $D_{B}\left(\int f, x\right)=f(x)$ for almost all x. The set of those functions $f \in L_{l o c}\left(\mathbb{R}^{n}\right), f \geq 0$, whose integrals are differentiable with respect to the basis B will be denoted by F_{B}^{+}. Under M_{B} we mean the maximal operator

$$
M_{B}(f)(x)=\sup _{R \in B(x)} \frac{1}{|R|} \int_{R}|f| \quad\left(f \in L_{l o c}\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}\right)
$$

[^0]corresponding to the basis B. It will be assumed here that $\bar{B}=\bigcup_{x \in \mathbb{R}^{n}} B(x)$.
B is said to be a subbasis of $B^{\prime}\left(\right.$ writing $\left.B \subset B^{\prime}\right)$, if $B(x) \subset B^{\prime}(x)$ $\left(x \in \mathbb{R}^{n}\right)$. The basis B is said to be translation invariant or the $T I$-basis, if $B(x)=\{x+R: R \in B(O)\}\left(x \in \mathbb{R}^{n}\right)$ (here O is the origin in $\left.\mathbb{R}^{n}\right)$. Let us have the bases B and B^{\prime}. We shall say that the family \bar{B} is locally regular with respect to the family $\overline{B^{\prime}}$ (writing $\bar{B} \in L R\left(\overline{B^{\prime}}\right)$), if there exist $\delta>0$ and $c>0$ such that for any $R \in \bar{B}, \operatorname{diam} R<\delta$, there is $R^{\prime} \in \bar{B}^{\prime}$ such that $R \subset R^{\prime}$ and $\left|R^{\prime}\right|<c|R|$.

We shall agree that $I^{n}=[0,1]^{n}$ and $f \in L\left(I^{n}\right)$, if $f \in L\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp} f \subset I^{n}$.

2. $T I$-Bases Formed of Intervals

Let B_{2} be the basis in \mathbb{R}^{2} for which $B_{2}(x)\left(x \in \mathbb{R}^{2}\right)$ consists of all twodimensional intervals containing the point x.

The theorem below characterizes $B \subset B_{2}, T I$-bases for which $F_{B}^{+}=F_{B_{2}}^{+}$.
Theorem 1. Let $B \subset B_{2}$ be a TI-basis. Then the following conditions are equivalent:
(a) $F_{B}^{+}=F_{B_{2}}^{+}$;
(b) for every $f \in L\left(\mathbb{R}^{2}\right), f \geq 0$, a.e. on \mathbb{R}^{2}

$$
\bar{D}_{B}\left(\int f, x\right)=\bar{D}_{B_{2}}\left(\int f, x\right) \text { and } \underline{D}_{B}\left(\int f, x\right)=\underline{D}_{B_{2}}\left(\int f, x\right)
$$

(c) \bar{B}_{2} is locally regular with respect to \bar{B}.

The implication $(b) \Rightarrow(a)$ is evident. Therefore to prove Theorem 1 it suffices to show that $(a) \Rightarrow(c)$ and $(c) \Rightarrow(b)$.

The implication $(a) \Rightarrow(c)$ follows from the following assertion.
Theorem 2. Let $B \subset B_{2}$ be a TI-basis. If \bar{B}_{2} is not locally regular with respect to \bar{B}, then there exists a function $f \in L\left(I^{2}\right), f \geq 0$, such that

$$
\begin{aligned}
& \bar{D}_{B_{2}}\left(\int f, x\right)=\infty \text { a.e. on } I^{2} \\
& D_{B}\left(\int f, x\right)=f(x) \text { a.e. on } I^{2} .
\end{aligned}
$$

Before proving Theorem 2 we shall give several lemmas.
For the interval I we denote by $\alpha I(\alpha>0)$ the interval $H(I)$, where H is the homothety with the coefficient α whose center is the center of I.

Lemma 1. Let $I \in \bar{B}_{2}$ and $h>1$. Then $\left\{M_{B_{2}}\left(h \chi_{I}\right)>1\right\} \subset(2 h+1) I$ and $\left|\left\{M_{B_{2}}\left(h \chi_{I}\right)>1\right\}\right| \geq h(\ln h)|I|$.

The validity of this lemma can be shown by a direct checking.
Projections of I onto the $o x^{1}$ - and $o x^{2}$-axes will be denoted by $\mathrm{pr}_{1} I$ and $\operatorname{pr}_{2} I$, respectively. For $I \in \bar{B}_{2}$ and $h>0$ we have

$$
\begin{gathered}
R_{1}(I, h)=(2 h+1) \operatorname{pr}_{1} I \times 3 \operatorname{pr}_{2} I, \\
R_{2}(I, h)=3 \operatorname{pr}_{1} I \times(2 h+1) \operatorname{pr}_{2} I, \\
R(I, h)=R_{1}(I, h) \cup R_{2}(I, h)
\end{gathered}
$$

It is clear that $|R(I, h)| \leq 18 h|I|$.
Lemma 2. Let $B \subset B_{2}$ be a TI-basis; $h>1$. Suppose that for $I \in \bar{B}_{2}$ there is no $J \in \bar{B}, J \supset I$, such that $|J| \leq h|I|$. Then $\left\{M_{B}\left(h \chi_{I}\right)>1\right\} \subset$ $R(I, h)$.

Proof. Let $J \in \bar{B}$ and $(1 /|J|) \int_{J} h \chi_{I}>1$. From the condition of the lemma we can easily find that either

$$
\begin{equation*}
\left|p r_{1} J\right|_{1}<\left|\operatorname{pr}_{1} I\right|_{1} \text { or }\left|\operatorname{pr}_{2} J\right|_{1}<\left|\operatorname{pr}_{2} I\right|_{1} \tag{1}
\end{equation*}
$$

where $|\cdot|_{1}$ is the Lebesgue measure on \mathbb{R}.
By Lemma $1, J \subset(2 h+1) I$, which by virtue of (1) implies that either $J \subset R_{1}(I, h)$ or $J \subset R_{2}(I, h)$, so that we have $J \subset R(I, h)$. It follows from the latter inclusion that $\left\{M_{B}\left(h \chi_{I}\right)>1\right\} \subset R(I, h)$.

It can be easily seen that the following two lemmas are valid.
Lemma 3. Let $I, J \in \bar{B}_{2} ; h>1$. If either $\left|\operatorname{pr}_{1} J\right|_{1} \geq h\left|\operatorname{pr}_{1} J\right|_{1}$ or $\left|\operatorname{pr}_{2} J\right|_{1} \geq h\left|\operatorname{pr}_{2} J\right|_{1}$, then $h|J \cap I| \leq|I \cap R(I, h)|$.

Lemma 4. Let $I, J \in \bar{B}_{2}$. If $J \cap I \neq \varnothing$ and $J \backslash R(I, h) \neq \varnothing$, then either $\left|\operatorname{pr}_{1} J\right|_{1} \geq\left|\operatorname{pr}_{1} I\right|_{1}$, or $\left|\operatorname{pr}_{2} J\right|_{1} \geq\left|\operatorname{pr}_{2} I\right|_{1}$.

The following lemma is also valid.
Lemma 5. Let $B \subset B_{2} ; h>1$, and let $I_{1}, \ldots, I_{k} \in \bar{B}_{2}$ be the equal intervals. If

$$
\begin{gathered}
\left\{M_{B}\left(h \chi_{I_{m}}\right)>1\right\} \subset R\left(I_{m}, h\right) \quad(m=\overline{1, k}) \\
R\left(I_{m}, h\right) \cap R\left(I_{m^{\prime}}, h\right)=\varnothing \quad\left(m \neq m^{\prime}\right)
\end{gathered}
$$

then

$$
\begin{equation*}
\left\{M_{B}\left(\sum_{m=1}^{k} h \chi_{I_{m}}\right)>1\right\} \subset \bigcup_{m=1}^{k} R\left(I_{m}, h\right) \tag{2}
\end{equation*}
$$

Proof. Inequality (2) is equivalent to the following inequality: if $x \notin \bigcup_{m=1}^{k} R\left(I_{m}, h\right)$ and $I \in B(x)$, then

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \sum_{m=1}^{k} h \chi_{I_{m}} \leq 1 \tag{3}
\end{equation*}
$$

Let $x \notin \bigcup_{m=1}^{k} R\left(I_{m}, h\right)$ and $I \in B(x)$. Then we may have three cases. Let us consider each of them separately.
(i) I intersects none of the intervals $I_{m}(m=\overline{1, k})$; in this case the validity of (3) is evident.
(ii) I intersects only one interval $I_{m}(m=\overline{1, k})$.

Let I_{n} be the interval for which $I \cap I_{n} \neq \varnothing . x \notin R\left(I_{m}, h\right)$, and therefore by the condition of the lemma,

$$
\frac{1}{|I|} \int_{I} h \chi_{I_{n}} \leq M_{B}\left(h \chi_{I_{n}}\right)(x) \leq 1,
$$

from which, taking into account the equality $I \cap I_{m}=\varnothing(m \neq n)$, we obtain (3).
(iii) I intersects more than one interval $I_{m}(m=\overline{1, k})$.

It follows from the equality $R\left(I_{m}, h\right) \cap R\left(I_{m^{\prime}}, h\right)=\varnothing\left(m \neq m^{\prime}\right)$ that

$$
\begin{equation*}
(2 h+1) I_{m} \cap I_{m^{\prime}}=\varnothing \tag{4}
\end{equation*}
$$

Denote $P=\left\{m \in[1, k]: I \cap I_{m} \neq \varnothing\right\}$. By (4) we have

$$
I \cap I_{m} \neq \varnothing, \quad I \backslash(2 h+1) I_{m} \neq \varnothing \quad(m \in P),
$$

which gives either

$$
\left|\operatorname{pr}_{1} I\right|_{1} \geq h\left|\operatorname{pr}_{1} I_{m}\right|_{1} \text { or }\left|\operatorname{pr}_{2} I\right|_{1} \geq h\left|\operatorname{pr}_{2} I_{m}\right|_{1} \quad(m \in P) .
$$

Now according to Lemma 3 we can conclude that

$$
h\left|I \cap I_{m}\right| \leq\left|I \cap R\left(I_{m}, h\right)\right| \quad(m \in P) .
$$

From the obtained inequality, taking into consideration the pairwise nonintersection of $R\left(I_{m}, h\right)$ ($m=\overline{1, k}$), we write

$$
\int_{I} \sum_{m=1}^{k} h \chi_{I_{m}}=\sum_{m \in P} \int_{I} h \chi_{I_{m}}=\sum_{m \in P} h\left|I \cap I_{m}\right| \leq \sum_{m \in P}\left|I \cap R\left(I_{m}, h\right)\right| \leq|I| .
$$

Thus inequality (3) and Lemma 5 are proved.

Lemma 6. Let $B \subset B_{2}, h>1$, and for every $m \in[1, k]$ let $\left\{I_{m, q}\right\}_{q=1}^{q_{m}} \subset$ \bar{B}_{2} be a family of equal intervals. If

$$
\begin{align*}
& \left\{M_{B}\left(h \chi_{I_{m, q}}\right)>1\right\} \subset R_{m, q} \\
& \left.\left(R_{m, q}=R\left(I_{m, q}, h\right) ; m=\overline{1, k}\right) \quad q=\overline{1, q_{m}}\right) \tag{5}\\
& R_{m, q} \cap R_{m^{\prime}, q^{\prime}}=\varnothing \quad(m, q) \neq\left(m, q^{\prime}\right) \tag{6}\\
& \left|\operatorname{pr}_{1} I_{m, 1}\right|_{1} \geq h\left|\operatorname{pr}_{1} I_{m+1,1}\right|_{1}, \quad(m=\overline{1, k-1}) \tag{7}\\
& \left|\operatorname{pr}_{2} I_{m, 1}\right|_{1} \geq h\left|\operatorname{pr}_{2} I_{m+1,1}\right|_{1}, \quad\left(m=\left(\begin{array}{l}
\end{array}\right)\right.
\end{align*}
$$

then

$$
\left\{M_{B}\left(\sum_{m=1}^{k} \sum_{q=1}^{q_{m}} h \chi_{I_{m, q}}\right)>2\right\} \subset \bigcup_{m=1}^{k} \bigcup_{q=1}^{q_{m}} R_{m, q}
$$

Proof. The inclusion we have to prove is equivalent to the following inequality: if $x \notin \bigcup_{m=1}^{k} \bigcup_{q=1}^{q_{m}} R_{m, q}$ and $I \in B(x)$, then

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \sum_{m=1}^{k} \sum_{q=1}^{q_{m}} h \chi_{I_{m, q}} \leq 2 \tag{8}
\end{equation*}
$$

Assume $x \notin \bigcup_{m=1}^{k} \bigcup_{q=1}^{q_{m}} R_{m, q}$ and $I \in B(x)$. It is clear that (8) is fulfilled for $I \cap I_{m, q}=\varnothing\left(m=\overline{1, k}, q=\overline{1, q_{m}}\right)$. Denote otherwise $n=\min \{m \in[1, k]:$ $\left.\exists I_{m, q}\left(q=\overline{1, q_{m}}\right), I \cap I_{m, q} \neq \varnothing\right\}$ and consider first the case with $1<n<k$.

By virtue of Lemma 5 (see (5) and (6)), we write

$$
M_{B}\left(\sum_{q=1}^{q_{n}} h \chi_{I_{n, q}}\right)(x) \leq 1
$$

which implies

$$
\begin{equation*}
\int_{I} \sum_{q=1}^{q_{n}} h \chi_{I_{n, q}}=\sum_{q=1}^{q_{n}} h\left|I \cap I_{n, q}\right| \leq|I| . \tag{9}
\end{equation*}
$$

For some $q \in\left[1, q_{n}\right] I \cap I_{n, q} \neq \varnothing$, it is clear that $I \backslash R_{n, q} \neq \varnothing$. Therefore, according to Lemma 4, we have either

$$
\left|\operatorname{pr}_{1} I\right|_{1} \geq\left|\operatorname{pr}_{1} I_{n, q}\right|_{1} \text { or }\left|\operatorname{pr}_{2} I\right|_{1} \geq\left|\operatorname{pr}_{2} I_{n, q}\right|_{1}
$$

Taking into account that the intervals $\left\{I_{m, q}\right\}_{q=1}^{q_{m}}(m=\overline{1, k})$ are equal and using (7), we can write that either

$$
\left|\operatorname{pr}_{1} I\right|_{1} \geq h\left|\operatorname{pr}_{1} I_{m, q}\right|_{1} \quad\left(n<m \leq k, q=\overline{1, q_{m}}\right)
$$

or

$$
\left|\operatorname{pr}_{2} I\right|_{1} \geq h\left|\operatorname{pr}_{2} I_{m, q}\right|_{1} \quad\left(n<m \leq k, q=\overline{1, q_{m}}\right)
$$

whence by Lemma 3 we get

$$
\begin{equation*}
h\left|I \cap I_{m, q}\right| \leq\left|I \cap R_{m, q}\right| \quad\left(n<m \leq k ; q=\overline{1, q_{m}}\right) \tag{10}
\end{equation*}
$$

Clearly, $I \cap I_{m, q}=\varnothing\left(n \leq m<n ; q=\overline{1, q_{m}}\right)$, so that by (6), (9), (10) and $1 \leq m<n$ we have

$$
\begin{aligned}
& \int_{I} \sum_{m=1}^{k} \sum_{q=1}^{q_{m}} h \chi_{I_{m, q}}=\sum_{m=1}^{k} \sum_{q=1}^{q_{m}} h\left|I \cap I_{m, q}\right|=\sum_{m=1}^{n-1} \sum_{q=1}^{q_{m}} h\left|I \cap I_{m, q}\right|+ \\
& \quad+\sum_{q=1}^{q_{n}} h\left|I \cap I_{n, q}\right|+\sum_{m=n+1}^{k} \sum_{q=1}^{q_{m}} h\left|I \cap I_{m, q}\right|= \\
& =A_{1}+A_{2}+A_{3} \leq 0+|I|+\sum_{m=n+1}^{k} \sum_{q=1}^{q_{m}}\left|I \cap R_{m, q}\right| \leq|I|+|I|=2|I| .
\end{aligned}
$$

Inequality (8) can be proved in a simpler way for $n=1$ or $n=k$, since in these cases we do not have the terms A_{1} and A_{3}.

For the basis B let us define the operator

$$
M_{B}^{*}(f)(x)=\sup _{R \in B(x)} \frac{1}{|R|}\left|\int_{R} f\right| \quad\left(f \in L_{l o c}\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}\right)
$$

Lemma 7. Let the basis B differentiate the integrals of the functions $f_{k} \in L\left(\mathbb{R}^{n}\right)(k \in \mathbb{N}), \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{1}<\infty$. If

$$
\sum_{k=1}^{\infty}\left|\left\{M_{B}^{*}\left(f_{k}\right)>\lambda_{k}\right\}\right|_{e}<\infty
$$

where $\lambda_{k}>0(k \in \mathbb{N}), \sum_{k=1}^{\infty} \lambda_{k}<\infty$ and $|\cdot|_{e}$ is an outer measure, then B differentiates the integral of the function $\sum_{k=1}^{\infty} f_{k}$.

Note that since $M_{B}^{*}(f) \leq M_{B}(f)\left(f \in L\left(\mathbb{R}^{n}\right)\right)$, the conclusion of Lemma 7 will be the more so valid when the inequality $\sum_{k=1}^{\infty}\left|\left\{M_{B}\left(f_{k}\right)>\lambda_{k}\right\}\right|_{e}<\infty$ is fulfilled.

Proof. Let us note that:
(i) $\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{1}<\infty$; therefore the set $A_{0}=\left\{x \in \mathbb{R}^{n}: \sum_{k=1}^{\infty}\left|f_{k}(x)\right|<\right.$ $\infty\}$ is of measure 0 ;
(ii) B differentiates $\int f_{k}(k \in \mathbb{N})$, i.e., the sets $A_{k}=\left\{x \in \mathbb{R}^{n}: D_{B}\left(\int f, x\right)=\right.$ $f(x)\}(k \in \mathbb{N})$ have a complete measure on \mathbb{R}^{n}.
(iii) $\sum_{k=1}^{\infty}\left|\left\{M_{B}^{*}\left(f_{k}\right)>\lambda_{k}\right\}\right|_{e}<\infty$; therefore the set $\varlimsup_{k \rightarrow \infty}\left\{M_{B}^{*}\left(f_{k}\right)>\right.$ $\left.\lambda_{k}\right\}$ is of measure 0 .

It follows from (i)-(iii) that the set $A=\bigcup_{k=1}^{\infty} A_{k} \backslash\left(\overline{\lim }_{k \rightarrow \infty}\left\{M_{B}^{*}\left(f_{k}\right)>\right.\right.$ $\left.\left.\lambda_{k}\right\} \bigcup A_{0}\right)$ is of complete measure. Let us show that for every $x \in A$ we have $D_{B}\left(\int \sum_{k=1}^{\infty} f_{k}, x\right)=\sum_{k=1}^{\infty} f_{k}(x)$, which will prove the lemma.

Let $x \in A$ and $\varepsilon>0$. From the inclusion $x \in A$ we can conclude that:

1) there is $k_{0} \in \mathbb{N}\left(k_{0}=k(x, \varepsilon)\right)$ such that $x \notin \bigcap_{k=k_{0}}^{\infty}\left\{M_{B}^{*}\left(f_{k}\right)>\lambda_{k}\right\}$, $\sum_{k=k_{0}}^{\infty} \lambda_{k}<\varepsilon / 3$ and $\sum_{k=k_{0}}^{\infty}\left|f_{k}(x)\right|<\varepsilon / 3 ;$
2) there is $\delta>0$ such that for every $R \in B(x)$, $\operatorname{diam} R<\delta$

$$
\left|\frac{1}{|R|} \int_{R}^{k_{0}-1} \sum_{k=1}^{k_{0}-1} f_{k}-\sum_{k=1} f_{k}(x)\right|<\varepsilon / 3
$$

According to 1) and 2) we can write that for every $R \in B(x), \operatorname{diam} R<\delta$,

$$
\begin{aligned}
& \left|\frac{1}{|R|} \int_{R} \sum_{k=1}^{\infty} f_{k}-\sum_{k=1}^{\infty} f_{k}(x)\right| \leq\left|\frac{1}{|R|} \int_{R} \sum_{k=1}^{k_{0}-1} f_{k}-\sum_{k=1}^{k_{0}-1} f_{k}(x)\right|+ \\
& +\sum_{k=k_{0}}^{\infty} \frac{1}{|R|}\left|\int_{R} f_{k}\right|+\sum_{k=k_{0}}^{\infty}\left|f_{k}(x)\right|<\varepsilon / 3+\sum_{k=k_{0}}^{\infty} M_{B}^{*}\left(f_{k}\right)(x)+ \\
& \quad+\varepsilon / 3 \leq 2 \varepsilon / 3+\sum_{k=k_{0}}^{\infty} \lambda_{k}<\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we conclude that the equality $D_{B}\left(\int \sum_{k=1}^{\infty} f_{k}, x\right)=\sum_{k=1}^{\infty} f_{k}(x)$ is valid.
Proof of Theorem 2. Let $k \geq 3$. Choose h_{k} such that $\frac{1}{k} \ln \frac{h_{k}}{k} \geq 18 \cdot 2^{2 k}$.
Let $\alpha_{k}=\frac{1}{k} \ln \frac{h_{k}}{k} / 2^{2(k+2)} h_{k}$. Obviously, $0<\alpha_{k}<1$.
For $I \in \bar{B}_{2}$ and $h>0$ denote $Q^{0}(I, h)=(2 h+1) I$. Let $2^{-m}<$ $\left|\operatorname{pr}_{1} Q^{0}(I, h)\right|_{1} \leq 2^{-m+1}$ and $2^{-m^{\prime}}<\left|\operatorname{pr}_{2} Q^{0}(I, h)\right|_{1} \leq 2^{-m^{\prime}+1}$, where $m, m^{\prime} \in \mathbb{N}$. Denote by $Q(I, h)$ the interval concentric with $Q^{0}(I, h)$, and $\left|\operatorname{pr}_{1} Q(I, h)\right|_{1}=2^{-m+1},\left|\operatorname{pr}_{2} Q(I, h)\right|_{1}=2^{-m^{\prime}+1}$.

For the basis B denote by $M_{B}^{(r)}(r>0)$ the operator

$$
M_{B}^{(r)}(f)(x)=\sup _{R \in B(x), \text { diam } R<r} \frac{1}{|R|} \int_{R}|f|\left(f \in L\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}\right)
$$

$\bar{B}_{2} \notin L R(\bar{B})$, since there is $I \in \bar{B}_{2}$ such that:

1) there is no $J \in \bar{B}, J \supset I$ for which $|J|<2^{k} h_{k}|I|$;
2) $\operatorname{diam} Q\left(I, 2^{k} h_{k}\right)<1 / k$.

Divide I^{2} into intervals equal to $Q\left(I, 2^{k} h_{k}\right)$ and denote them by $Q_{1, q}$ $\left(1 \leq q \leq q_{1}\right)$. Take $I_{1, q}\left(1 \leq q \leq q_{1}\right)$ equal to $T_{q}(I)$, where T_{q} is a shift translating $Q\left(I, 2^{k} h_{k}\right)$ to $Q_{1, q}$.

Let the families $\left\{I_{1, q}\right\}_{q=1}^{q_{1}} \ldots\left\{I_{m, q}\right\}_{q=1}^{q_{m}}$ consisting of equal intervals be already constructed. Consider the sets

$$
\begin{aligned}
& A_{m}^{1}=\bigcup_{j=1}^{m} \bigcup_{q=1}^{q_{j}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k}, \chi_{I_{j, q}}\right)>k\right\} \\
& A_{m}^{2}=\bigcup_{j=1}^{m} \bigcup_{q=1}^{q_{j}} R_{j, q}\left(R_{j, q}=R\left(I_{j, q}, 2^{k} h_{k}\right)\right)
\end{aligned}
$$

If $\left|A_{m}^{1}\right|>1-\frac{1}{k}$, then we stop the construction. If $\left|A_{m}^{1}\right| \leq 1-\frac{1}{k}$, then we shall construct the family $\left\{I_{m+1, q}\right\}_{q=1}^{q_{m+1}}$ as follows:

Consider the set $A_{m}=I^{2}=I^{2} \backslash\left(A_{m}^{1} \cup A_{m}^{2}\right)$ which, obviously, can be represented as $G_{1} \cup G_{2}$, where G_{1} is open and G_{2} consists of a finite number of smooth closed lines. It is clear that there is $\delta \in(0,1 / k)$ such that if we divide I^{2} into equal intervals $\left\{J_{j}\right\}$ with diameters less than δ, then

$$
\left|A_{m} \cap \bigcup_{J_{j} \subset A_{m}} J_{j}\right| \geq\left(1-\frac{\alpha_{k}}{4}\right)\left|A_{m}\right|
$$

$\bar{B}_{2} \notin L R(\bar{B})$, since there is $I \in \bar{B}_{2}$ such that:

1) there is no $J \in \bar{B}, J \supset I$ for which $|J| \leq 2^{k} h_{k}|I|$;
2) $\operatorname{diam} Q\left(I, 2^{k} h_{k}\right)<\delta$;
3) $\left|\operatorname{pr}_{1} I_{m, 1}\right|_{1} \geq 2^{k} h_{k}\left|\operatorname{pr}_{1} I\right|_{1}$ and $\left|\operatorname{pr}_{2} I_{m, 1}\right|_{1} \geq 2^{k} h_{k}\left|\operatorname{pr}_{2} I\right|_{1}$.

Divide I^{2} into intervals equal to $Q\left(I, 2^{k} h_{k}\right)$. Denote the intervals included in A_{m} by $Q_{m+1, q}\left(1 \leq q \leq q_{m+1}\right)$. Take $I_{m+1, q}\left(1 \leq q \leq q_{m+1}\right)$ equal to $T_{q}(I)$, where T_{q} is a shift translating $Q\left(I, 2^{k} h_{k}\right)$ to $Q_{m+1, q}$.

By our construction we obtain

$$
\begin{equation*}
\left|A_{m} \cap \bigcup_{q=1}^{q_{m+1}} Q_{m+1, q}\right| \geq\left(1-\frac{\alpha_{k}}{4}\right)\left|A_{m}\right| \tag{11}
\end{equation*}
$$

By Lemma 1,- for $q=\overline{1, q_{m+1}}$

$$
\begin{gather*}
\left\{M_{B_{2}}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\} \subset\left(2 \frac{h_{k}}{k}-1\right) I_{m+1, q} \subset Q_{m+1, q} \tag{12}\\
\left|\left\{M_{B_{2}}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right|>\frac{h_{k}}{k} \ln \frac{h_{k}}{k}\left|I_{m+1, q}\right| \tag{13}
\end{gather*}
$$

Since $\operatorname{diam} Q_{m+1, q}<1 / k\left(q=\overline{1, q_{m+1}}\right)$, because of (12) we have

$$
\begin{equation*}
\left\{M_{B_{2}}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}=\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\} \quad\left(q=\overline{1, q_{m+1}}\right) \tag{14}
\end{equation*}
$$

It can be easily seen that (see (13), (14))

$$
\left|\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right| \geq \alpha_{k}\left|Q_{m+1, q}\right| \quad\left(q=\overline{1, q_{m+1}}\right)
$$

which by (11) readily implies

$$
\begin{gather*}
\left|\bigcup_{q=1}^{q_{m+1}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right| \geq \alpha_{k}\left|\bigcup_{q=1}^{q_{m+1}} Q_{m+1, q}\right| \geq \\
\geq \alpha_{k}\left(1-\frac{\alpha_{k}}{4}\right)\left|A_{m}\right|>\frac{\alpha_{k}}{2}\left|A_{m}\right| \tag{15}
\end{gather*}
$$

According to the construction and Lemma 2 we have for $q=\overline{1, q_{m+1}}$

$$
\left\{M_{B}\left(h_{k} \chi_{I_{m+1, q}}\right)>1 / 2^{k}\right\} \subset R_{m+1, q}\left(R_{m+1, q}=R\left(I_{m+1, q}, 2^{k} h_{k}\right)\right)
$$

On account of our choice of h_{k}, because of (13) and (14) we write

$$
\left|\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right|>2^{k}\left|R_{m+1, q}\right| \quad\left(q=\overline{1, q_{m+1}}\right)
$$

whence

$$
\begin{equation*}
\left|\bigcup_{q=1}^{q_{m+1}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right|>2^{k}\left|\bigcup_{q=1}^{q_{m+1}} R_{m+1, q}\right| \tag{16}
\end{equation*}
$$

Let us show that for sufficiently large $m k$ the construction ceases, i.e., we shall have the inequality

$$
\begin{equation*}
\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m+1, q}}\right)>k\right\}\right|>1-\frac{1}{k} \tag{17}
\end{equation*}
$$

Assume the contrary, i.e., $\left|A_{m}^{1}\right| \leq 1-\frac{1}{k}(m \in \mathbb{N})$. Introduce the notation

$$
\begin{aligned}
& A_{m}^{3}=\bigcup_{q=1}^{q_{m}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m, q}}\right)>k\right\} \\
& A_{m}^{4}=\bigcup_{q=1}^{q_{m}} R_{m, q}
\end{aligned}
$$

Clearly, (15) and (16) will be valid for all $m \in \mathbb{N}$, and therefore we write

$$
\begin{gathered}
\left|A_{m+1}^{3}\right|>\frac{\alpha_{k}}{2}\left|A_{m}\right|=\frac{\alpha_{k}}{2}\left(1-\sum_{j=1}^{m}\left|A_{j}^{3} \cup A_{j}^{4}\right|\right) \geq \\
\geq \frac{\alpha_{k}}{2}\left(1-\sum_{j=1}^{m}\left(1+\frac{1}{2^{k}}\right)\left|A_{j}^{3}\right|\right) \geq \frac{\alpha_{k}}{2}\left(1-\frac{1}{2^{k}}-\sum_{j=1}^{m}\left|A_{j}^{3}\right|\right),
\end{gathered}
$$

which by the equality $\left|A_{m}^{1}\right|=\sum_{j=1}^{m}\left|A_{m}^{3}\right|$ implies that $\left|A_{m}^{1}\right|>1-\frac{1}{2^{k-1}}>$ $1-\frac{1}{k}$ for sufficiently large m. From this contradiction we conclude that (17) is valid.

Consider the function $f_{k}=\sum_{m=1}^{m_{k}} \sum_{q=1}^{q_{m}} h_{k} \chi_{I_{m, q}}$. Clearly, $f_{k} \in L\left(I^{2}\right)$ and $f_{k} \geq 0$. From (17) we get

$$
\begin{equation*}
\left|\left\{M_{B_{2}}^{(1 / k)}\left(f_{k}\right)>k\right\}\right|>1-\frac{1}{k} \tag{18}
\end{equation*}
$$

From the construction we can easily see that $2^{k} h_{k}$ and the families $\left\{I_{1, q}\right\}_{q=1}^{q_{1}}, \ldots,\left\{I_{m_{k}, q}\right\}_{q=1}^{q_{m_{k}}}$ satisfy all the conditions of Lemma 6 . Therefore by Lemma 6 we write

$$
\begin{gather*}
\left\{M_{B}\left(f_{k}\right)>1 / 2^{k-1}\right\}=\left\{M_{B}\left(2^{k} f_{k}\right)>2\right\}= \\
=\left\{M_{B}\left(\sum_{m=1}^{m_{k}} \sum_{q=1}^{q_{m}} 2^{k} h_{k} \chi_{I_{m, q}}\right)>2\right\} \subset \bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} R_{m, q} \tag{19}
\end{gather*}
$$

Obviously, (16) is fulfilled for all $m \in\left[1, m_{k}-1\right]$, so that taking the construction into account, we have

$$
\begin{equation*}
2^{k}\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} R_{m, q}\right|<\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m, q}}\right)>k\right\}\right| \leq 1 . \tag{20}
\end{equation*}
$$

Due to (19) and (20) we write

$$
\begin{equation*}
\left|\left\{M_{B}\left(f_{k}\right)>1 / 2^{k-1}\right\}\right|<\frac{1}{2^{k}} \tag{21}
\end{equation*}
$$

It can be easily seen that

$$
\frac{h_{k}}{k} \ln \frac{h_{k}}{k}\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} I_{m, q}\right|<\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}}\left\{M_{B_{2}}^{(1 / k)}\left(h_{k} \chi_{I_{m, q}}\right)>k\right\}\right| \leq 1
$$

Hence, due to our choice of h_{k}, we obtain

$$
\begin{equation*}
\left\|f_{k}\right\|_{1}=h_{k}\left|\bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} I_{m, q}\right|<1 / \frac{1}{k} \ln \frac{h_{k}}{k}<\frac{1}{2^{k}} \tag{22}
\end{equation*}
$$

Consider the function $f=\sum_{k=3}^{\infty} f_{k}$. Clearly, $f \in L\left(I^{2}\right)$ (see (22)) and $f \geq 0$.

It is obvious that if $x \in \varlimsup_{k \rightarrow \infty}\left\{M_{B_{2}}^{(1 / k)}\left(f_{k}\right)>k\right\}$, then $\bar{D}_{B_{2}}\left(\int \sum_{k=3}^{\infty} f_{k}, x\right)=$ ∞. Because of (18) $\varlimsup_{k \rightarrow \infty}\left\{M_{B_{2}}^{(1 / k)}\left(f_{k}\right)>k\right\}$ has a complete measure on I^{2}. Therefore the latter equality holds almost everywhere on I^{2}.

It is clear that B differentiates $\int f_{k}(k \in \mathbb{N})$. Moreover, owing to (21) we get $\sum_{k=3}^{\infty}\left|\left\{M_{B}\left(f_{k}\right)>1 / 2^{k-1}\right\}\right|<\sum_{k=3}^{\infty} \frac{1}{2^{k}}<\infty$, which by Lemma 7 implies that B differentiates $\int f$.

After making some technical changes in the proof of Theorem 2 we can obtain the following generalization.

Theorem 3. Let $B \subset B_{2}$ be a TI-basis. If \bar{B}_{2} is not locally regular with respect to \bar{B} then for any function $f \in L \backslash L \ln ^{+} L\left(I^{2}\right), f \geq 0$, there is a Lebesgue measure-preserving and invertible mapping $\omega: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $\{x: \omega(x) \neq x\} \subset I^{2}$ such that

$$
\begin{gathered}
\bar{D}_{B_{2}}\left(\int f \circ \omega, x\right)=\infty \text { a.e. on } I^{2}, \\
D_{B}\left(\int f \circ \omega, x\right)=(f \circ \omega)(x) \text { a.e. on } I^{2} .
\end{gathered}
$$

To prove the implication $(c) \Rightarrow(b)$ let us show the validity of
Lemma 8. Let $B \subset B_{2}$ be a TI-basis. If \bar{B}_{2} is locally regular with respect to \bar{B}, then for every $f \in L\left(\mathbb{R}^{2}\right)$

$$
\left|\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\}\right| \leq 25\left|\left\{M_{B}^{(c r)}(f)>\frac{\lambda}{4 c}\right\}\right| \quad(\lambda>0,0<r<\delta)
$$

where δ and c are the constants from the definition of local regularity of \bar{B}_{2} with respect to \bar{B}.

Proof. Note first that if I and $I^{\prime}\left(I \subset I^{\prime}\right)$ are the one-dimensional intervals and I^{*} is either the left or the right half of the interval I, then for the point $y \in I^{\prime}$ the set $E=\left\{z \in \mathbb{R}:\left(I^{\prime}+z-y\right) \supset I^{*}\right\}$ possesses the following properties:

1) E is an interval;
2) $E \cap I^{\prime} \neq \varnothing$;
3) $|E|_{1}=\left|I^{\prime}\right|_{1}-\frac{1}{2}|I|_{1} \geq \frac{1}{2}\left|I^{\prime}\right|_{1}$.

It follows from these properties that
4) $5 E \supset I^{\prime}$
is likewise valid.
Let $f \in L\left(\mathbb{R}^{2}\right)$. Denote by P the set of all two-dimensional intervals $E \in \bar{B}_{2}$ such that $E \subset\left\{M_{B}^{(c r)}(f)>\frac{\lambda}{4 c}\right\}$ and show the inclusion

$$
\begin{equation*}
\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\} \subset \bigcup_{E \in P} 5 E \quad(\lambda>0,0<r<\delta) \tag{23}
\end{equation*}
$$

Let $x \in\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\}(\lambda>0,0<r<\delta)$. Then there is $I \in B_{2}(x)$ such that $\operatorname{diam} I<r$ and

$$
\begin{equation*}
\frac{1}{|I|} \int_{I}|f|>\lambda \tag{24}
\end{equation*}
$$

Since $\bar{B}_{2} \in L R(\bar{B})$, there is an interval I^{\prime} from \bar{B} such that $I \subset I^{\prime}$ and $\left|I^{\prime}\right| \leq c|I|$. Then it is obvious that diam $I^{\prime} \leq c \operatorname{diam} I<c r$. Let $y \in I^{\prime}$ be the point for which $I^{\prime} \in B(y)$. Divide the interval I into four equal intervals. Because of (24) the integral mean will be greater than λ at least on one of these intervals. Denote this interval by I^{*}. Thus

$$
\begin{equation*}
\frac{1}{\left|I^{*}\right|} \int_{I^{*}}|f|>\lambda \tag{25}
\end{equation*}
$$

Consider the set $E=\left\{z \in \mathbb{R}^{2}:\left(I^{\prime}+z-y\right) \supset I^{*}\right\}$. By virtue of the above discussion we can easily note that

1) $E \in \bar{B}_{2}$;
2) $E \cap I^{\prime} \neq \varnothing$;
3) $|E| \geq \frac{1}{4}\left|I^{\prime}\right|$;
4) $5 E \supset I^{\prime}$.

Since $x \in I \subset I^{\prime}$, then to prove (23) it suffices to show that $E \in P$. Let $z \in E$. Then $\left(I^{\prime}+z-y\right) \supset I^{*}$. Since B is the $T I$-basis and $I^{\prime} \in B(y)$, we have $\left(I^{\prime}+z-y\right) \in B(z)$. Moreover, owing to (25), we have

$$
\frac{1}{\left|I^{\prime}+z-y\right|} \int_{I^{\prime}+z-y}|f| \geq \frac{1}{\left|I^{\prime}\right|} \int_{I^{*}}|f| \geq \frac{1}{c|I|} \int_{I^{*}}|f|=\frac{1}{c 4\left|I^{*}\right|} \int_{I^{*}}|f|>\frac{\lambda}{4 c}
$$

from which by the inequality $\operatorname{diam}\left(I^{\prime}+z-y\right)<c r$, we conclude that $z \in\left\{M_{B}^{(c r)}(f)>\frac{\lambda}{4 c}\right\}$. Hence $E \in P$. Thus inclusion (23) is proved.

Now, using (23) and Lemma 1 from [2], we will have

$$
\left|\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\}\right| \leq\left|\bigcup_{E \in P} 5 E\right| \leq 25\left|\bigcup_{E \in P} E\right| \leq 25\left|\left\{M_{B}^{(c r)}(f)>\frac{\lambda}{4 c}\right\}\right|
$$

for $\lambda>0,0<r<\delta$.
The basis B is said to be regular if there is a constant $c<\infty$ such that for every $R \in \bar{B}$ there exists a cubic interval Q with the following properties: $Q \supset R,|Q| \leq c|R|$.

According to the well-known Lebesgue theorem on differentiability of integrals, the regular basis B differentiates L, i.e., $D_{B}\left(\int f, x\right)=f(x)$ a.e. on \mathbb{R}^{n} for every $f \in L\left(\mathbb{R}^{n}\right)$.

We shall say that the basis B possesses property (E) if for every $f \in$ $L\left(\mathbb{R}^{n}\right), \underline{D}_{B}\left(\int f, x\right) \leq f(x) \leq \bar{D}_{B}\left(\int f, x\right)$ a.e. on \mathbb{R}^{n}.

Obviously, the basis B, containing a regular subbasis, possesses the property (E).

It directly follows from the relation $\bar{B}_{2} \in L R(\bar{B})$ that B contains a regular subbasis, and hence possesses property (E). Now, to prove the implication $(b) \Rightarrow(c)$, it suffices to consider the following assertion.

Lemma 9. Let B be a subbasis of B_{2} with property (E). Suppose that there exist positive constants c_{1}, c_{2}, c_{3} and δ such that for every $f \in L\left(\mathbb{R}^{2}\right)$,

$$
\left|\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\}\right| \leq c_{1}\left|\left\{M_{B}^{\left(c_{2} r\right)}(f)>\frac{\lambda}{c_{3}}\right\}\right| \quad(\lambda>0,0<r<\delta) .
$$

Then for every $f \in L\left(\mathbb{R}^{2}\right), f \geq 0$,

$$
\underline{D}_{B}\left(\int f, x\right)=\underline{D}_{B_{2}}\left(\int f, x\right) \text { and } \bar{D}_{B}\left(\int f, x\right)=\bar{D}_{B_{2}}\left(\int f, x\right),
$$

a.e. on \mathbb{R}^{2}.

The proof of Lemma 9 is based on the well-known Besicovitch theorem on possible values of upper and lower derivative numbers (see [1], Ch.IV, $\S 3)$ and is carried out analogously to the proof of Theorem 1 from [2].

3. On a Possibility of Extending Theorem 1 to More General Bases

It should be noted that beyond the scope of $T I$-bases Theorem 1 becomes invalid. Moreover, even for bases which are similar enough to $T I$-bases the local regularity of \bar{B}_{2} with respect to \bar{B} is insufficient for the equality $F_{B}^{+}=F_{B_{2}}^{+}$to be fulfilled.

A basis B will be called a $T I^{*}$-basis if for every $x \in \mathbb{R}^{n}, R \in B(x)$ and $y \in \mathbb{R}^{n}$ there is a translation T such that $T(R) \in B(y)$.

The following theorem is valid.
Theorem 4. There is a $T I^{*}$-basis $B \subset B_{2}$ with the properties:

1) \bar{B}_{2} is locally regular with respect to \bar{B}, and $B(O)=B_{2}(O)$;
2) there is a function $f \in L\left(I^{2}\right), f \geq 0$ such that

$$
\begin{aligned}
& \bar{D}_{B_{2}}\left(\int f, x\right)=\infty \text { a.e. on } I^{2}, \\
& D_{B}\left(\int f, x\right)=f(x) \text { a.e. on } I^{2} .
\end{aligned}
$$

Proof. Consider the sequences $\alpha_{k} \uparrow \infty, \alpha_{k}>0$ and $h_{k} \uparrow \infty, h_{k}>10$ with the properties

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\alpha_{k}}{h_{k}}<\infty, \quad \sum_{k=1}^{\infty} \frac{\ln h_{k}}{h_{k}}=\infty \tag{26}
\end{equation*}
$$

Let $q_{k}=2^{m_{k}}$, where $m_{k} \in \mathbb{N}(k \in \mathbb{N})$ and $m_{k} \uparrow \infty$. For every k, we divide I^{2} into q_{k}^{2} equal square interval and denote them by $I_{k, q}^{2}$. The length of square intervals sides will be denoted by Δ_{k}. For every $I_{k, q}^{2}$ let us consider the square interval $I_{k, q}$ concentric with $I_{k, q}^{2}$ having the side length $\delta_{k}=\Delta_{k} /\left(2 h_{k}+1\right)$. We shall assume $q_{k} \uparrow \infty$ so that $\delta_{k}>\Delta_{k+1}(k \in \mathbb{N})$.

Let $f_{k}=\sup \left\{\alpha_{k} h_{k} \chi_{I_{k, q}}: q=\overline{1, q_{k}^{2}}\right\}(k \in \mathbb{N})$ and $f=\sum_{k=1}^{\infty} f_{k}$. Clearly, $f \geq 0$. It can be easily checked that

$$
\left\|f_{k}\right\|_{1}=\alpha_{k} h_{k}\left|\bigcup_{q=1}^{q_{k}^{2}} I_{k, q}\right|=\alpha_{k} h_{k} \sum_{q=1}^{q_{k}^{2}} \frac{1}{\left(2 h_{k}+1\right)^{2}}\left|I_{k, q}^{2}\right|<\frac{\alpha_{k}}{h_{k}},
$$

which according to (26) implies

$$
\|f\|_{1} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{1}<\sum_{k=1}^{\infty} \frac{\alpha_{k}}{h_{k}}<\infty
$$

i.e., $f \in L\left(I^{2}\right)$.

By Lemma 1 for $k \in \mathbb{N}, q=\overline{1, q_{k}^{2}}$ we have

$$
\begin{equation*}
\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\} \subset\left(2 h_{k}+1\right) I_{k, q}=I_{k, q}^{2}, \tag{27}
\end{equation*}
$$

and

$$
\left|\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}\right| \geq h_{k} \ln h_{k}\left|I_{k, q}\right| .
$$

Thus we write

$$
\begin{gather*}
\left|\bigcup_{q=1}^{q_{k}^{2}}\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}\right|=\sum_{q=1}^{q_{k}^{2}}\left|\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}\right| \geq \\
\geq \sum_{q=1}^{q_{k}^{2}} h_{k} \ln h_{k}\left|I_{k, q}\right|=\sum_{q=1}^{q_{k}^{2}} h_{k} \ln h_{k} \frac{\left|I_{k, q}^{2}\right|}{\left(2 h_{k}+1\right)^{2}}>\frac{\ln h_{k}}{9 h_{k}} \tag{28}
\end{gather*}
$$

for $k \in \mathbb{N}$.
For every $k \in \mathbb{N}$ let us consider those intervals $I_{k+1, q}^{2}\left(q=\overline{1, q_{k+1}^{2}}\right)$ which are contained in $\bigcup_{q=1}^{q_{k}^{2}}\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}$. Denote their union by O_{k}. It can be easily seen that if $\left\{q_{k}\right\}$ tends rapidly enough to ∞, then

$$
\begin{equation*}
\left|O_{k}\right| \geq \frac{1}{2}\left|\bigcup_{q=1}^{q_{k}^{2}}\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}\right| \quad(k \in \mathbb{N}) \tag{29}
\end{equation*}
$$

Using the property of dyadic intervals, we can see that $\left\{O_{k}\right\}$ is the sequence of independent sets, i.e., for every $n \geq 2$ and for arbitrary pairwise different natural numbers $k_{1}, k_{2} \ldots, k_{n}$,

$$
\left|\bigcap_{m=1}^{n} O_{k_{m}}\right|=\prod_{m=1}^{n}\left|O_{k_{m}}\right|
$$

Owing to (26), (28), and (29), $\sum_{k=1}^{\infty}\left|O_{k}\right|>\sum_{k=1}^{\infty} \frac{1}{2} \frac{\ln h_{k}}{9 h_{k}}=\infty$. Using now Borel-Kantelly's lemma, we get

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} O_{k}, \text { has a complete measure in } I^{2} . \tag{30}
\end{equation*}
$$

From (27) we have for $k \in \mathbb{N}, q=\overline{1, q_{k}^{2}}$

$$
\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}=\left\{M_{B_{2}}^{\left(\Delta_{k}\right)}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}
$$

which for $k \in \mathbb{N}$ implies

$$
\begin{gathered}
O_{k} \subset \bigcup_{q=1}^{q_{k}^{2}}\left\{M_{B_{2}}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\}= \\
=\bigcup_{q=1}^{q_{k}^{2}}\left\{M_{B_{2}}^{\left(\Delta_{k}\right)}\left(\alpha_{k} h_{k} \chi_{I_{k, q}}\right)>\alpha_{k}\right\} \subset\left\{M_{B_{2}}^{\left(\Delta_{k}\right)}\left(f_{k}\right)>\alpha_{k}\right\} .
\end{gathered}
$$

Because of (30), from the latter inclusion we obtain

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty}\left\{M_{B_{2}}^{\left(\Delta_{k}\right)}\left(f_{k}\right)>\alpha_{k}\right\} \text { has a complete measure in } I^{2} \tag{31}
\end{equation*}
$$

Since $\alpha_{k} \uparrow \infty, \Delta_{k} \downarrow 0(k \rightarrow \infty)$, we can easily see that if $x \in$ $\varlimsup_{k \rightarrow \infty}\left\{M_{B_{2}}^{\left(\Delta_{k}\right)}\left(f_{k}\right)>\alpha_{k}\right\}$, then $\bar{D}_{B_{2}}\left(\int f, x\right)=\infty$. By virtue of (31) we conclude that the latter equality holds a.e. on I^{2}.

Assume k to be fixed. For every $I_{k, q}\left(q=\overline{1, q_{k}^{2}}\right)$ let us consider the intervals $J_{k, q}^{1}\left(\operatorname{pr}_{1} J_{k, q}^{1}=3 \operatorname{pr}_{1} I_{k, q}, \operatorname{pr}_{2} J_{k, q}^{1}=(0,1)\right)$ and $J_{k, q}^{2}\left(\operatorname{pr}_{1} J_{k, q}^{2}=\right.$ $\left.(0,1), \operatorname{pr}_{2} J_{k, q}^{2}=3 \operatorname{pr}_{2} I_{k, q}\right)$. Denote $G_{k}^{i}=\bigcup_{q=1}^{q_{k}^{2}} J_{k, q}^{i}(i=\overline{1,2}), G_{k}=G_{k}^{1} \cup G_{k}^{2}$. It can be easily verified (see (26)) that $\sum_{k=1}^{\infty=1}\left|G_{k}\right|<\infty$ which implies that $\varlimsup_{k \rightarrow \infty} G_{k}$ has zero measure.

Determine now an unknown basis B. If $x \in\left(\varlimsup_{k \rightarrow \infty} G_{k}\right) \cup \mathbb{Q}^{2} \cup\left(\mathbb{R}^{2} \backslash I^{2}\right)$ $\left(\mathbb{Q}\right.$ is a set of rational numbers), then we put $B(x)=B_{2}(x)$. For $x \in$ $I^{2} \backslash\left(\varlimsup_{k \rightarrow \infty} G_{k} \cup \mathbb{Q}^{2}\right)$ choose $B(x)$ such that if d_{I} is the length of the lesser
side of the interval $I \ni x$, and $d_{I} \notin \bigcup_{k \geq k(x)}\left[\delta_{k}, \Delta_{k} / 2\right]$ (for $x \notin \overline{\lim }_{k \rightarrow \infty} G_{k}, k(x)$ is the number with the property $x \notin G_{k}$ for $\left.k \geq k(x)\right)$, then $I \in B(x)$, while if $d_{I} \in\left[\delta_{k}, \Delta_{k} / 2\right]$ for some $k \geq k(x)$, then $I \in B(x)$ iff either $I \cap G_{k}^{1}=\varnothing$ or $I \cap G_{k}^{2}=\varnothing$.

It can be easily verified that for every $I \in \bar{B}_{2}$ and $x \in \mathbb{R}^{2}$ there is a translation $T, T(I) \in B(x)$; this implies that B is the $T I^{*}$-basis. The local regularity of \bar{B}_{2} with respect to \bar{B} is also easily checked. By proving the inclusion $f \in F_{B}^{+}$the proof of the theorem will be completed.

Denote $A_{k}=\left\{x \in \mathbb{R}^{n}: D_{B}\left(\int f_{k}, x\right)=f_{k}(x)\right\}(k \in \mathbb{N})$. Clearly, $A_{k}(k \in$ $\mathbb{N})$ has a complete measure on \mathbb{R}^{2}. Denote $A=\left(I^{2} \cap \bigcap_{k=1}^{\infty} A_{k}\right) \backslash\left(\varlimsup_{k \rightarrow \infty} G_{k} \cup\right.$ $\left.\mathbb{Q}^{2}\right)$. Since $f(x)=0$ for $x \notin I^{2}, B$ differentiates $\int f$ on $\mathbb{R}^{2} \backslash I^{2} ; A$ is the set of a complete measure on I^{2}. Therefore to prove the inclusion $f \in F_{B}^{+}$, it suffices to show the differentiability of $\int f$ with respect to B on the set A.

Let $x \in A$ and $\varepsilon>0$. Find $\delta>0$ for which $\left|(1 /|I|) \int_{I} f-f(x)\right|<\varepsilon$ when $I \in B(x), \operatorname{diam} I<\delta$. Consider $k^{\prime}(x) \geq k(x)$ for which

$$
\begin{equation*}
\sum_{k \geq k^{\prime}(x)} 16\left\|f_{k}\right\|_{1}<\varepsilon / 2 \tag{32}
\end{equation*}
$$

It is clear that $\sum_{k=1}^{\infty} f_{k}(x)=\sum_{k=1}^{k^{\prime}(x)-1} f_{k}(x)$, and B differentiates $\int \sum_{k=1}^{k^{\prime}(x)-1} f_{k}$ at the point x. This implies that there is $\delta \in\left(0, \Delta_{k^{\prime}(x)} / 2\right)$ such that

$$
\begin{equation*}
\left|\frac{1}{|I|} \int_{I}^{k^{\prime}(x)-1} \sum_{k=1}^{k^{\prime}(x)-1} f_{k}-\sum_{k=1} f_{k}(x)\right|<\varepsilon / 2, \text { for } I \in B(x), \operatorname{diam} I<\delta \tag{33}
\end{equation*}
$$

Consider an arbitrary interval $I \in B(x)$, $\operatorname{diam} I<\delta$. For $k_{I} \in \mathbb{N}$ let $\Delta_{K_{I}+1} / 2 \leq d_{I} \leq \Delta_{k_{I}} / 2$. Clearly, $k_{I} \geq k^{\prime}(x)$. By virtue of the inequality $\Delta_{k+1}<\delta_{k}(k \in \mathbb{N})$ and the condition $x \notin G_{k}(k \geq k(x))$, we have $I \cap$ $\operatorname{supp} f_{k}=\varnothing$ for $k^{\prime}(x) \leq k \leq k_{I}-1$, which gives

$$
\begin{equation*}
\int_{I} f_{k}=0 \text { for } k^{\prime}(x) \leq k \leq k_{I}-1 \tag{34}
\end{equation*}
$$

Analogously, $\int_{I} f_{k_{I}}=0$ if $d_{I}<\delta_{k_{I}}$, while if $\delta_{k_{I}} \leq d_{I} \leq \Delta_{k_{I}} / 2$, then $\int_{I} f_{k_{I}}=0$ because $I \cap \operatorname{supp} f_{k}=\varnothing$ by construction of the basis B. Thus

$$
\begin{equation*}
\int_{I} f_{k_{I}}=0 \tag{35}
\end{equation*}
$$

Let is show that

$$
\begin{equation*}
\left|I \cap \operatorname{supp} f_{k}\right| \leq 16|I|\left|\operatorname{supp} f_{k}\right| \text { for } k \geq k_{I}+1 \tag{36}
\end{equation*}
$$

To this end it is sufficient to consider the following easily verifiable facts:

1) $d_{I} \geq \Delta_{k} / 2$ for $k \geq k_{I}+1$;
2) let P_{k} be a set of vertices of the squares $I_{k, q}^{2}\left(q=\overline{1, q_{k}^{2}}\right)$. If the vertices of the interval $J \subset I^{2}$ belong to the set P_{k}, then $\left|J \cap \operatorname{supp} f_{k}\right|=|I|\left|\operatorname{supp} f_{k}\right|$;
3) for every interval $J \subset I^{2}, d_{J} \geq \Delta_{k} / 2$ there is an interval $J^{\prime} \supset J$, $\left|J^{\prime}\right| \leq 16|J|$ with vertices at the points of the set P_{k}.

By (36) we can write that for $k \geq k_{I}+1$,

$$
\int_{I} f_{k}=\alpha_{k} h_{k}\left|I \cap \operatorname{supp} f_{k}\right| \leq 16 \alpha_{k} h_{k}|I|\left|\operatorname{supp} f_{k}\right|=16|I|\left\|f_{k}\right\|_{1}
$$

which, owing to (32) and the inequality $k_{I} \geq k^{\prime}(x)$, implies

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \sum_{k \geq k_{I}+1} f_{k}=\frac{1}{|I|} \sum_{k \geq k_{I}+1} \int_{I} f_{k} \leq \frac{1}{|I|} \sum_{k \geq k_{I}+1} 16|I|\left\|f_{k}\right\|_{1}<\varepsilon / 2 \tag{37}
\end{equation*}
$$

By virtue of relations (33)-(35) and (37) (it should also be noted that $f_{k}(x)=0$ for $\left.k \geq k^{\prime}(x)\right)$, we have

$$
\begin{aligned}
& \quad\left|\frac{1}{|I|} \int_{I} \sum_{k=1}^{\infty} f_{k}-\sum_{k=1}^{\infty} f_{k}(x)\right| \leq\left|\frac{1}{|I|} \int_{I}^{k^{\prime}(x)-1} \sum_{k=1}^{k_{k}} f_{k}^{k^{\prime}(x)-1} \sum_{k=1} f_{k}(x)\right|+ \\
& +\frac{1}{|I|} \int_{I} \sum_{k=k^{\prime}(x)}^{k_{I}} f_{k}+\frac{1}{|I|} \int_{I} \sum_{k \geq k_{I}+1} f_{k}+\sum_{k \geq k^{\prime}(x)} f_{k}(x)<\frac{\varepsilon}{2}+0+\frac{\varepsilon}{2}+0=\varepsilon
\end{aligned}
$$

Due to the arbitrariness of $x \in A$ and $\varepsilon>0$, we conclude that $D_{B}\left(\int f, x\right)=$ $f(x)$ for every $x \in A$.

4. Remarks

(1) Let us consider one application of the obtained results. Let B_{Z} be the basis in \mathbb{R}^{2} for which $B_{Z}(x)\left(x \in \mathbb{R}^{2}\right)$ consists of all intervals $I \ni x$, $D_{I}^{2} \leq d_{I} \leq D_{I} \leq 1$, where D_{I} and d_{I} are the lengths, respectively, of the greater and of the lesser side of I. This basis was introduced by Zygmund and it was he who initiated (see [1], Ch. VI, §4) the study of the differential properties of B_{Z}.

Morion showed (see [1], Appendix IV) that for the integral classes B_{Z} behaves like B_{2}, i.e., B_{Z} does not differentiate a wider integral class than $L \ln ^{+} L$.

A question arises: does there exist in general a function whose integral does not differentiate B_{2} and differentiates B_{Z} ? From the above proven theorems the answer is positive.
B_{Z} is the $T I$-basis. The fact that $\bar{B}_{2} \notin L R\left(\bar{B}_{z}\right)$ is easily verified. By Theorem 1 this implies that the strict inclusion $F_{B_{2}}^{+} \subset F_{B_{Z}}^{+}$holds. Moreover,

Theorem 3 implies that by perturbing the values ω of any function $f \in$ $L \backslash L \ln ^{+} L\left(I^{2}\right), f \geq 0$, one can get the function $f \circ \omega$ with the following properties: $\bar{D}_{B_{2}}\left(\int f \circ \omega, x\right)=\infty$ a.e. on I^{2}, and B_{Z} differentiates $\int f \circ \omega$.

Thus, for the integral classes the bases B_{2} and B_{Z} behave similarly, while for individual nonnegative functions the basis B_{Z} behaves better than the basis B_{2}.
(2) The bases B and B^{\prime} are said to be positive equivalent $\left(B \stackrel{H}{\Leftrightarrow} B^{\prime}\right)$ if for every $f \in L\left(\mathbb{R}^{n}\right), f \geq 0, \bar{D}_{B}\left(\int f, x\right)=\bar{D}_{B^{\prime}}\left(\int f, x\right)$ and $\underline{D}_{B}\left(\int f, x\right)=$ $\underline{D}_{B^{\prime}}\left(\int f, x\right)$ a.e. on \mathbb{R}^{n} (i.e., condition (b) in Theorem 1 means that the bases B and B^{\prime} are positive equivalent).
B is said to be a Busemann-Feller type basis (BF-basis) if for any $R \in \bar{B}$ and $x \in R$ we have $R \in B(x)$.

We shall say that B exactly differentiates $\varphi(L)$ (writing $B \in D(\varphi(L)$) if B differentiates $\varphi(L)$ and does not differentiate a wider integral class than $\varphi(L)$.

For integral classes the behavior of $B \subset B_{2}, B F, T I$-bases was studied by Stokoloc in [3], where he introduced the property (S) and proved that if B possesses the property (S), then $B \in D\left(L \ln ^{+} L\right)$, and if B does not possess this property, then $B \in D(L)$.

One can easily see that ignoring the $B F$ property, this result remains valid. Thus, for the integral classes $B \subset B_{2}$, the $T I$-basis behaves like B_{2} or B_{1} (B_{1} is the basis formed of square intervals). The B_{Z}-basis illustrates that an analogous fact does not hold for nonnegative individual functions and, generally speaking, if we combine Stokoloc's assertion and Theorem 1, then we shall have:

1) if $\bar{B}_{2} \in L R(\bar{B})$, then $B \stackrel{+}{\Rightarrow} B_{2}$;
2) if $\bar{B}_{2} \notin L R(\bar{B})$ and B possesses the property (S), then $B \in D\left(L \ln ^{+} L\right)$ and $F_{B_{2}}^{+} \subset F_{B}^{+}$(strictly);
3) if B does not possess the property (S), then $B \in D(L)$.
(3) Let $B \subset B_{2}$ be a $T I$-basis. Consider the intervals $I \in \bar{B}$ of the type $I=\left(0, x^{1}\right) \times\left(0, x^{2}\right)$. Denote the set of points $\left(x^{1}, x^{2}\right)$ by A_{B}. The set A_{B} indicates how rich the family \bar{B} is.

One can easily prove the following criterion of local regularity of \bar{B}_{2} with respect to $\bar{B}:\left(\bar{B}_{2} \in L R(\bar{B})\right) \Leftrightarrow\left(\exists m, k_{0} \in \mathbb{N}: A_{B} \cap\left(\left[1 / m^{k}, 1 / m^{k-1}\right) \times\right.\right.$ $\left.\left[1 / m^{k^{\prime}}, 1 / m^{k^{\prime}-1}\right)\right) \neq \varnothing$ for $\left.k, k^{\prime}>k_{0}\right)$.
(4) The basis B is said to be invariant (HI-basis) with respect to homotheties if for every $x \in \mathbb{R}^{n}$ and every homothety H centered at x we have $B(x)=\{H(R): R \in B(x)\}$.

If \bar{B} is locally regular with respect to \bar{B}^{\prime} and, moreover, if δ is equal to ∞, then \bar{B} is called regular with respect to \bar{B}^{\prime}.

For the basis $B \subset B_{2}$ define the sets: $R_{1, B}=\left\{r>1: \exists I \in \bar{B},\left|\operatorname{pr}_{1} I\right|_{1}=\right.$ $\left.r\left|\operatorname{pr}_{2} I\right|_{1}\right\}, R_{2, B}=\left\{r>1: \exists I \in \bar{B},\left|\operatorname{pr}_{2} I\right|_{1}=r\left|\operatorname{pr}_{1} I\right|_{1}\right\}$.

For the basis $B \subset B_{2}$ which is simultaneously the $T I$ - and $H I$ basis one can easily verify that $\left(\bar{B}_{2} \in L R(\bar{B})\right) \Leftrightarrow\left(\bar{B}_{2}\right.$ is regular with respect to $B) \equiv \leftrightarrow\left(\exists m \in \mathbb{N}: R_{i, B} \cap\left[m^{k}, m^{m+1}\right) \neq \varnothing, k \in \mathbb{N}, i=\overline{1,2}\right)$.
(5) Let $B_{2}\left(B_{2}=B_{2}\left(\mathbb{R}^{n}\right)\right)$ be the basis in \mathbb{R}^{n} for which $B_{2}(x)\left(x \in \mathbb{R}^{n}\right)$ consists of all n-dimensional intervals containing the point x.

Theorems $1-4$ are also valid for $B \subset B_{2}\left(\mathbb{R}^{n}\right)(n \geq 3), T I$-bases. Proofs for the n-dimensional case are similar to those for the two-dimensional case.
(6) Let $\delta_{k}^{1} \downarrow 0, \ldots, \delta_{k}^{n} \downarrow 0(k \rightarrow \infty)$. Denote $\Delta_{k, m}^{i}=\left[(m-1) \delta_{k}^{i}, m \delta_{k}^{i}\right)(i=$ $\overline{1, n} ; k, m \in \mathbb{N})$. Let B be the basis in \mathbb{R}^{n} for which $B(x)=\left\{\prod_{i=1}^{n} \Delta_{k^{i}, m^{i}}^{i}\right.$: $\prod_{i=1}^{n} \Delta_{k^{i}, m^{i}}^{i} \ni x ; k^{i}, m^{i} \in \mathbb{N}$). Such bases are sometimes called nets. We call them N-bases.

Let B be the N-basis in $\mathbb{R}^{n}(n \geq 2)$. Denote by B_{T} the least $T I$-basis containing B. For B the following analogue of Theorem 1 is valid: the following conditions are equivalent: (i) $F_{B}^{+}=F_{B_{2}}^{+}$; (ii) $B \stackrel{\dagger}{\Leftrightarrow} B_{2}$; (iii) \bar{B}_{2} is locally regular with respect to \bar{B}_{T}.

Obviously, (ii) \Rightarrow (i), the implication (i) \Rightarrow (iii) follows directly from Theorem 1. Thus it remains only to show that $(\mathrm{iii}) \Rightarrow(\mathrm{i})$. To this end, note that using Lemma 1 of [2] one can easily obtain the inequality

$$
\left|\left\{M_{B_{T}}^{(r)}(f)>\lambda\right\}\right| \leq 3^{n}\left|\left\{M_{B}^{(r)}(f)>\frac{\lambda}{2^{n}}\right\}\right| \quad\left(f \in L\left(\mathbb{R}^{n}\right) ; \lambda, r>0\right)
$$

From this and Lemma 5 we get the upper bound of the distribution function of $M_{B_{2}}^{(r)}(f)$ by means of the distribution function of $M_{B}^{(c r)}(f)$. It easily follows from the relation $\bar{B}_{2} \in L R(\bar{B})$ that B contains a regular subbasis. Hence B possesses the property (E). Next, we obtain the implication (iii) \Rightarrow (ii) from Lemma 6 .

Note that for $\delta_{k}^{i}=1 / 2^{k}(i=\overline{1, n} ; k \in \mathbb{N})$ the relation $B \stackrel{\dagger}{\Leftrightarrow} B_{2}$ was proved earlier in [2].
(7) The basis B constructed in Theorem 4 is not a $B F$-basis, which is not a casual fact. In particular, the following assertion is valid: let $B \subset B_{2}$ $\left(B_{2}=B_{2}\left(\mathbb{R}^{n}\right)\right)$ be a $B F$-basis and let $\bar{B}_{2} \in L R(\bar{B})$. Then $B \stackrel{\Delta}{\Leftrightarrow} B_{2}$.

To prove the above assertion we have to consider the following facts which easily follow from the Busemann-Feller property of the basis B and from the relation $\bar{B}_{2} \in L R(\bar{B}$: (i) B contains a regular subbasis; (ii) for every $f \in L\left(\mathbb{R}^{n}\right)$,

$$
\left|\left\{M_{B_{2}}^{(r)}(f)>\lambda\right\}\right| \leq\left|\left\{M_{B}^{(c r)}(f)>\frac{\lambda}{c}\right\}\right| \quad(\lambda>0,0<r<\delta)
$$

where c and δ are the constants from the definition of local regularity of \bar{B}_{2} with respect to \bar{B}.

From (i) we have that B possesses the property (E). Now, taking into account (ii) and using Lemma 6, we can conclude that the relation $B \stackrel{\dagger}{\Leftrightarrow} B_{2}$ is valid.

Acknowledgement

The authors express their gratitude to the referee for his useful remarks.

References

1. M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}. Lecture Notes in Math. 481, Springer, 1975.
2. T. Sh. Zerekidze, Convergence of multiple Fourier-Haar series and strong differentiability of integrals. (Russian) Trudy Tbilis. Mat. Inst. A. Razmadze 76(1985), 80-99.
3. A. M. Stokoloc, On the differentiation of integrals of functions from $L \varphi(L)$. Studia Math. 88(1988), 103-120.
(Received 17.05.1995)
Authors' address:
Faculty of Mechanics and Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 380043
Republic of Georgia

[^0]: 1991 Mathematics Subject Classification. 28A15.
 Key words and phrases. Differential basis, translation invariant bases, interval, locally regularity.

