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ON DIFFERENTIAL BASES FORMED OF INTERVALS

G. ONIANI AND T. ZEREKIDZE

In memory of young mathematician
A. Berekashvili

Abstract. Translation invariant subbases of the differential basis B2
(formed of all intervals), which differentiates the same class of all non-
negative functions as B2 does, are described. A possibility for extend-
ing the results obtained to bases of more general type is discussed.

1. Definitions and Notation

A mapping B defined on Rn is said to be a differential basis in Rn if, for
every x ∈ Rn, B(x) is a family of open bounded sets containing the point x
such that there exists a sequence {Rk} ⊂ B(x), diam Rk → 0 (k →∞).

For f ∈ Lloc(Rn) the numbers

DB

(

∫

f, x
)

= lim
diam R→0,R∈B(x)

1
|R|

∫

R
f

and

DB

(

∫

f, x
)

= lim
diam R→0,R∈B(x)

1
|R|

∫

R
f

are said to be respectively the upper and the lower derivative of the integral
of f at the point x. If the upper and the lower derivative coincide, then their
common value is called the derivative of the integral of f at the point x, and
we denote it by DB

( ∫

f, x
)

. They say that the basis B differentiates the
integral of f if DB

( ∫

f, x
)

= f(x) for almost all x. The set of those functions
f ∈ Lloc(Rn), f ≥ 0, whose integrals are differentiable with respect to the
basis B will be denoted by F+

B . Under MB we mean the maximal operator

MB(f)(x) = sup
R∈B(x)

1
|R|

∫

R
|f | (f ∈ Lloc(Rn), x ∈ Rn),
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corresponding to the basis B. It will be assumed here that B =
⋃

x∈Rn
B(x).

B is said to be a subbasis of B′ (writing B ⊂ B′), if B(x) ⊂ B′(x)
(x ∈ Rn). The basis B is said to be translation invariant or the TI-basis, if
B(x) = {x + R : R ∈ B(O)} (x ∈ Rn) (here O is the origin in Rn). Let us
have the bases B and B′. We shall say that the family B is locally regular
with respect to the family B′ (writing B ∈ LR(B′)), if there exist δ > 0
and c > 0 such that for any R ∈ B, diam R < δ, there is R′ ∈ B

′
such that

R ⊂ R′ and |R′| < c|R|.
We shall agree that In = [0, 1]n and f ∈ L(In), if f ∈ L(Rn) and

supp f ⊂ In.

2. TI-Bases Formed of Intervals

Let B2 be the basis in R2 for which B2(x) (x ∈ R2) consists of all two-
dimensional intervals containing the point x.

The theorem below characterizes B ⊂ B2, TI-bases for which F+
B = F+

B2
.

Theorem 1. Let B ⊂ B2 be a TI-basis. Then the following conditions
are equivalent:

(a) F+
B = F+

B2
;

(b) for every f ∈ L(R2), f ≥ 0, a.e. on R2

DB

(

∫

f, x
)

= DB2

(

∫

f, x
)

and DB

(

∫

f, x
)

= DB2

(
∫

f, x
)

;

(c) B2 is locally regular with respect to B.

The implication (b) ⇒ (a) is evident. Therefore to prove Theorem 1 it
suffices to show that (a) ⇒ (c) and (c) ⇒ (b).

The implication (a) ⇒ (c) follows from the following assertion.

Theorem 2. Let B ⊂ B2 be a TI-basis. If B2 is not locally regular with
respect to B, then there exists a function f ∈ L(I2), f ≥ 0, such that

DB2

(

∫

f, x
)

= ∞ a.e. on I2,

DB

(

∫

f, x
)

= f(x) a.e. on I2.

Before proving Theorem 2 we shall give several lemmas.
For the interval I we denote by αI (α > 0) the interval H(I), where H

is the homothety with the coefficient α whose center is the center of I.

Lemma 1. Let I ∈ B2 and h > 1. Then {MB2(hχI ) > 1} ⊂ (2h + 1)I
and |{MB2(hχI ) > 1}| ≥ h(ln h)|I|.
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The validity of this lemma can be shown by a direct checking.
Projections of I onto the ox1- and ox2-axes will be denoted by pr1 I and

pr2 I, respectively. For I ∈ B2 and h > 0 we have

R1(I, h) = (2h + 1) pr1 I × 3 pr2 I,

R2(I, h) = 3 pr1 I × (2h + 1) pr2 I,

R(I, h) = R1(I, h) ∪R2(I, h).

It is clear that |R(I, h)| ≤ 18h|I|.

Lemma 2. Let B ⊂ B2 be a TI-basis; h > 1. Suppose that for I ∈ B2

there is no J ∈ B, J ⊃ I, such that |J | ≤ h|I|. Then {MB(hχI ) > 1} ⊂
R(I, h).

Proof. Let J ∈ B and (1/|J |)
∫

J hχI > 1. From the condition of the lemma
we can easily find that either

|pr1J |1 < |pr1 I|1 or | pr2 J |1 < |pr2 I|1, (1)

where | · |1 is the Lebesgue measure on R.
By Lemma 1, J ⊂ (2h + 1)I, which by virtue of (1) implies that either

J ⊂ R1(I, h) or J ⊂ R2(I, h), so that we have J ⊂ R(I, h). It follows from
the latter inclusion that {MB(hχI ) > 1} ⊂ R(I, h).

It can be easily seen that the following two lemmas are valid.

Lemma 3. Let I, J ∈ B2; h > 1. If either |pr1 J |1 ≥ h|pr1 J |1 or
| pr2 J |1 ≥ h| pr2 J |1, then h|J ∩ I| ≤ |I ∩R(I, h)|.

Lemma 4. Let I, J ∈ B2. If J ∩ I 6= ∅ and J\R(I, h) 6= ∅, then either
| pr1 J |1 ≥ | pr1 I|1, or | pr2 J |1 ≥ | pr2 I|1.

The following lemma is also valid.

Lemma 5. Let B ⊂ B2; h > 1, and let I1, . . . , Ik ∈ B2 be the equal
intervals. If

{MB(hχIm
) > 1} ⊂ R(Im, h) (m = 1, k),

R(Im, h) ∩R(Im′ , h) = ∅ (m 6= m′),

then

{

MB

(
k

∑

m=1

hχIm

)

> 1
}

⊂
k

⋃

m=1

R(Im, h). (2)



84 G. ONIANI AND T. ZEREKIDZE

Proof. Inequality (2) is equivalent to the following inequality: if

x 6∈
k
⋃

m=1
R(Im, h) and I ∈ B(x), then

1
|I|

∫

I

k
∑

m=1

hχIm
≤ 1. (3)

Let x 6∈
k
⋃

m=1
R(Im, h) and I ∈ B(x). Then we may have three cases. Let

us consider each of them separately.
(i) I intersects none of the intervals Im (m = 1, k); in this case the validity

of (3) is evident.
(ii) I intersects only one interval Im (m = 1, k).
Let In be the interval for which I ∩ In 6= ∅. x 6∈ R(Im, h), and therefore

by the condition of the lemma,

1
|I|

∫

I
hχIn

≤ MB(hχIn
)(x) ≤ 1,

from which, taking into account the equality I ∩ Im = ∅ (m 6= n), we
obtain (3).

(iii) I intersects more than one interval Im (m = 1, k).
It follows from the equality R(Im, h) ∩R(Im′ , h) = ∅ (m 6= m′) that

(2h + 1)Im ∩ Im′ = ∅ (4)

Denote P = {m ∈ [1, k] : I ∩ Im 6= ∅}. By (4) we have

I ∩ Im 6= ∅, I\(2h + 1)Im 6= ∅ (m ∈ P ),

which gives either

| pr1 I|1 ≥ h|pr1 Im|1 or | pr2 I|1 ≥ h| pr2 Im|1 (m ∈ P ).

Now according to Lemma 3 we can conclude that

h|I ∩ Im| ≤ |I ∩R(Im, h)| (m ∈ P ).

From the obtained inequality, taking into consideration the pairwise non-
intersection of R(Im, h) (m = 1, k), we write

∫

I

k
∑

m=1

hχIm
=

∑

m∈P

∫

I
hχIm

=
∑

m∈P

h|I ∩ Im| ≤
∑

m∈P

|I ∩R(Im, h)| ≤ |I|.

Thus inequality (3) and Lemma 5 are proved.
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Lemma 6. Let B ⊂ B2, h > 1, and for every m ∈ [1, k] let {Im,q}qm
q=1 ⊂

B2 be a family of equal intervals. If

{MB(hχIm,q
) > 1} ⊂ Rm,q

(Rm,q = R(Im,q, h); m = 1, k) q = 1, qm),
(5)

Rm,q ∩Rm′,q′ = ∅ (m, q) 6= (m, q′), (6)

|pr1 Im,1|1 ≥ h|pr1 Im+1,1|1,
| pr2 Im,1|1 ≥ h| pr2 Im+1,1|1,

(m = 1, k − 1) (7)

then
{

MB

(
k

∑

m=1

qm
∑

q=1

hχIm,q

)

> 2
}

⊂
k

⋃

m=1

qm
⋃

q=1

Rm,q.

Proof. The inclusion we have to prove is equivalent to the following inequal-

ity: if x 6∈
k
⋃

m=1

qm
⋃

q=1
Rm,q and I ∈ B(x), then

1
|I|

∫

I

k
∑

m=1

qm
∑

q=1

hχIm,q
≤ 2. (8)

Assume x 6∈
k
⋃

m=1

qm
⋃

q=1
Rm,q and I ∈ B(x). It is clear that (8) is fulfilled for

I ∩ Im,q = ∅ (m = 1, k, q = 1, qm). Denote otherwise n = min{m ∈ [1, k] :
∃Im,q(q = 1, qm), I ∩ Im,q 6= ∅} and consider first the case with 1 < n < k.

By virtue of Lemma 5 (see (5) and (6)), we write

MB

(
qn
∑

q=1

hχIn,q

)

(x) ≤ 1,

which implies
∫

I

qn
∑

q=1

hχIn,q
=

qn
∑

q=1

h|I ∩ In,q| ≤ |I|. (9)

For some q ∈ [1, qn] I ∩ In,q 6= ∅, it is clear that I\Rn,q 6= ∅. Therefore,
according to Lemma 4, we have either

| pr1 I|1 ≥ | pr1 In,q|1 or | pr2 I|1 ≥ | pr2 In,q|1.

Taking into account that the intervals {Im,q}qm
q=1 (m = 1, k) are equal

and using (7), we can write that either

| pr1 I|1 ≥ h|pr1 Im,q|1 (n < m ≤ k, q = 1, qm)
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or
| pr2 I|1 ≥ h| pr2 Im,q|1 (n < m ≤ k, q = 1, qm),

whence by Lemma 3 we get

h|I ∩ Im,q| ≤ |I ∩Rm,q| (n < m ≤ k; q = 1, qm). (10)

Clearly, I ∩ Im,q = ∅ (n ≤ m < n; q = 1, qm), so that by (6), (9), (10)
and 1 ≤ m < n we have

∫

I

k
∑

m=1

qm
∑

q=1

hχIm,q
=

k
∑

m=1

qm
∑

q=1

h|I ∩ Im,q| =
n−1
∑

m=1

qm
∑

q=1

h|I ∩ Im,q|+

+
qn
∑

q=1

h|I ∩ In,q|+
k

∑

m=n+1

qm
∑

q=1

h|I ∩ Im,q| =

= A1 + A2 + A3 ≤ 0 + |I|+
k

∑

m=n+1

qm
∑

q=1

|I ∩Rm,q| ≤ |I|+ |I| = 2|I|.

Inequality (8) can be proved in a simpler way for n = 1 or n = k, since
in these cases we do not have the terms A1 and A3.

For the basis B let us define the operator

M∗
B(f)(x) = sup

R∈B(x)

1
|R|

∣

∣

∣

∫

R
f
∣

∣

∣ (f ∈ Lloc(Rn), x ∈ Rn).

Lemma 7. Let the basis B differentiate the integrals of the functions
fk ∈ L(Rn) (k ∈ N),

∑∞
k=1 ‖fk‖1 < ∞. If

∞
∑

k=1

|{M∗
B(fk) > λk}|e < ∞,

where λk > 0 (k ∈ N),
∑∞

k=1 λk < ∞ and | · |e is an outer measure, then B
differentiates the integral of the function

∑∞
k=1 fk.

Note that since M∗
B(f) ≤ MB(f) (f ∈ L(Rn)), the conclusion of Lemma

7 will be the more so valid when the inequality
∑∞

k=1 |{MB(fk) > λk}|e < ∞
is fulfilled.

Proof. Let us note that:
(i)

∑∞
k=1 ‖fk‖1 < ∞; therefore the set A0 = {x ∈ Rn :

∑∞
k=1 |fk(x)| <

∞} is of measure 0;
(ii) B differentiates

∫

fk (k ∈ N), i.e., the sets Ak ={x∈Rn :DB(
∫

f, x)=
f(x)} (k ∈ N) have a complete measure on Rn.

(iii)
∑∞

k=1 |{M∗
B(fk) > λk}|e < ∞; therefore the set limk→∞{M∗

B(fk) >
λk} is of measure 0.
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It follows from (i)–(iii) that the set A =
∞
⋃

k=1
Ak\

(

limk→∞{M∗
B(fk) >

λk}
⋃

A0
)

is of complete measure. Let us show that for every x ∈ A we

have DB

(

∫ ∑∞
k=1 fk, x) =

∑∞
k=1 fk(x), which will prove the lemma.

Let x ∈ A and ε > 0. From the inclusion x ∈ A we can conclude that:
1) there is k0 ∈ N (k0 = k(x, ε)) such that x 6∈

∞
⋂

k=k0

{M∗
B(fk) > λk},

∑∞
k=k0

λk < ε/3 and
∑∞

k=k0
|fk(x)| < ε/3;

2) there is δ > 0 such that for every R ∈ B(x), diam R < δ
∣

∣

∣

∣

∣

1
|R|

∫

R

k0−1
∑

k=1

fk −
k0−1
∑

k=1

fk(x)

∣

∣

∣

∣

∣

< ε/3.

According to 1) and 2) we can write that for every R ∈ B(x), diam R < δ,
∣

∣

∣

∣

∣

1
|R|

∫

R

∞
∑

k=1

fk −
∞
∑

k=1

fk(x)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1
|R|

∫

R

k0−1
∑

k=1

fk −
k0−1
∑

k=1

fk(x)

∣

∣

∣

∣

∣

+

+
∞
∑

k=k0

1
|R|

∣

∣

∣

∫

R
fk

∣

∣

∣ +
∞
∑

k=k0

|fk(x)| < ε/3 +
∞
∑

k=k0

M∗
B(fk)(x) +

+ε/3 ≤ 2ε/3 +
∞
∑

k=k0

λk < ε.

Since ε > 0 is arbitrary, we conclude that the equality
DB

(

∫ ∑∞
k=1 fk, x

)

=
∑∞

k=1 fk(x) is valid.

Proof of Theorem 2. Let k ≥ 3. Choose hk such that 1
k ln hk

k ≥ 18 · 22k.
Let αk = 1

k ln hk
k /22(k+2)hk. Obviously, 0 < αk < 1.

For I ∈ B2 and h > 0 denote Q0(I, h) = (2h + 1)I. Let 2−m <
| pr1 Q0(I, h)|1 ≤ 2−m+1 and 2−m′

< |pr2 Q0(I, h)|1 ≤ 2−m′+1, where
m, m′ ∈ N. Denote by Q(I, h) the interval concentric with Q0(I, h), and
| pr1 Q(I, h)|1 = 2−m+1, |pr2 Q(I, h)|1 = 2−m′+1.

For the basis B denote by M (r)
B (r > 0) the operator

M (r)
B (f)(x) = sup

R∈B(x),diam R<r

1
|R|

∫

R
|f | (f ∈ L(Rn), x ∈ Rn).

B2 6∈ LR(B), since there is I ∈ B2 such that:
1) there is no J ∈ B, J ⊃ I for which |J | < 2khk|I|;
2) diam Q(I, 2khk) < 1/k.
Divide I2 into intervals equal to Q(I, 2khk) and denote them by Q1,q

(1 ≤ q ≤ q1). Take I1,q (1 ≤ q ≤ q1) equal to Tq(I), where Tq is a shift
translating Q(I, 2khk) to Q1,q.



88 G. ONIANI AND T. ZEREKIDZE

Let the families {I1,q}q1
q=1 . . . {Im,q}qm

q=1 consisting of equal intervals be
already constructed. Consider the sets

A1
m =

m
⋃

j=1

qj
⋃

q=1

{M (1/k)
B2

(hk, χIj,q
) > k},

A2
m =

m
⋃

j=1

qj
⋃

q=1

Rj,q (Rj,q = R(Ij,q, 2khk)).

If |A1
m| > 1 − 1

k
, then we stop the construction. If |A1

m| ≤ 1 − 1
k

, then

we shall construct the family {Im+1,q}qm+1
q=1 as follows:

Consider the set Am = I2 = I2\(A1
m ∪ A2

m) which, obviously, can be
represented as G1∪G2, where G1 is open and G2 consists of a finite number
of smooth closed lines. It is clear that there is δ ∈ (0, 1/k) such that if we
divide I2 into equal intervals {Jj} with diameters less than δ, then

∣

∣

∣

∣

∣

Am ∩
⋃

Jj⊂Am

Jj

∣

∣

∣

∣

∣

≥
(

1− αk

4

)

|Am|.

B2 6∈ LR(B), since there is I ∈ B2 such that:
1) there is no J ∈ B, J ⊃ I for which |J | ≤ 2khk|I|;
2) diam Q(I, 2khk) < δ;
3) | pr1 Im,1|1 ≥ 2khk| pr1 I|1 and | pr2 Im,1|1 ≥ 2khk| pr2 I|1.
Divide I2 into intervals equal to Q(I, 2khk). Denote the intervals included

in Am by Qm+1,q (1 ≤ q ≤ qm+1). Take Im+1,q (1 ≤ q ≤ qm+1) equal to
Tq(I), where Tq is a shift translating Q(I, 2khk) to Qm+1,q.

By our construction we obtain
∣

∣

∣

∣

∣

Am ∩
qm+1
⋃

q=1

Qm+1,q

∣

∣

∣

∣

∣

≥
(

1− αk

4

)

|Am|. (11)

By Lemma 1,- for q = 1, qm+1

{MB2(hkχIm+1,q
) > k} ⊂

(

2
hk

k
− 1

)

Im+1,q ⊂ Qm+1,q, (12)

∣

∣{MB2(hkχIm+1,q
) > k}

∣

∣ >
hk

k
ln

hk

k
|Im+1,q|. (13)

Since diam Qm+1,q < 1/k (q = 1, qm+1), because of (12) we have

{MB2(hkχIm+1,q
) > k} = {M (1/k)

B2
(hkχIm+1,q

) > k} (q = 1, qm+1). (14)
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It can be easily seen that (see (13), (14))
∣

∣{M (1/k)
B2

(hkχIm+1,q
) > k}

∣

∣ ≥ αk|Qm+1,q| (q = 1, qm+1),

which by (11) readily implies

∣

∣

∣

qm+1
⋃

q=1

{M (1/k)
B2

(hkχIm+1,q
) > k}

∣

∣

∣ ≥ αk

∣

∣

∣

qm+1
⋃

q=1

Qm+1,q

∣

∣

∣ ≥

≥ αk

(

1− αk

4

)

|Am| >
αk

2
|Am|. (15)

According to the construction and Lemma 2 we have for q = 1, qm+1

{MB(hkχIm+1,q
) > 1/2k} ⊂ Rm+1,q (Rm+1,q = R(Im+1,q, 2khk)).

On account of our choice of hk, because of (13) and (14) we write
∣

∣{M (1/k)
B2

(hkχIm+1,q
) > k}

∣

∣ > 2k|Rm+1,q| (q = 1, qm+1),

whence

∣

∣

∣

qm+1
⋃

q=1

{M (1/k)
B2

(hkχIm+1,q
) > k}

∣

∣

∣ > 2k
∣

∣

∣

qm+1
⋃

q=1

Rm+1,q

∣

∣

∣. (16)

Let us show that for sufficiently large mk the construction ceases, i.e.,
we shall have the inequality

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

{M (1/k)
B2

(hkχIm+1,q
) > k}

∣

∣

∣ > 1− 1
k

. (17)

Assume the contrary, i.e., |A1
m| ≤ 1− 1

k
(m ∈ N). Introduce the notation

A3
m =

qm
⋃

q=1

{M (1/k)
B2

(hkχIm,q
) > k},

A4
m =

qm
⋃

q=1

Rm,q.

(m ∈ N)

Clearly, (15) and (16) will be valid for all m ∈ N, and therefore we write

|A3
m+1| >

αk

2
|Am| =

αk

2

(

1−
m

∑

j=1

|A3
j ∪A4

j |
)

≥

≥ αk

2

(

1−
m

∑

j=1

(

1 +
1
2k

)

|A3
j |

)

≥ αk

2

(

1− 1
2k −

m
∑

j=1

|A3
j |

)

,
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which by the equality |A1
m| =

∑m
j=1 |A3

m| implies that |A1
m| > 1 − 1

2k−1 >

1 − 1
k

for sufficiently large m. From this contradiction we conclude that

(17) is valid.
Consider the function fk =

∑mk
m=1

∑qm
q=1 hkχIm,q

. Clearly, fk ∈ L(I2)
and fk ≥ 0. From (17) we get

∣

∣{M (1/k)
B2

(fk) > k}
∣

∣ > 1− 1
k

. (18)

From the construction we can easily see that 2khk and the families
{I1,q}q1

q=1, . . . , {Imk,q}
qmk
q=1 satisfy all the conditions of Lemma 6. Therefore

by Lemma 6 we write

{MB(fk) > 1/2k−1} = {MB(2kfk) > 2} =

=
{

MB

(
mk
∑

m=1

qm
∑

q=1

2khkχIm,q

)

> 2
}

⊂
mk
⋃

m=1

qm
⋃

q=1

Rm,q. (19)

Obviously, (16) is fulfilled for all m ∈ [1,mk − 1], so that taking the
construction into account, we have

2k

∣

∣

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

Rm,q

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

{M (1/k)
B2

(hkχIm,q
) > k}

∣

∣

∣

∣

∣

≤ 1. (20)

Due to (19) and (20) we write
∣

∣

∣{MB(fk) > 1/2k−1}
∣

∣

∣ <
1
2k . (21)

It can be easily seen that

hk

k
ln

hk

k

∣

∣

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

Im,q

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

{M (1/k)
B2

(hkχIm,q
) > k}

∣

∣

∣

∣

∣

≤ 1,

Hence, due to our choice of hk, we obtain

‖fk‖1 = hk

∣

∣

∣

∣

∣

mk
⋃

m=1

qm
⋃

q=1

Im,q

∣

∣

∣

∣

∣

< 1
/1

k
ln

hk

k
<

1
2k . (22)

Consider the function f =
∑∞

k=3 fk. Clearly, f ∈ L(I2) (see (22)) and
f ≥ 0.

It is obvious that if x ∈ lim
k→∞

{M (1/k)
B2

(fk) > k}, then DB2

(

∫ ∑∞
k=3 fk, x

)

=

∞. Because of (18) lim
k→∞

{M (1/k)
B2

(fk) > k} has a complete measure on I2.

Therefore the latter equality holds almost everywhere on I2.
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It is clear that B differentiates
∫

fk (k ∈ N). Moreover, owing to (21)
we get

∑∞
k=3

∣

∣{MB(fk) > 1/2k−1}
∣

∣ <
∑∞

k=3
1
2k < ∞, which by Lemma 7

implies that B differentiates
∫

f .
After making some technical changes in the proof of Theorem 2 we can

obtain the following generalization.

Theorem 3. Let B ⊂ B2 be a TI-basis. If B2 is not locally regular
with respect to B then for any function f ∈ L\L ln+ L(I2), f ≥ 0, there
is a Lebesgue measure-preserving and invertible mapping ω : R2 → R2,
{x : ω(x) 6= x} ⊂ I2 such that

DB2

(

∫

f ◦ ω, x
)

= ∞ a.e. on I2,

DB

(

∫

f ◦ ω, x
)

= (f ◦ ω)(x) a.e. on I2.

To prove the implication (c) ⇒ (b) let us show the validity of

Lemma 8. Let B ⊂ B2 be a TI-basis. If B2 is locally regular with
respect to B, then for every f ∈ L(R2)

∣

∣{M (r)
B2

(f) > λ}
∣

∣ ≤ 25
∣

∣

∣

{

M (cr)
B (f) >

λ
4c

}∣

∣

∣ (λ > 0, 0 < r < δ),

where δ and c are the constants from the definition of local regularity of B2
with respect to B.

Proof. Note first that if I and I ′ (I ⊂ I ′) are the one-dimensional intervals
and I∗ is either the left or the right half of the interval I, then for the point
y ∈ I ′ the set E = {z ∈ R : (I ′ + z − y) ⊃ I∗} possesses the following
properties:

1) E is an interval;
2) E ∩ I ′ 6= ∅;

3) |E|1 = |I ′|1 −
1
2
|I|1 ≥

1
2
|I ′|1.

It follows from these properties that
4) 5E ⊃ I ′

is likewise valid.
Let f ∈ L(R2). Denote by P the set of all two-dimensional intervals

E ∈ B2 such that E ⊂
{

M (cr)
B (f) >

λ
4c

}

and show the inclusion

{M (r)
B2

(f) > λ} ⊂
⋃

E∈P

5E (λ > 0, 0 < r < δ). (23)
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Let x ∈ {M (r)
B2

(f) > λ} (λ > 0, 0 < r < δ). Then there is I ∈ B2(x)
such that diam I < r and

1
|I|

∫

I
|f | > λ. (24)

Since B2 ∈ LR(B), there is an interval I ′ from B such that I ⊂ I ′ and
|I ′| ≤ c|I|. Then it is obvious that diam I ′ ≤ c diam I < cr. Let y ∈ I ′

be the point for which I ′ ∈ B(y). Divide the interval I into four equal
intervals. Because of (24) the integral mean will be greater than λ at least
on one of these intervals. Denote this interval by I∗. Thus

1
|I∗|

∫

I∗
|f | > λ. (25)

Consider the set E = {z ∈ R2 : (I ′+z−y) ⊃ I∗}. By virtue of the above
discussion we can easily note that

1) E ∈ B2;
2) E ∩ I ′ 6= ∅;

3) |E| ≥ 1
4
|I ′|;

4) 5E ⊃ I ′.
Since x ∈ I ⊂ I ′, then to prove (23) it suffices to show that E ∈ P . Let

z ∈ E. Then (I ′ + z − y) ⊃ I∗. Since B is the TI-basis and I ′ ∈ B(y), we
have (I ′ + z − y) ∈ B(z). Moreover, owing to (25), we have

1
|I ′ + z − y|

∫

I′+z−y
|f | ≥ 1

|I ′|

∫

I∗
|f | ≥ 1

c|I|

∫

I∗
|f | = 1

c4|I∗|

∫

I∗
|f | > λ

4c
,

from which by the inequality diam(I ′ + z − y) < cr, we conclude that

z ∈
{

M (cr)
B (f) >

λ
4c

}

. Hence E ∈ P . Thus inclusion (23) is proved.

Now, using (23) and Lemma 1 from [2], we will have

∣

∣{M (r)
B2

(f) > λ}
∣

∣ ≤
∣

∣

∣

⋃

E∈P

5E
∣

∣

∣ ≤ 25
∣

∣

∣

⋃

E∈P

E
∣

∣

∣ ≤ 25
∣

∣

∣

{

M (cr)
B (f) >

λ
4c

}∣

∣

∣

for λ > 0, 0 < r < δ.

The basis B is said to be regular if there is a constant c < ∞ such that for
every R ∈ B there exists a cubic interval Q with the following properties:
Q ⊃ R, |Q| ≤ c|R|.

According to the well-known Lebesgue theorem on differentiability of
integrals, the regular basis B differentiates L, i.e., DB

( ∫

f, x
)

= f(x) a.e.
on Rn for every f ∈ L(Rn).

We shall say that the basis B possesses property (E) if for every f ∈
L(Rn), DB

( ∫

f, x
)

≤ f(x) ≤ DB
( ∫

f, x
)

a.e. on Rn.
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Obviously, the basis B, containing a regular subbasis, possesses the prop-
erty (E).

It directly follows from the relation B2 ∈ LR(B) that B contains a regular
subbasis, and hence possesses property (E). Now, to prove the implication
(b) ⇒ (c), it suffices to consider the following assertion.

Lemma 9. Let B be a subbasis of B2 with property (E). Suppose that
there exist positive constants c1, c2, c3 and δ such that for every f ∈ L(R2),

∣

∣{M (r)
B2

(f) > λ}
∣

∣ ≤ c1

∣

∣

∣

{

M (c2r)
B (f) >

λ
c3

}∣

∣

∣ (λ > 0, 0 < r < δ).

Then for every f ∈ L(R2), f ≥ 0,

DB

(

∫

f, x
)

= DB2

(
∫

f, x
)

and DB

(

∫

f, x
)

= DB2

(

∫

f, x
)

,

a.e. on R2.

The proof of Lemma 9 is based on the well-known Besicovitch theorem
on possible values of upper and lower derivative numbers (see [1], Ch.IV,
§3) and is carried out analogously to the proof of Theorem 1 from [2].

3. On a Possibility of Extending Theorem 1 to More General
Bases

It should be noted that beyond the scope of TI-bases Theorem 1 becomes
invalid. Moreover, even for bases which are similar enough to TI-bases
the local regularity of B2 with respect to B is insufficient for the equality
F+

B = F+
B2

to be fulfilled.
A basis B will be called a TI∗-basis if for every x ∈ Rn, R ∈ B(x) and

y ∈ Rn there is a translation T such that T (R) ∈ B(y).
The following theorem is valid.

Theorem 4. There is a TI∗-basis B ⊂ B2 with the properties:
1) B2 is locally regular with respect to B, and B(O) = B2(O);
2) there is a function f ∈ L(I2), f ≥ 0 such that

DB2

(

∫

f, x
)

= ∞ a.e. on I2,

DB

(

∫

f, x
)

= f(x) a.e. on I2.

Proof. Consider the sequences αk ↑ ∞, αk > 0 and hk ↑ ∞, hk > 10 with
the properties

∞
∑

k=1

αk

hk
< ∞,

∞
∑

k=1

ln hk

hk
= ∞. (26)
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Let qk = 2mk , where mk ∈ N (k ∈ N) and mk ↑ ∞. For every k,
we divide I2 into q2

k equal square interval and denote them by I2
k,q. The

length of square intervals sides will be denoted by ∆k. For every I2
k,q let us

consider the square interval Ik,q concentric with I2
k,q having the side length

δk = ∆k/(2hk + 1). We shall assume qk ↑ ∞ so that δk > ∆k+1 (k ∈ N).
Let fk = sup{αkhkχIk,q

: q = 1, q2
k} (k ∈ N) and f =

∑∞
k=1 fk. Clearly,

f ≥ 0. It can be easily checked that

‖fk‖1 = αkhk

∣

∣

∣

q2
k

⋃

q=1

Ik,q

∣

∣

∣ = αkhk

q2
k

∑

q=1

1
(2hk + 1)2

|I2
k,q| <

αk

hk
,

which according to (26) implies

‖f‖1 ≤
∞
∑

k=1

‖fk‖1 <
∞
∑

k=1

αk

hk
< ∞,

i.e., f ∈ L(I2).
By Lemma 1 for k ∈ N, q = 1, q2

k we have

{MB2(αkhkχIk,q
) > αk} ⊂ (2hk + 1)Ik,q = I2

k,q, (27)

and
∣

∣{MB2(αkhkχIk,q
) > αk}

∣

∣ ≥ hk ln hk|Ik,q|.

Thus we write

∣

∣

∣

∣

∣

q2
k

⋃

q=1

{MB2(αkhkχIk,q
) > αk}

∣

∣

∣

∣

∣

=
q2

k
∑

q=1

∣

∣{MB2(αkhkχIk,q
) > αk}

∣

∣ ≥

≥
q2

k
∑

q=1

hk ln hk|Ik,q| =
q2

k
∑

q=1

hk ln hk
|I2

k,q|
(2hk + 1)2

>
lnhk

9hk
(28)

for k ∈ N.
For every k ∈ N let us consider those intervals I2

k+1,q (q = 1, q2
k+1) which

are contained in
q2

k
⋃

q=1
{MB2(αkhkχIk,q

) > αk}. Denote their union by Ok. It

can be easily seen that if {qk} tends rapidly enough to ∞, then

|Ok| ≥
1
2

∣

∣

∣

∣

∣

q2
k

⋃

q=1

{MB2(αkhkχIk,q
) > αk}

∣

∣

∣

∣

∣

(k ∈ N). (29)
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Using the property of dyadic intervals, we can see that {Ok} is the se-
quence of independent sets, i.e., for every n ≥ 2 and for arbitrary pairwise
different natural numbers k1, k2 . . . , kn,

∣

∣

∣

n
⋂

m=1

Okm

∣

∣

∣ =
n

∏

m=1

|Okm |.

Owing to (26), (28), and (29),
∑∞

k=1 |Ok| >
∑∞

k=1
1
2

lnhk

9hk
= ∞. Using

now Borel–Kantelly’s lemma, we get

lim
k→∞

Ok, has a complete measure in I2. (30)

From (27) we have for k ∈ N, q = 1, q2
k

{MB2(αkhkχIk,q
) > αk} = {M (∆k)

B2
(αkhkχIk,q

) > αk},

which for k ∈ N implies

Ok ⊂
q2

k
⋃

q=1

{MB2(αkhkχIk,q
) > αk} =

=
q2

k
⋃

q=1

{M (∆k)
B2

(αkhkχIk,q
) > αk} ⊂ {M (∆k)

B2
(fk) > αk}.

Because of (30), from the latter inclusion we obtain

lim
k→∞

{M (∆k)
B2

(fk) > αk} has a complete measure in I2. (31)

Since αk ↑ ∞, ∆k ↓ 0 (k → ∞), we can easily see that if x ∈
lim

k→∞
{M (∆k)

B2
(fk) > αk}, then DB2

( ∫

f, x
)

= ∞. By virtue of (31) we

conclude that the latter equality holds a.e. on I2.
Assume k to be fixed. For every Ik,q (q = 1, q2

k) let us consider the
intervals J1

k,q (pr1 J1
k,q = 3pr1 Ik,q, pr2 J1

k,q = (0, 1)) and J2
k,q (pr1 J2

k,q =

(0, 1), pr2 J2
k,q = 3 pr2 Ik,q). Denote Gi

k =
q2

k
⋃

q=1
J i

k,q (i = 1, 2), Gk = G1
k ∪G2

k.

It can be easily verified (see (26)) that
∑∞

k=1 |Gk| < ∞ which implies that
lim

k→∞
Gk has zero measure.

Determine now an unknown basis B. If x ∈
(

lim
k→∞

Gk

)

∪ Q2 ∪ (R2\I2)

(Q is a set of rational numbers), then we put B(x) = B2(x). For x ∈
I2\

(

lim
k→∞

Gk ∪ Q2
)

choose B(x) such that if dI is the length of the lesser
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side of the interval I 3 x, and dI 6∈
⋃

k≥k(x)
[δk, ∆k/2] (for x 6∈ lim

k→∞
Gk, k(x)

is the number with the property x 6∈ Gk for k ≥ k(x)), then I ∈ B(x), while
if dI ∈ [δk,∆k/2] for some k ≥ k(x), then I ∈ B(x) iff either I ∩G1

k = ∅ or
I ∩G2

k = ∅.
It can be easily verified that for every I ∈ B2 and x ∈ R2 there is a

translation T , T (I) ∈ B(x); this implies that B is the TI∗-basis. The local
regularity of B2 with respect to B is also easily checked. By proving the
inclusion f ∈ F+

B the proof of the theorem will be completed.
Denote Ak =

{

x ∈ Rn : DB
( ∫

fk, x
)

= fk(x)
}

(k ∈ N). Clearly, Ak (k ∈

N) has a complete measure on R2. Denote A =
(

I2 ∩
∞
⋂

k=1
Ak

)

\
(

lim
k→∞

Gk ∪

Q2
)

. Since f(x) = 0 for x 6∈ I2, B differentiates
∫

f on R2\I2; A is the set

of a complete measure on I2. Therefore to prove the inclusion f ∈ F+
B , it

suffices to show the differentiability of
∫

f with respect to B on the set A.

Let x ∈ A and ε > 0. Find δ > 0 for which
∣

∣

∣(1/|I|)
∫

I f −f(x)
∣

∣

∣ < ε when

I ∈ B(x), diam I < δ. Consider k′(x) ≥ k(x) for which
∑

k≥k′(x)

16‖fk‖1 < ε/2. (32)

It is clear that
∑∞

k=1 fk(x) =
∑k′(x)−1

k=1 fk(x), and B differentiates
∫ ∑k′(x)−1

k=1 fk at the point x. This implies that there is δ ∈ (0, ∆k′(x)/2)
such that

∣

∣

∣

1
|I|

∫

I

k′(x)−1
∑

k=1

fk −
k′(x)−1

∑

k=1

fk(x)
∣

∣

∣ < ε/2, for I ∈ B(x), diam I < δ. (33)

Consider an arbitrary interval I ∈ B(x), diam I < δ. For kI ∈ N let
∆KI+1/2 ≤ dI ≤ ∆kI /2. Clearly, kI ≥ k′(x). By virtue of the inequality
∆k+1 < δk (k ∈ N) and the condition x 6∈ Gk (k ≥ k(x)), we have I ∩
supp fk = ∅ for k′(x) ≤ k ≤ kI − 1, which gives

∫

I
fk = 0 for k′(x) ≤ k ≤ kI − 1. (34)

Analogously,
∫

I fkI = 0 if dI < δkI , while if δkI ≤ dI ≤ ∆kI /2, then
∫

I fkI = 0 because I ∩ supp fk = ∅ by construction of the basis B. Thus
∫

I
fkI = 0. (35)

Let is show that

|I ∩ supp fk| ≤ 16|I| | supp fk| for k ≥ kI + 1. (36)
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To this end it is sufficient to consider the following easily verifiable facts:
1) dI ≥ ∆k/2 for k ≥ kI + 1;
2) let Pk be a set of vertices of the squares I2

k,q (q = 1, q2
k). If the vertices

of the interval J ⊂ I2 belong to the set Pk, then |J∩supp fk| = |I|| supp fk|;
3) for every interval J ⊂ I2, dJ ≥ ∆k/2 there is an interval J ′ ⊃ J ,

|J ′| ≤ 16|J | with vertices at the points of the set Pk.
By (36) we can write that for k ≥ kI + 1,

∫

I
fk = αkhk|I ∩ supp fk| ≤ 16αkhk|I| | supp fk| = 16|I| ‖fk‖1,

which, owing to (32) and the inequality kI ≥ k′(x), implies

1
|I|

∫

I

∑

k≥kI+1

fk =
1
|I|

∑

k≥kI+1

∫

I
fk ≤

1
|I|

∑

k≥kI+1

16|I| ‖fk‖1 < ε/2. (37)

By virtue of relations (33)–(35) and (37) (it should also be noted that
fk(x) = 0 for k ≥ k′(x)), we have

∣

∣

∣

∣

∣

1
|I|

∫

I

∞
∑

k=1

fk −
∞
∑

k=1

fk(x)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1
|I|

∫

I

k′(x)−1
∑

k=1

fk −
k′(x)−1

∑

k=1

fk(x)

∣

∣

∣

∣

∣

+

+
1
|I|

∫

I

kI
∑

k=k′(x)

fk +
1
|I|

∫

I

∑

k≥kI+1

fk +
∑

k≥k′(x)

fk(x) <
ε
2

+ 0 +
ε
2

+ 0 = ε.

Due to the arbitrariness of x ∈ A and ε > 0, we conclude that DB

(

∫

f, x
)

=

f(x) for every x ∈ A.

4. Remarks

(1) Let us consider one application of the obtained results. Let BZ be
the basis in R2 for which BZ(x) (x ∈ R2) consists of all intervals I 3 x,
D2

I ≤ dI ≤ DI ≤ 1, where DI and dI are the lengths, respectively, of the
greater and of the lesser side of I. This basis was introduced by Zygmund
and it was he who initiated (see [1], Ch. VI, §4) the study of the differential
properties of BZ .

Morion showed (see [1], Appendix IV) that for the integral classes BZ
behaves like B2, i.e., BZ does not differentiate a wider integral class than
L ln+ L.

A question arises: does there exist in general a function whose integral
does not differentiate B2 and differentiates BZ? From the above proven
theorems the answer is positive.

BZ is the TI-basis. The fact that B2 6∈ LR(Bz) is easily verified. By
Theorem 1 this implies that the strict inclusion F+

B2
⊂ F+

BZ
holds. Moreover,
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Theorem 3 implies that by perturbing the values ω of any function f ∈
L\L ln+ L(I2), f ≥ 0, one can get the function f ◦ ω with the following
properties: DB2

( ∫

f ◦ ω, x
)

= ∞ a.e. on I2, and BZ differentiates
∫

f ◦ ω.
Thus, for the integral classes the bases B2 and BZ behave similarly, while

for individual nonnegative functions the basis BZ behaves better than the
basis B2.

(2) The bases B and B′ are said to be positive equivalent (B +⇔ B′) if
for every f ∈ L(Rn), f ≥ 0, DB

( ∫

f, x
)

= DB′
( ∫

f, x
)

and DB

( ∫

f, x
)

=
DB′

( ∫

f, x
)

a.e. on Rn (i.e., condition (b) in Theorem 1 means that the
bases B and B′ are positive equivalent).

B is said to be a Busemann–Feller type basis (BF -basis) if for any R ∈ B
and x ∈ R we have R ∈ B(x).

We shall say that B exactly differentiates ϕ(L) (writing B ∈ D(ϕ(L)) if
B differentiates ϕ(L) and does not differentiate a wider integral class than
ϕ(L).

For integral classes the behavior of B ⊂ B2, BF , TI-bases was studied
by Stokoloc in [3], where he introduced the property (S) and proved that
if B possesses the property (S), then B ∈ D(L ln+ L), and if B does not
possess this property, then B ∈ D(L).

One can easily see that ignoring the BF property, this result remains
valid. Thus, for the integral classes B ⊂ B2, the TI-basis behaves like B2
or B1 (B1 is the basis formed of square intervals). The BZ-basis illustrates
that an analogous fact does not hold for nonnegative individual functions
and, generally speaking, if we combine Stokoloc’s assertion and Theorem 1,
then we shall have:

1) if B2 ∈ LR(B), then B +⇔ B2;
2) if B2 6∈ LR(B) and B possesses the property (S), then B ∈ D(L ln+ L)

and F+
B2
⊂ F+

B (strictly);
3) if B does not possess the property (S), then B ∈ D(L).
(3) Let B ⊂ B2 be a TI-basis. Consider the intervals I ∈ B of the type

I = (0, x1) × (0, x2). Denote the set of points (x1, x2) by AB . The set AB

indicates how rich the family B is.
One can easily prove the following criterion of local regularity of B2 with

respect to B : (B2 ∈ LR(B)) ⇔ (∃m, k0 ∈ N : AB ∩ ([1/mk, 1/mk−1) ×
[1/mk′ , 1/mk′−1)) 6= ∅ for k, k′ > k0).

(4) The basis B is said to be invariant (HI-basis) with respect to homo-
theties if for every x ∈ Rn and every homothety H centered at x we have
B(x) = {H(R) : R ∈ B(x)}.

If B is locally regular with respect to B
′
and, moreover, if δ is equal to

∞, then B is called regular with respect to B
′
.

For the basis B ⊂ B2 define the sets: R1,B = {r > 1 : ∃I ∈ B, |pr1 I|1 =
r| pr2 I|1}, R2,B = {r > 1 : ∃I ∈ B, | pr2 I|1 = r| pr1 I|1}.
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For the basis B ⊂ B2 which is simultaneously the TI- and HI basis
one can easily verify that (B2 ∈ LR(B)) ⇔ (B2 is regular with respect to
B) ≡↔ (∃m ∈ N : Ri,B ∩ [mk,mm+1) 6= ∅, k ∈ N, i = 1, 2).

(5) Let B2 (B2 = B2(Rn)) be the basis in Rn for which B2(x) (x ∈ Rn)
consists of all n-dimensional intervals containing the point x.

Theorems 1–4 are also valid for B ⊂ B2(Rn) (n ≥ 3), TI-bases. Proofs
for the n-dimensional case are similar to those for the two-dimensional case.

(6) Let δ1
k ↓ 0, . . . , δn

k ↓ 0 (k →∞). Denote ∆i
k,m = [(m−1)δi

k, mδi
k) (i =

1, n; k,m ∈ N). Let B be the basis in Rn for which B(x) =
{ ∏n

i=1 ∆i
ki,mi :

∏n
i=1 ∆i

ki,mi 3 x; ki,mi ∈ N). Such bases are sometimes called nets. We
call them N -bases.

Let B be the N -basis in Rn (n ≥ 2). Denote by BT the least TI-basis
containing B. For B the following analogue of Theorem 1 is valid: the
following conditions are equivalent: (i) F+

B = F+
B2

; (ii) B +⇔ B2; (iii) B2 is
locally regular with respect to BT .

Obviously, (ii)⇒(i), the implication (i)⇒(iii) follows directly from Theo-
rem 1. Thus it remains only to show that (iii)⇒(i). To this end, note that
using Lemma 1 of [2] one can easily obtain the inequality

|{M (r)
BT

(f) > λ}| ≤ 3n
∣

∣

∣

{

M (r)
B (f) >

λ
2n

}∣

∣

∣ (f ∈ L(Rn); λ, r > 0).

From this and Lemma 5 we get the upper bound of the distribution func-
tion of M (r)

B2
(f) by means of the distribution function of M (cr)

B (f). It easily
follows from the relation B2 ∈ LR(B) that B contains a regular subba-
sis. Hence B possesses the property (E). Next, we obtain the implication
(iii)⇒(ii) from Lemma 6.

Note that for δi
k = 1/2k (i = 1, n; k ∈ N) the relation B +⇔ B2 was proved

earlier in [2].
(7) The basis B constructed in Theorem 4 is not a BF -basis, which is

not a casual fact. In particular, the following assertion is valid: let B ⊂ B2

(B2 = B2(Rn)) be a BF -basis and let B2 ∈ LR(B). Then B +⇔ B2.
To prove the above assertion we have to consider the following facts which

easily follow from the Busemann-Feller property of the basis B and from
the relation B2 ∈ LR(B: (i) B contains a regular subbasis; (ii) for every
f ∈ L(Rn),

|{M (r)
B2

(f) > λ}| ≤
∣

∣

∣

{

M (cr)
B (f) >

λ
c

}∣

∣

∣ (λ > 0, 0 < r < δ),

where c and δ are the constants from the definition of local regularity of B2

with respect to B.
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From (i) we have that B possesses the property (E). Now, taking into
account (ii) and using Lemma 6, we can conclude that the relation B +⇔ B2

is valid.
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