ON DIFFERENTIAL BASES FORMED OF INTERVALS

G. ONIANI AND T. ZEREKIDZE

In memory of young mathematician A. Berekashvili

ABSTRACT. Translation invariant subbases of the differential basis B_2 (formed of all intervals), which differentiates the same class of all nonnegative functions as B_2 does, are described. A possibility for extending the results obtained to bases of more general type is discussed.

1. Definitions and Notation

A mapping B defined on \mathbb{R}^n is said to be a differential basis in \mathbb{R}^n if, for every $x \in \mathbb{R}^n$, B(x) is a family of open bounded sets containing the point x such that there exists a sequence $\{R_k\} \subset B(x)$, diam $R_k \to 0$ $(k \to \infty)$.

For $f \in L_{loc}(\mathbb{R}^n)$ the numbers

$$\overline{D}_B\left(\int f, x\right) = \lim_{\text{diam } R \to 0, R \in B(x)} \frac{1}{|R|} \int_R f$$

and

$$\underline{D}_B\left(\int f, x\right) = \lim_{\text{diam } R \to 0, R \in B(x)} \frac{1}{|R|} \int_R f$$

are said to be respectively the upper and the lower derivative of the integral of f at the point x. If the upper and the lower derivative coincide, then their common value is called the derivative of the integral of f at the point x, and we denote it by $D_B(\int f, x)$. They say that the basis B differentiates the integral of f if $D_B(\int f, x) = f(x)$ for almost all x. The set of those functions $f \in L_{loc}(\mathbb{R}^n), f \geq 0$, whose integrals are differentiable with respect to the basis B will be denoted by F_B^+ . Under M_B we mean the maximal operator

$$M_B(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} \int_R |f| \quad (f \in L_{loc}(\mathbb{R}^n), \ x \in \mathbb{R}^n),$$

81

1072-947X/97/0100-008112.50/0 © 1997 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 28A15.

Key words and phrases. Differential basis, translation invariant bases, interval, locally regularity.

corresponding to the basis B. It will be assumed here that $\overline{B} = \bigcup_{x \in \mathbb{R}^n} B(x)$.

B is said to be a subbasis of *B'* (writing $B \subset B'$), if $B(x) \subset B'(x)$ $(x \in \mathbb{R}^n)$. The basis *B* is said to be translation invariant or the *TI*-basis, if $B(x) = \{x + R : R \in B(O)\}$ $(x \in \mathbb{R}^n)$ (here *O* is the origin in \mathbb{R}^n). Let us have the bases *B* and *B'*. We shall say that the family \overline{B} is locally regular with respect to the family $\overline{B'}$ (writing $\overline{B} \in LR(\overline{B'})$), if there exist $\delta > 0$ and c > 0 such that for any $R \in \overline{B}$, diam $R < \delta$, there is $R' \in \overline{B'}$ such that $R \subset R'$ and |R'| < c|R|.

We shall agree that $I^n = [0,1]^n$ and $f \in L(I^n)$, if $f \in L(\mathbb{R}^n)$ and $\operatorname{supp} f \subset I^n$.

2. TI-BASES FORMED OF INTERVALS

Let B_2 be the basis in \mathbb{R}^2 for which $B_2(x)$ $(x \in \mathbb{R}^2)$ consists of all twodimensional intervals containing the point x.

The theorem below characterizes $B \subset B_2$, TI-bases for which $F_B^+ = F_{B_2}^+$.

Theorem 1. Let $B \subset B_2$ be a TI-basis. Then the following conditions are equivalent:

- (a) $F_B^+ = F_{B_2}^+;$ (b) for every $f \in L(\mathbb{R}^2), f \ge 0$, a.e. on \mathbb{R}^2 $\overline{D}_B\left(\int f, x\right) = \overline{D}_{B_2}\left(\int f, x\right) \text{ and } \underline{D}_B\left(\int f, x\right) = \underline{D}_{B_2}\left(\int f, x\right);$
- (c) \overline{B}_2 is locally regular with respect to \overline{B} .

The implication $(b) \Rightarrow (a)$ is evident. Therefore to prove Theorem 1 it suffices to show that $(a) \Rightarrow (c)$ and $(c) \Rightarrow (b)$.

The implication $(a) \Rightarrow (c)$ follows from the following assertion.

Theorem 2. Let $B \subset B_2$ be a TI-basis. If \overline{B}_2 is not locally regular with respect to \overline{B} , then there exists a function $f \in L(I^2)$, $f \ge 0$, such that

$$\overline{D}_{B_2}\left(\int f, x\right) = \infty \quad a.e. \quad on \quad I^2,$$
$$D_B\left(\int f, x\right) = f(x) \quad a.e. \quad on \quad I^2.$$

Before proving Theorem 2 we shall give several lemmas.

For the interval I we denote by αI ($\alpha > 0$) the interval H(I), where H is the homothety with the coefficient α whose center is the center of I.

Lemma 1. Let $I \in \overline{B}_2$ and h > 1. Then $\{M_{B_2}(h\chi_I) > 1\} \subset (2h+1)I$ and $|\{M_{B_2}(h\chi_I) > 1\}| \ge h(\ln h)|I|$. The validity of this lemma can be shown by a direct checking.

Projections of I onto the ox^1 - and ox^2 -axes will be denoted by $pr_1 I$ and $pr_2 I$, respectively. For $I \in \overline{B}_2$ and h > 0 we have

$$\begin{aligned} R_1(I,h) &= (2h+1) \operatorname{pr}_1 I \times 3 \operatorname{pr}_2 I, \\ R_2(I,h) &= 3 \operatorname{pr}_1 I \times (2h+1) \operatorname{pr}_2 I, \\ R(I,h) &= R_1(I,h) \cup R_2(I,h). \end{aligned}$$

It is clear that $|R(I,h)| \leq 18h|I|$.

Lemma 2. Let $B \subset B_2$ be a TI-basis; h > 1. Suppose that for $I \in \overline{B}_2$ there is no $J \in \overline{B}$, $J \supset I$, such that $|J| \leq h|I|$. Then $\{M_B(h\chi_I) > 1\} \subset R(I,h)$.

Proof. Let $J \in \overline{B}$ and $(1/|J|) \int_J h\chi_I > 1$. From the condition of the lemma we can easily find that either

$$|pr_1J|_1 < |pr_1I|_1 \text{ or } |pr_2J|_1 < |pr_2I|_1,$$
 (1)

where $|\cdot|_1$ is the Lebesgue measure on \mathbb{R} .

By Lemma 1, $J \subset (2h+1)I$, which by virtue of (1) implies that either $J \subset R_1(I,h)$ or $J \subset R_2(I,h)$, so that we have $J \subset R(I,h)$. It follows from the latter inclusion that $\{M_B(h\chi_I) > 1\} \subset R(I,h)$. \Box

It can be easily seen that the following two lemmas are valid.

Lemma 3. Let $I, J \in \overline{B}_2$; h > 1. If either $|\operatorname{pr}_1 J|_1 \ge h |\operatorname{pr}_1 J|_1$ or $|\operatorname{pr}_2 J|_1 \ge h |\operatorname{pr}_2 J|_1$, then $h|J \cap I| \le |I \cap R(I,h)|$.

Lemma 4. Let $I, J \in \overline{B}_2$. If $J \cap I \neq \emptyset$ and $J \setminus R(I, h) \neq \emptyset$, then either $|\operatorname{pr}_1 J|_1 \geq |\operatorname{pr}_1 I|_1$, or $|\operatorname{pr}_2 J|_1 \geq |\operatorname{pr}_2 I|_1$.

The following lemma is also valid.

Lemma 5. Let $B \subset B_2$; h > 1, and let $I_1, \ldots, I_k \in \overline{B}_2$ be the equal intervals. If

$$\{ M_B(h\chi_{I_m}) > 1 \} \subset R(I_m, h) \quad (m = \overline{1, k}),$$

$$R(I_m, h) \cap R(I_{m'}, h) = \varnothing \quad (m \neq m'),$$

then

$$\left\{M_B\left(\sum_{m=1}^k h\chi_{I_m}\right) > 1\right\} \subset \bigcup_{m=1}^k R(I_m, h).$$
(2)

Proof. Inequality (2) is equivalent to the following inequality: if $x \notin \bigcup_{m=1}^{k} R(I_m, h)$ and $I \in B(x)$, then

$$\frac{1}{|I|} \int_{I} \sum_{m=1}^{k} h \chi_{I_m} \le 1.$$
(3)

Let $x \notin \bigcup_{m=1}^{k} R(I_m, h)$ and $I \in B(x)$. Then we may have three cases. Let us consider each of them separately.

(i) I intersects none of the intervals I_m $(m = \overline{1, k})$; in this case the validity of (3) is evident.

(ii) I intersects only one interval I_m $(m = \overline{1, k})$.

Let I_n be the interval for which $I \cap I_n \neq \emptyset$. $x \notin R(I_m, h)$, and therefore by the condition of the lemma,

$$\frac{1}{|I|} \int_{I} h\chi_{I_n} \le M_B(h\chi_{I_n})(x) \le 1,$$

from which, taking into account the equality $I \cap I_m = \emptyset \ (m \neq n)$, we obtain (3).

(iii) I intersects more than one interval I_m $(m = \overline{1, k})$.

It follows from the equality $R(I_m, h) \cap R(I_{m'}, h) = \emptyset \ (m \neq m')$ that

$$(2h+1)I_m \cap I_{m'} = \emptyset \tag{4}$$

Denote $P = \{m \in [1, k] : I \cap I_m \neq \emptyset\}$. By (4) we have

$$I \cap I_m \neq \emptyset, \quad I \setminus (2h+1)I_m \neq \emptyset \quad (m \in P),$$

which gives either

$$|\operatorname{pr}_{1} I|_{1} \ge h |\operatorname{pr}_{1} I_{m}|_{1} \text{ or } |\operatorname{pr}_{2} I|_{1} \ge h |\operatorname{pr}_{2} I_{m}|_{1} (m \in P).$$

Now according to Lemma 3 we can conclude that

 $h|I \cap I_m| \le |I \cap R(I_m, h)| \ (m \in P).$

From the obtained inequality, taking into consideration the pairwise nonintersection of $R(I_m, h)$ $(m = \overline{1, k})$, we write

$$\int_{I} \sum_{m=1}^{k} h \chi_{I_{m}} = \sum_{m \in P} \int_{I} h \chi_{I_{m}} = \sum_{m \in P} h |I \cap I_{m}| \le \sum_{m \in P} |I \cap R(I_{m}, h)| \le |I|.$$

Thus inequality (3) and Lemma 5 are proved. \Box

Lemma 6. Let $B \subset B_2$, h > 1, and for every $m \in [1, k]$ let $\{I_{m,q}\}_{q=1}^{q_m} \subset \overline{B}_2$ be a family of equal intervals. If

$$\{M_B(h\chi_{I_{m,q}}) > 1\} \subset R_{m,q}$$

$$(5)$$

$$(R_{m,q} = R(I_{m,q}, h); m = \overline{1, k}) \quad q = \overline{1, q_m}),$$

$$R_{m,q} \cap R_{m',q'} = \emptyset \quad (m,q) \neq (m,q').$$
(5)

$$R_{m,q} \cap R_{m',q'} = \varnothing \quad (m,q) \neq (m,q'), \tag{6}$$

$$|\operatorname{pr}_{1} I_{m,1}|_{1} \ge h |\operatorname{pr}_{1} I_{m+1,1}|_{1}, |\operatorname{pr}_{2} I_{m,1}|_{1} \ge h |\operatorname{pr}_{2} I_{m+1,1}|_{1}, \qquad (m = \overline{1, k-1})$$
(7)

then

$$\left\{M_B\left(\sum_{m=1}^k\sum_{q=1}^{q_m}h\chi_{I_{m,q}}\right)>2\right\}\subset\bigcup_{m=1}^k\bigcup_{q=1}^{q_m}R_{m,q}.$$

Proof. The inclusion we have to prove is equivalent to the following inequality: if $x \notin \bigcup_{m=1}^{k} \bigcup_{q=1}^{q_m} R_{m,q}$ and $I \in B(x)$, then

$$\frac{1}{|I|} \int_{I} \sum_{m=1}^{k} \sum_{q=1}^{q_m} h \chi_{I_{m,q}} \le 2.$$
(8)

Assume $x \notin \bigcup_{m=1}^{k} \bigcup_{q=1}^{q_m} R_{m,q}$ and $I \in B(x)$. It is clear that (8) is fulfilled for $I \cap I_{m,q} = \emptyset$ $(m = \overline{1, k}, q = \overline{1, q_m})$. Denote otherwise $n = \min\{m \in [1, k] : \exists I_{m,q}(q = \overline{1, q_m}), I \cap I_{m,q} \neq \emptyset\}$ and consider first the case with 1 < n < k. By virtue of Lemma 5 (see (5) and (6)), we write

$$M_B\Big(\sum_{q=1}^{q_n} h\chi_{I_{n,q}}\Big)(x) \le 1,$$

which implies

$$\int_{I} \sum_{q=1}^{q_{n}} h\chi_{I_{n,q}} = \sum_{q=1}^{q_{n}} h|I \cap I_{n,q}| \le |I|.$$
(9)

For some $q \in [1, q_n]$ $I \cap I_{n,q} \neq \emptyset$, it is clear that $I \setminus R_{n,q} \neq \emptyset$. Therefore, according to Lemma 4, we have either

$$|\operatorname{pr}_1 I|_1 \ge |\operatorname{pr}_1 I_{n,q}|_1 \text{ or } |\operatorname{pr}_2 I|_1 \ge |\operatorname{pr}_2 I_{n,q}|_1.$$

Taking into account that the intervals $\{I_{m,q}\}_{q=1}^{q_m}$ $(m = \overline{1,k})$ are equal and using (7), we can write that either

$$|\operatorname{pr}_{1} I|_{1} \ge h |\operatorname{pr}_{1} I_{m,q}|_{1} \quad (n < m \le k, \ q = 1, q_{m})$$

or

86

$$\operatorname{pr}_2 I|_1 \ge h|\operatorname{pr}_2 I_{m,q}|_1 \quad (n < m \le k, \ q = \overline{1, q_m}).$$

whence by Lemma 3 we get

$$h|I \cap I_{m,q}| \le |I \cap R_{m,q}| \quad (n < m \le k; \ q = \overline{1, q_m}).$$

$$\tag{10}$$

Clearly, $I \cap I_{m,q} = \emptyset$ $(n \le m < n; q = \overline{1, q_m})$, so that by (6), (9), (10) and $1 \le m < n$ we have

$$\int_{I} \sum_{m=1}^{k} \sum_{q=1}^{q_m} h\chi_{I_{m,q}} = \sum_{m=1}^{k} \sum_{q=1}^{q_m} h|I \cap I_{m,q}| = \sum_{m=1}^{n-1} \sum_{q=1}^{q_m} h|I \cap I_{m,q}| + \sum_{q=1}^{q_m} h|I \cap I_{m,q}| = A_1 + A_2 + A_3 \le 0 + |I| + \sum_{m=n+1}^{k} \sum_{q=1}^{q_m} |I \cap R_{m,q}| \le |I| + |I| = 2|I|.$$

Inequality (8) can be proved in a simpler way for n = 1 or n = k, since in these cases we do not have the terms A_1 and A_3 . \square

For the basis B let us define the operator

$$M_B^*(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} \left| \int_R f \right| \quad (f \in L_{loc}(\mathbb{R}^n), x \in \mathbb{R}^n).$$

Lemma 7. Let the basis B differentiate the integrals of the functions $f_k \in L(\mathbb{R}^n) \ (k \in \mathbb{N}), \ \sum_{k=1}^{\infty} \|f_k\|_1 < \infty.$ If

$$\sum_{k=1}^{\infty} |\{M_B^*(f_k) > \lambda_k\}|_e < \infty$$

where $\lambda_k > 0$ $(k \in \mathbb{N})$, $\sum_{k=1}^{\infty} \lambda_k < \infty$ and $|\cdot|_e$ is an outer measure, then B differentiates the integral of the function $\sum_{k=1}^{\infty} f_k$. Note that since $M_B^*(f) \leq M_B(f)$ $(f \in L(\mathbb{R}^n))$, the conclusion of Lemma 7 will be the more so valid when the inequality $\sum_{k=1}^{\infty} |\{M_B(f_k) > \lambda_k\}|_e < \infty$ is fulfilled.

Proof. Let us note that:

(i) $\sum_{k=1}^{\infty} \|f_k\|_1 < \infty$; therefore the set $A_0 = \{x \in \mathbb{R}^n : \sum_{k=1}^{\infty} |f_k(x)| < 0\}$ ∞ } is of measure 0;

(ii) B differentiates $\int f_k \ (k \in \mathbb{N})$, i.e., the sets $A_k = \{x \in \mathbb{R}^n : D_B(\int f, x) = x \in \mathbb{R}^n : D_B(\int f, x) = x \in \mathbb{R}^n \}$ f(x) $\{k \in \mathbb{N}\}$ have a complete measure on \mathbb{R}^n .

(iii) $\sum_{k=1}^{\infty} |\{M_B^*(f_k) > \lambda_k\}|_e < \infty$; therefore the set $\overline{\lim}_{k\to\infty} \{M_B^*(f_k) > 0\}$ λ_k is of measure 0.

It follows from (i)–(iii) that the set $A = \bigcup_{k=1}^{\infty} A_k \setminus (\overline{\lim}_{k \to \infty} \{M_B^*(f_k) >$ $\lambda_k \} \bigcup A_0$ is of complete measure. Let us show that for every $x \in A$ we have $D_B\left(\int \sum_{k=1}^{\infty} f_k(x)\right) = \sum_{k=1}^{\infty} f_k(x)$, which will prove the lemma. Let $x \in A$ and $\varepsilon > 0$. From the inclusion $x \in A$ we can conclude that:

1) there is $k_0 \in \mathbb{N}$ $(k_0 = k(x,\varepsilon))$ such that $x \notin \bigcap_{k=k_0}^{\infty} \{M_B^*(f_k) > \lambda_k\},\$ $\begin{array}{l}\sum_{k=k_0}^{\infty} \lambda_k < \varepsilon/3 \text{ and } \sum_{k=k_0}^{\infty} |f_k(x)| < \varepsilon/3;\\ 2) \text{ there is } \delta > 0 \text{ such that for every } R \in B(x), \text{ diam } R < \delta\end{array}$

$$\left|\frac{1}{|R|} \int_R \sum_{k=1}^{k_0-1} f_k - \sum_{k=1}^{k_0-1} f_k(x)\right| < \varepsilon/3.$$

According to 1) and 2) we can write that for every $R \in B(x)$, diam $R < \delta$,

$$\begin{aligned} \left| \frac{1}{|R|} \int_R \sum_{k=1}^{\infty} f_k - \sum_{k=1}^{\infty} f_k(x) \right| &\leq \left| \frac{1}{|R|} \int_R \sum_{k=1}^{k_0-1} f_k - \sum_{k=1}^{k_0-1} f_k(x) \right| + \\ &+ \sum_{k=k_0}^{\infty} \frac{1}{|R|} \left| \int_R f_k \right| + \sum_{k=k_0}^{\infty} |f_k(x)| < \varepsilon/3 + \sum_{k=k_0}^{\infty} M_B^*(f_k)(x) + \\ &+ \varepsilon/3 \leq 2\varepsilon/3 + \sum_{k=k_0}^{\infty} \lambda_k < \varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, we conclude that the equality $D_B\left(\int \sum_{k=1}^{\infty} f_k(x)\right) = \sum_{k=1}^{\infty} f_k(x)$ is valid. \Box

Proof of Theorem 2. Let $k \ge 3$. Choose h_k such that $\frac{1}{k} \ln \frac{h_k}{k} \ge 18 \cdot 2^{2k}$. Let $\alpha_k = \frac{1}{k} \ln \frac{h_k}{k} / 2^{2(k+2)} h_k$. Obviously, $0 < \alpha_k < 1$.

For $I \in \overline{B}_2$ and h > 0 denote $Q^0(I,h) = (2h+1)I$. Let $2^{-m} < |\operatorname{pr}_1 Q^0(I,h)|_1 \le 2^{-m+1}$ and $2^{-m'} < |\operatorname{pr}_2 Q^0(I,h)|_1 \le 2^{-m'+1}$, where $m, m' \in \mathbb{N}$. Denote by Q(I, h) the interval concentric with $Q^0(I, h)$, and $|\operatorname{pr}_1 Q(I,h)|_1 = 2^{-m+1}, |\operatorname{pr}_2 Q(I,h)|_1 = 2^{-m'+1}.$

For the basis B denote by $M_B^{(r)}$ (r > 0) the operator

$$M_B^{(r)}(f)(x) = \sup_{R \in B(x), \text{diam } R < r} \frac{1}{|R|} \int_R |f| \ (f \in L(\mathbb{R}^n), \ x \in \mathbb{R}^n).$$

 $\overline{B}_2 \notin LR(\overline{B})$, since there is $I \in \overline{B}_2$ such that:

1) there is no $J \in \overline{B}$, $J \supset I$ for which $|J| < 2^k h_k |I|$;

2) diam $Q(I, 2^k h_k) < 1/k$.

Divide I^2 into intervals equal to $Q(I, 2^k h_k)$ and denote them by $Q_{1,q}$ $(1 \leq q \leq q_1)$. Take $I_{1,q}$ $(1 \leq q \leq q_1)$ equal to $T_q(I)$, where T_q is a shift translating $Q(I, 2^k h_k)$ to $Q_{1,q}$. Let the families $\{I_{1,q}\}_{q=1}^{q_1} \dots \{I_{m,q}\}_{q=1}^{q_m}$ consisting of equal intervals be already constructed. Consider the sets

$$A_m^1 = \bigcup_{j=1}^m \bigcup_{q_j}^{q_j} \{ M_{B_2}^{(1/k)}(h_k, \chi_{I_{j,q}}) > k \},$$

$$A_m^2 = \bigcup_{j=1}^m \bigcup_{q_j}^{q_j} R_{j,q} \ (R_{j,q} = R(I_{j,q}, 2^k h_k)).$$

If $|A_m^1| > 1 - \frac{1}{k}$, then we stop the construction. If $|A_m^1| \le 1 - \frac{1}{k}$, then we shall construct the family $\{I_{m+1,q}\}_{q=1}^{q_{m+1}}$ as follows:

Consider the set $A_m = I^2 = I^2 \setminus (A_m^1 \cup A_m^2)$ which, obviously, can be represented as $G_1 \cup G_2$, where G_1 is open and G_2 consists of a finite number of smooth closed lines. It is clear that there is $\delta \in (0, 1/k)$ such that if we divide I^2 into equal intervals $\{J_i\}$ with diameters less than δ , then

$$\left|A_m \cap \bigcup_{J_j \subset A_m} J_j\right| \ge \left(1 - \frac{\alpha_k}{4}\right) |A_m|.$$

 $\begin{array}{l} \overline{B}_2 \notin LR(\overline{B}), \text{ since there is } I \in \overline{B}_2 \text{ such that:} \\ 1) \text{ there is no } J \in \overline{B}, \ J \supset I \text{ for which } |J| \leq 2^k h_k |I|; \\ 2) \text{ diam } Q(I, 2^k h_k) < \delta; \\ 3) |\operatorname{pr}_1 I_{m,1}|_1 \geq 2^k h_k |\operatorname{pr}_1 I|_1 \text{ and } |\operatorname{pr}_2 I_{m,1}|_1 \geq 2^k h_k |\operatorname{pr}_2 I|_1. \end{array}$

Divide I^2 into intervals equal to $Q(I, 2^k h_k)$. Denote the intervals included in A_m by $Q_{m+1,q}$ $(1 \le q \le q_{m+1})$. Take $I_{m+1,q}$ $(1 \le q \le q_{m+1})$ equal to $T_q(I)$, where T_q is a shift translating $Q(I, 2^k h_k)$ to $Q_{m+1,q}$.

By our construction we obtain

$$\left|A_m \cap \bigcup_{q=1}^{q_{m+1}} Q_{m+1,q}\right| \ge \left(1 - \frac{\alpha_k}{4}\right) |A_m|. \tag{11}$$

By Lemma 1,- for $q = \overline{1, q_{m+1}}$

$$\{M_{B_2}(h_k\chi_{I_{m+1,q}}) > k\} \subset \left(2\frac{h_k}{k} - 1\right)I_{m+1,q} \subset Q_{m+1,q}, \tag{12}$$

$$\left| \{ M_{B_2}(h_k \chi_{I_{m+1,q}}) > k \} \right| > \frac{h_k}{k} \ln \frac{h_k}{k} |I_{m+1,q}|.$$
(13)

Since diam $Q_{m+1,q} < 1/k$ $(q = \overline{1, q_{m+1}})$, because of (12) we have

$$\{M_{B_2}(h_k\chi_{I_{m+1,q}}) > k\} = \{M_{B_2}^{(1/k)}(h_k\chi_{I_{m+1,q}}) > k\} \quad (q = \overline{1, q_{m+1}}).$$
(14)

It can be easily seen that (see (13), (14))

$$\left| \{ M_{B_2}^{(1/k)}(h_k \chi_{I_{m+1,q}}) > k \} \right| \ge \alpha_k |Q_{m+1,q}| \quad (q = \overline{1, q_{m+1}})$$

which by (11) readily implies

$$\left| \bigcup_{q=1}^{q_{m+1}} \{ M_{B_2}^{(1/k)}(h_k \chi_{I_{m+1,q}}) > k \} \right| \ge \alpha_k \left| \bigcup_{q=1}^{q_{m+1}} Q_{m+1,q} \right| \ge \\ \ge \alpha_k \left(1 - \frac{\alpha_k}{4} \right) |A_m| > \frac{\alpha_k}{2} |A_m|.$$
(15)

According to the construction and Lemma 2 we have for $q = \overline{1, q_{m+1}}$

$$\{M_B(h_k\chi_{I_{m+1,q}}) > 1/2^k\} \subset R_{m+1,q} \ (R_{m+1,q} = R(I_{m+1,q}, 2^k h_k)).$$

On account of our choice of h_k , because of (13) and (14) we write

$$\left| \{ M_{B_2}^{(1/k)}(h_k \chi_{I_{m+1,q}}) > k \} \right| > 2^k |R_{m+1,q}| \quad (q = \overline{1, q_{m+1}}),$$

whence

$$\bigcup_{q=1}^{q_{m+1}} \left\{ M_{B_2}^{(1/k)}(h_k \chi_{I_{m+1,q}}) > k \right\} \Big| > 2^k \Big| \bigcup_{q=1}^{q_{m+1}} R_{m+1,q} \Big|.$$
(16)

Let us show that for sufficiently large mk the construction ceases, i.e., we shall have the inequality

$$\left|\bigcup_{m=1}^{m_k} \bigcup_{q=1}^{q_m} \{M_{B_2}^{(1/k)}(h_k \chi_{I_{m+1,q}}) > k\}\right| > 1 - \frac{1}{k}.$$
(17)

Assume the contrary, i.e., $|A_m^1| \leq 1-\frac{1}{k} \ (m \in \mathbb{N}).$ Introduce the notation

$$A_{m}^{3} = \bigcup_{q=1}^{q_{m}} \{ M_{B_{2}}^{(1/k)}(h_{k}\chi_{I_{m,q}}) > k \},$$

$$A_{m}^{4} = \bigcup_{q=1}^{q_{m}} R_{m,q}.$$
 (m \in \mathbb{N})

Clearly, (15) and (16) will be valid for all $m \in \mathbb{N}$, and therefore we write

$$\begin{split} |A_{m+1}^{3}| &> \frac{\alpha_{k}}{2} |A_{m}| = \frac{\alpha_{k}}{2} \left(1 - \sum_{j=1}^{m} |A_{j}^{3} \cup A_{j}^{4}| \right) \geq \\ &\geq \frac{\alpha_{k}}{2} \left(1 - \sum_{j=1}^{m} \left(1 + \frac{1}{2^{k}} \right) |A_{j}^{3}| \right) \geq \frac{\alpha_{k}}{2} \left(1 - \frac{1}{2^{k}} - \sum_{j=1}^{m} |A_{j}^{3}| \right), \end{split}$$

which by the equality $|A_m^1| = \sum_{j=1}^m |A_m^3|$ implies that $|A_m^1| > 1 - \frac{1}{2^{k-1}} > 1 - \frac{1}{k}$ for sufficiently large m. From this contradiction we conclude that (17) is valid.

Consider the function $f_k = \sum_{m=1}^{m_k} \sum_{q=1}^{q_m} h_k \chi_{I_{m,q}}$. Clearly, $f_k \in L(I^2)$ and $f_k \ge 0$. From (17) we get

$$\left| \left\{ M_{B_2}^{(1/k)}(f_k) > k \right\} \right| > 1 - \frac{1}{k}.$$
 (18)

From the construction we can easily see that $2^k h_k$ and the families $\{I_{1,q}\}_{q=1}^{q_1}, \ldots, \{I_{m_k,q}\}_{q=1}^{q_{m_k}}$ satisfy all the conditions of Lemma 6. Therefore by Lemma 6 we write

$$\{M_B(f_k) > 1/2^{k-1}\} = \{M_B(2^k f_k) > 2\} =$$
$$= \{M_B\Big(\sum_{m=1}^{m_k} \sum_{q=1}^{q_m} 2^k h_k \chi_{I_{m,q}}\Big) > 2\} \subset \bigcup_{m=1}^{m_k} \bigcup_{q=1}^{q_m} R_{m,q}.$$
(19)

Obviously, (16) is fulfilled for all $m \in [1, m_k - 1]$, so that taking the construction into account, we have

$$2^{k} \left| \bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} R_{m,q} \right| < \left| \bigcup_{m=1}^{m_{k}} \bigcup_{q=1}^{q_{m}} \{ M_{B_{2}}^{(1/k)}(h_{k}\chi_{I_{m,q}}) > k \} \right| \le 1.$$
 (20)

Due to (19) and (20) we write

$$\left| \{ M_B(f_k) > 1/2^{k-1} \} \right| < \frac{1}{2^k}.$$
 (21)

It can be easily seen that

$$\frac{h_k}{k} \ln \frac{h_k}{k} \left| \bigcup_{m=1}^{m_k} \bigcup_{q=1}^{q_m} I_{m,q} \right| < \left| \bigcup_{m=1}^{m_k} \bigcup_{q=1}^{q_m} \{ M_{B_2}^{(1/k)}(h_k \chi_{I_{m,q}}) > k \} \right| \le 1,$$

Hence, due to our choice of h_k , we obtain

$$\|f_k\|_1 = h_k \left| \bigcup_{m=1}^{m_k} \bigcup_{q=1}^{q_m} I_{m,q} \right| < 1 / \frac{1}{k} \ln \frac{h_k}{k} < \frac{1}{2^k}.$$
 (22)

Consider the function $f = \sum_{k=3}^{\infty} f_k$. Clearly, $f \in L(I^2)$ (see (22)) and $f \ge 0$.

It is obvious that if $x \in \overline{\lim_{k \to \infty}} \{M_{B_2}^{(1/k)}(f_k) > k\}$, then $\overline{D}_{B_2} \left(\int \sum_{k=3}^{\infty} f_k, x\right) = \infty$. Because of (18) $\overline{\lim_{k \to \infty}} \{M_{B_2}^{(1/k)}(f_k) > k\}$ has a complete measure on I^2 . Therefore the latter equality holds almost everywhere on I^2 . It is clear that B differentiates $\int f_k \ (k \in \mathbb{N})$. Moreover, owing to (21) we get $\sum_{k=3}^{\infty} |\{M_B(f_k) > 1/2^{k-1}\}| < \sum_{k=3}^{\infty} \frac{1}{2^k} < \infty$, which by Lemma 7 implies that B differentiates $\int f$. \Box

After making some technical changes in the proof of Theorem 2 we can obtain the following generalization.

Theorem 3. Let $B \subset B_2$ be a TI-basis. If \overline{B}_2 is not locally regular with respect to \overline{B} then for any function $f \in L \setminus L \ln^+ L(I^2)$, $f \ge 0$, there is a Lebesgue measure-preserving and invertible mapping $\omega : \mathbb{R}^2 \to \mathbb{R}^2$, $\{x : \omega(x) \neq x\} \subset I^2$ such that

$$\overline{D}_{B_2}\left(\int f \circ \omega, x\right) = \infty \quad a.e. \quad on \quad I^2,$$
$$D_B\left(\int f \circ \omega, x\right) = (f \circ \omega)(x) \quad a.e. \quad on \quad I^2$$

To prove the implication $(c) \Rightarrow (b)$ let us show the validity of

Lemma 8. Let $B \subset B_2$ be a TI-basis. If \overline{B}_2 is locally regular with respect to \overline{B} , then for every $f \in L(\mathbb{R}^2)$

$$\left| \{ M_{B_2}^{(r)}(f) > \lambda \} \right| \le 25 \left| \left\{ M_B^{(cr)}(f) > \frac{\lambda}{4c} \right\} \right| \ (\lambda > 0, 0 < r < \delta)$$

where δ and c are the constants from the definition of local regularity of \overline{B}_2 with respect to \overline{B} .

Proof. Note first that if I and I' $(I \subset I')$ are the one-dimensional intervals and I^* is either the left or the right half of the interval I, then for the point $y \in I'$ the set $E = \{z \in \mathbb{R} : (I' + z - y) \supset I^*\}$ possesses the following properties:

- 1) E is an interval;
- 2) $E \cap I' \neq \emptyset;$

B)
$$|E|_1 = |I'|_1 - \frac{1}{2}|I|_1 \ge \frac{1}{2}|I'|_1.$$

It follows from these properties that

1

4) $5E \supset I'$

is likewise valid.

Let $f \in L(\mathbb{R}^2)$. Denote by P the set of all two-dimensional intervals $E \in \overline{B}_2$ such that $E \subset \left\{ M_B^{(cr)}(f) > \frac{\lambda}{4c} \right\}$ and show the inclusion

$$\{M_{B_2}^{(r)}(f) > \lambda\} \subset \bigcup_{E \in P} 5E \ (\lambda > 0, \ 0 < r < \delta).$$

$$(23)$$

Let $x \in \{M_{B_2}^{(r)}(f) > \lambda\}$ $(\lambda > 0, 0 < r < \delta)$. Then there is $I \in B_2(x)$ such that diam I < r and

$$\frac{1}{|I|} \int_{I} |f| > \lambda. \tag{24}$$

Since $\overline{B}_2 \in LR(\overline{B})$, there is an interval I' from \overline{B} such that $I \subset I'$ and $|I'| \leq c|I|$. Then it is obvious that diam $I' \leq c \operatorname{diam} I < cr$. Let $y \in I'$ be the point for which $I' \in B(y)$. Divide the interval I into four equal intervals. Because of (24) the integral mean will be greater than λ at least on one of these intervals. Denote this interval by I^* . Thus

$$\frac{1}{|I^*|} \int_{I^*} |f| > \lambda.$$
 (25)

Consider the set $E = \{z \in \mathbb{R}^2 : (I' + z - y) \supset I^*\}$. By virtue of the above discussion we can easily note that

1) $E \in \overline{B}_2;$ 2) $E \cap I' \neq \emptyset;$ 3) $|E| \ge \frac{1}{4}|I'|;$ 4) $5E \supset I'.$

Since $x \in I \subset I'$, then to prove (23) it suffices to show that $E \in P$. Let $z \in E$. Then $(I' + z - y) \supset I^*$. Since B is the TI-basis and $I' \in B(y)$, we have $(I' + z - y) \in B(z)$. Moreover, owing to (25), we have

$$\frac{1}{|I'+z-y|} \int_{I'+z-y} |f| \geq \frac{1}{|I'|} \int_{I^*} |f| \geq \frac{1}{c|I|} \int_{I^*} |f| = \frac{1}{c4|I^*|} \int_{I^*} |f| > \frac{\lambda}{4c},$$

from which by the inequality diam(I' + z - y) < cr, we conclude that $z \in \left\{ M_B^{(cr)}(f) > \frac{\lambda}{4c} \right\}.$ Hence $E \in P$. Thus inclusion (23) is proved. Now, using (23) and Lemma 1 from [2], we will have

$$\left|\left\{M_{B_2}^{(r)}(f) > \lambda\right\}\right| \le \left|\bigcup_{E \in P} 5E\right| \le 25 \left|\bigcup_{E \in P} E\right| \le 25 \left|\left\{M_B^{(cr)}(f) > \frac{\lambda}{4c}\right\}\right|$$

for $\lambda > 0, 0 < r < \delta$. \Box

The basis B is said to be regular if there is a constant $c < \infty$ such that for every $R \in \overline{B}$ there exists a cubic interval Q with the following properties: $Q \supset R, |Q| \leq c|R|.$

According to the well-known Lebesgue theorem on differentiability of integrals, the regular basis B differentiates L, i.e., $D_B(\int f(x) = f(x)$ a.e. on \mathbb{R}^n for every $f \in L(\mathbb{R}^n)$.

We shall say that the basis B possesses property (E) if for every $f \in$ $L(\mathbb{R}^n), \underline{D}_B(\int f, x) \leq f(x) \leq \overline{D}_B(\int f, x)$ a.e. on \mathbb{R}^n .

Obviously, the basis B, containing a regular subbasis, possesses the property (E).

It directly follows from the relation $\overline{B}_2 \in LR(\overline{B})$ that B contains a regular subbasis, and hence possesses property (E). Now, to prove the implication $(b) \Rightarrow (c)$, it suffices to consider the following assertion.

Lemma 9. Let B be a subbasis of B_2 with property (E). Suppose that there exist positive constants c_1, c_2, c_3 and δ such that for every $f \in L(\mathbb{R}^2)$,

$$\left| \{ M_{B_2}^{(r)}(f) > \lambda \} \right| \le c_1 \left| \left\{ M_B^{(c_2 r)}(f) > \frac{\lambda}{c_3} \right\} \right| \ (\lambda > 0, \ 0 < r < \delta).$$

Then for every $f \in L(\mathbb{R}^2), f \ge 0$,

$$\underline{D}_B\left(\int f, x\right) = \underline{D}_{B_2}\left(\int f, x\right) \text{ and } \overline{D}_B\left(\int f, x\right) = \overline{D}_{B_2}\left(\int f, x\right),$$

a.e. on \mathbb{R}^2 .

The proof of Lemma 9 is based on the well-known Besicovitch theorem on possible values of upper and lower derivative numbers (see [1], Ch.IV, §3) and is carried out analogously to the proof of Theorem 1 from [2].

3. On a Possibility of Extending Theorem 1 to More General Bases

It should be noted that beyond the scope of TI-bases Theorem 1 becomes invalid. Moreover, even for bases which are similar enough to TI-bases the local regularity of \overline{B}_2 with respect to \overline{B} is insufficient for the equality $F_B^+ = F_{B_2}^+$ to be fulfilled.

A basis B will be called a TI^* -basis if for every $x \in \mathbb{R}^n$, $R \in B(x)$ and $y \in \mathbb{R}^n$ there is a translation T such that $T(R) \in B(y)$.

The following theorem is valid.

Theorem 4. There is a TI^* -basis $B \subset B_2$ with the properties:

1) \overline{B}_2 is locally regular with respect to \overline{B} , and $B(O) = B_2(O)$;

2) there is a function $f \in L(I^2)$, $f \ge 0$ such that

$$\overline{D}_{B_2}\left(\int f, x\right) = \infty \quad a.e. \quad on \quad I^2,$$
$$D_B\left(\int f, x\right) = f(x) \quad a.e. \quad on \quad I^2.$$

Proof. Consider the sequences $\alpha_k \uparrow \infty$, $\alpha_k > 0$ and $h_k \uparrow \infty$, $h_k > 10$ with the properties

$$\sum_{k=1}^{\infty} \frac{\alpha_k}{h_k} < \infty, \quad \sum_{k=1}^{\infty} \frac{\ln h_k}{h_k} = \infty.$$
(26)

Let $q_k = 2^{m_k}$, where $m_k \in \mathbb{N}$ $(k \in \mathbb{N})$ and $m_k \uparrow \infty$. For every k, we divide I^2 into q_k^2 equal square interval and denote them by $I_{k,q}^2$. The length of square intervals sides will be denoted by Δ_k . For every $I_{k,q}^2$ let us consider the square interval $I_{k,q}$ concentric with $I_{k,q}^2$ having the side length $\delta_k = \Delta_k/(2h_k + 1)$. We shall assume $q_k \uparrow \infty$ so that $\delta_k > \Delta_{k+1}$ $(k \in \mathbb{N})$.

Let $f_k = \sup\{\alpha_k h_k \chi_{I_{k,q}} : q = \overline{1, q_k^2}\}$ $(k \in \mathbb{N})$ and $f = \sum_{k=1}^{\infty} f_k$. Clearly, $f \ge 0$. It can be easily checked that

$$\|f_k\|_1 = \alpha_k h_k \Big| \bigcup_{q=1}^{q_k^2} I_{k,q} \Big| = \alpha_k h_k \sum_{q=1}^{q_k^2} \frac{1}{(2h_k + 1)^2} |I_{k,q}^2| < \frac{\alpha_k}{h_k},$$

which according to (26) implies

$$||f||_1 \le \sum_{k=1}^{\infty} ||f_k||_1 < \sum_{k=1}^{\infty} \frac{\alpha_k}{h_k} < \infty,$$

i.e., $f \in L(I^2)$.

By Lemma 1 for $k \in \mathbb{N}$, $q = \overline{1, q_k^2}$ we have

$$\{M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k\} \subset (2h_k + 1)I_{k,q} = I_{k,q}^2,$$
(27)

and

$$\left\{M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k\right\} \ge h_k \ln h_k |I_{k,q}|.$$

Thus we write

$$\left| \bigcup_{q=1}^{q_k^2} \{ M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k \} \right| = \sum_{q=1}^{q_k^2} \left| \{ M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k \} \right| \ge \sum_{q=1}^{q_k^2} h_k \ln h_k |I_{k,q}| = \sum_{q=1}^{q_k^2} h_k \ln h_k \frac{|I_{k,q}^2|}{(2h_k + 1)^2} > \frac{\ln h_k}{9h_k}$$
(28)

for $k \in \mathbb{N}$.

For every $k \in \mathbb{N}$ let us consider those intervals $I_{k+1,q}^2$ $(q = \overline{1, q_{k+1}^2})$ which are contained in $\bigcup_{q=1}^{q_k^2} \{M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k\}$. Denote their union by O_k . It can be easily seen that if $\{q_k\}$ tends rapidly enough to ∞ , then

$$|O_k| \ge \frac{1}{2} \left| \bigcup_{q=1}^{q_k^2} \{ M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k \} \right| \quad (k \in \mathbb{N}).$$
(29)

Using the property of dyadic intervals, we can see that $\{O_k\}$ is the sequence of independent sets, i.e., for every $n \ge 2$ and for arbitrary pairwise different natural numbers k_1, k_2, \ldots, k_n ,

$$\left|\bigcap_{m=1}^{n} O_{k_m}\right| = \prod_{m=1}^{n} |O_{k_m}|.$$

Owing to (26), (28), and (29), $\sum_{k=1}^{\infty} |O_k| > \sum_{k=1}^{\infty} \frac{1}{2} \frac{\ln h_k}{9h_k} = \infty$. Using now Borel–Kantelly's lemma, we get

$$\overline{\lim_{k \to \infty}} O_k, \text{ has a complete measure in } I^2.$$
(30)

From (27) we have for $k \in \mathbb{N}$, $q = \overline{1, q_k^2}$

$$\{M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k\} = \{M_{B_2}^{(\Delta_k)}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k\},\$$

which for $k \in \mathbb{N}$ implies

$$O_k \subset \bigcup_{q=1}^{q_k^2} \{ M_{B_2}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k \} =$$
$$= \bigcup_{q=1}^{q_k^2} \{ M_{B_2}^{(\Delta_k)}(\alpha_k h_k \chi_{I_{k,q}}) > \alpha_k \} \subset \{ M_{B_2}^{(\Delta_k)}(f_k) > \alpha_k \}.$$

Because of (30), from the latter inclusion we obtain

 $\overline{\lim_{k \to \infty}} \{ M_{B_2}^{(\Delta_k)}(f_k) > \alpha_k \} \text{ has a complete measure in } I^2.$ (31)

Since $\alpha_k \uparrow \infty$, $\Delta_k \downarrow 0 \ (k \to \infty)$, we can easily see that if $x \in \lim_{k\to\infty} \{M_{B_2}^{(\Delta_k)}(f_k) > \alpha_k\}$, then $\overline{D}_{B_2}(\int f, x) = \infty$. By virtue of (31) we conclude that the latter equality holds a.e. on I^2 .

Assume k to be fixed. For every $I_{k,q}$ $(q = \overline{1,q_k^2})$ let us consider the intervals $J_{k,q}^1$ $(\operatorname{pr}_1 J_{k,q}^1 = 3 \operatorname{pr}_1 I_{k,q}, \operatorname{pr}_2 J_{k,q}^1 = (0,1))$ and $J_{k,q}^2$ $(\operatorname{pr}_1 J_{k,q}^2 = (0,1), \operatorname{pr}_2 J_{k,q}^2 = 3 \operatorname{pr}_2 I_{k,q})$. Denote $G_k^i = \bigcup_{q=1}^{q_k^2} J_{k,q}^i$ $(i = \overline{1,2}), G_k = G_k^1 \cup G_k^2$. It can be easily verified (see (26)) that $\sum_{k=1}^{\infty} |G_k| < \infty$ which implies that $\lim_{k \to \infty} G_k$ has zero measure.

Determine now an unknown basis B. If $x \in \left(\overline{\lim_{k \to \infty}} G_k\right) \cup \mathbb{Q}^2 \cup (\mathbb{R}^2 \setminus I^2)$ (\mathbb{Q} is a set of rational numbers), then we put $B(x) = B_2(x)$. For $x \in I^2 \setminus \left(\overline{\lim_{k \to \infty}} G_k \cup \mathbb{Q}^2\right)$ choose B(x) such that if d_I is the length of the lesser side of the interval $I \ni x$, and $d_I \notin \bigcup_{k \ge k(x)} [\delta_k, \Delta_k/2]$ (for $x \notin \overline{\lim_{k \to \infty}} G_k$, k(x) is the number with the property $x \notin G_k$ for $k \ge k(x)$), then $I \in B(x)$, while if $d_I \in [\delta_k, \Delta_k/2]$ for some $k \ge k(x)$, then $I \in B(x)$ iff either $I \cap G_k^1 = \emptyset$ or $I \cap G_k^2 = \emptyset$.

It can be easily verified that for every $I \in \overline{B}_2$ and $x \in \mathbb{R}^2$ there is a translation $T, T(I) \in B(x)$; this implies that B is the TI^* -basis. The local regularity of \overline{B}_2 with respect to \overline{B} is also easily checked. By proving the inclusion $f \in F_B^+$ the proof of the theorem will be completed.

Denote $A_k = \{x \in \mathbb{R}^n : D_B(\int f_k, x) = f_k(x)\}$ $(k \in \mathbb{N})$. Clearly, A_k $(k \in \mathbb{N})$ has a complete measure on \mathbb{R}^2 . Denote $A = (I^2 \cap \bigcap_{k=1}^{\infty} A_k) \setminus (\overline{\lim_{k \to \infty}} G_k \cup \mathbb{Q}^2)$. Since f(x) = 0 for $x \notin I^2$, B differentiates $\int f$ on $\mathbb{R}^2 \setminus I^2$; A is the set of a complete measure on I^2 . Therefore to prove the inclusion $f \in F_n^+$ it

of a complete measure on I^2 . Therefore to prove the inclusion $f \in F_B^+$, it suffices to show the differentiability of $\int f$ with respect to B on the set A.

Let $x \in A$ and $\varepsilon > 0$. Find $\delta > 0$ for which $\left| (1/|I|) \int_I f - f(x) \right| < \varepsilon$ when $I \in B(x)$, diam $I < \delta$. Consider $k'(x) \ge k(x)$ for which

$$\sum_{k'(x)} 16 \|f_k\|_1 < \varepsilon/2.$$
(32)

It is clear that $\sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{k'(x)-1} f_k(x)$, and *B* differentiates $\int \sum_{k=1}^{k'(x)-1} f_k$ at the point *x*. This implies that there is $\delta \in (0, \Delta_{k'(x)}/2)$ such that

$$\left|\frac{1}{|I|} \int_{I} \sum_{k=1}^{k'(x)-1} f_k - \sum_{k=1}^{k'(x)-1} f_k(x)\right| < \varepsilon/2, \text{ for } I \in B(x), \text{ diam } I < \delta.$$
(33)

Consider an arbitrary interval $I \in B(x)$, diam $I < \delta$. For $k_I \in \mathbb{N}$ let $\Delta_{K_I+1}/2 \leq d_I \leq \Delta_{k_I}/2$. Clearly, $k_I \geq k'(x)$. By virtue of the inequality $\Delta_{k+1} < \delta_k$ $(k \in \mathbb{N})$ and the condition $x \notin G_k$ $(k \geq k(x))$, we have $I \cap$ supp $f_k = \emptyset$ for $k'(x) \leq k \leq k_I - 1$, which gives

$$\int_{I} f_{k} = 0 \text{ for } k'(x) \le k \le k_{I} - 1.$$
(34)

Analogously, $\int_I f_{k_I} = 0$ if $d_I < \delta_{k_I}$, while if $\delta_{k_I} \leq d_I \leq \Delta_{k_I}/2$, then $\int_I f_{k_I} = 0$ because $I \cap \text{supp } f_k = \emptyset$ by construction of the basis B. Thus

$$\int_{I} f_{k_I} = 0. \tag{35}$$

Let is show that

$$I \cap \operatorname{supp} f_k | \le 16|I| |\operatorname{supp} f_k| \text{ for } k \ge k_I + 1.$$
(36)

To this end it is sufficient to consider the following easily verifiable facts: 1) $d_I \ge \Delta_k/2$ for $k \ge k_I + 1$;

2) let P_k be a set of vertices of the squares $I_{k,q}^2$ $(q = \overline{1, q_k^2})$. If the vertices of the interval $J \subset I^2$ belong to the set P_k , then $|J \cap \text{supp } f_k| = |I|| \text{supp } f_k|$; 3) for every interval $J \subset I^2$, $d_J \ge \Delta_k/2$ there is an interval $J' \supset J$,

 $|J'| \leq 16|J|$ with vertices at the points of the set P_k .

By (36) we can write that for $k \ge k_I + 1$,

$$\int_{I} f_k = \alpha_k h_k |I \cap \operatorname{supp} f_k| \le 16\alpha_k h_k |I| |\operatorname{supp} f_k| = 16|I| ||f_k||_1$$

which, owing to (32) and the inequality $k_I \ge k'(x)$, implies

$$\frac{1}{|I|} \int_{I} \sum_{k \ge k_{I}+1} f_{k} = \frac{1}{|I|} \sum_{k \ge k_{I}+1} \int_{I} f_{k} \le \frac{1}{|I|} \sum_{k \ge k_{I}+1} 16|I| \|f_{k}\|_{1} < \varepsilon/2.$$
(37)

By virtue of relations (33)–(35) and (37) (it should also be noted that $f_k(x) = 0$ for $k \ge k'(x)$), we have

$$\left| \frac{1}{|I|} \int_{I} \sum_{k=1}^{\infty} f_{k} - \sum_{k=1}^{\infty} f_{k}(x) \right| \leq \left| \frac{1}{|I|} \int_{I} \sum_{k=1}^{k'(x)-1} f_{k} - \sum_{k=1}^{k'(x)-1} f_{k}(x) \right| + \frac{1}{|I|} \int_{I} \sum_{k=k'(x)}^{k_{I}} f_{k} + \frac{1}{|I|} \int_{I} \sum_{k\geq k_{I}+1}^{k_{I}} f_{k} + \sum_{k\geq k'(x)} f_{k}(x) < \frac{\varepsilon}{2} + 0 + \frac{\varepsilon}{2} + 0 = \varepsilon.$$

Due to the arbitrariness of $x \in A$ and $\varepsilon > 0$, we conclude that $D_B(\int f, x) = f(x)$ for every $x \in A$. \Box

4. Remarks

(1) Let us consider one application of the obtained results. Let B_Z be the basis in \mathbb{R}^2 for which $B_Z(x)$ ($x \in \mathbb{R}^2$) consists of all intervals $I \ni x$, $D_I^2 \leq d_I \leq D_I \leq 1$, where D_I and d_I are the lengths, respectively, of the greater and of the lesser side of I. This basis was introduced by Zygmund and it was he who initiated (see [1], Ch. VI, §4) the study of the differential properties of B_Z .

Morion showed (see [1], Appendix IV) that for the integral classes B_Z behaves like B_2 , i.e., B_Z does not differentiate a wider integral class than $L \ln^+ L$.

A question arises: does there exist in general a function whose integral does not differentiate B_2 and differentiates B_Z ? From the above proven theorems the answer is positive.

 B_Z is the *TI*-basis. The fact that $\overline{B}_2 \notin LR(\overline{B}_z)$ is easily verified. By Theorem 1 this implies that the strict inclusion $F_{B_2}^+ \subset F_{B_Z}^+$ holds. Moreover,

Theorem 3 implies that by perturbing the values ω of any function $f \in L \setminus L \ln^+ L(I^2)$, $f \geq 0$, one can get the function $f \circ \omega$ with the following properties: $\overline{D}_{B_2}(\int f \circ \omega, x) = \infty$ a.e. on I^2 , and B_Z differentiates $\int f \circ \omega$.

Thus, for the integral classes the bases B_2 and B_Z behave similarly, while for individual nonnegative functions the basis B_Z behaves better than the basis B_2 .

(2) The bases B and B' are said to be positive equivalent $(B \stackrel{+}{\Leftrightarrow} B')$ if for every $f \in L(\mathbb{R}^n)$, $f \ge 0$, $\overline{D}_B(\int f, x) = \overline{D}_{B'}(\int f, x)$ and $\underline{D}_B(\int f, x) = \underline{D}_{B'}(\int f, x)$ a.e. on \mathbb{R}^n (i.e., condition (b) in Theorem 1 means that the bases B and B' are positive equivalent).

B is said to be a Busemann–Feller type basis (*BF*-basis) if for any $R \in \overline{B}$ and $x \in R$ we have $R \in B(x)$.

We shall say that B exactly differentiates $\varphi(L)$ (writing $B \in D(\varphi(L))$) if B differentiates $\varphi(L)$ and does not differentiate a wider integral class than $\varphi(L)$.

For integral classes the behavior of $B \subset B_2$, BF, TI-bases was studied by Stokoloc in [3], where he introduced the property (S) and proved that if B possesses the property (S), then $B \in D(L \ln^+ L)$, and if B does not possess this property, then $B \in D(L)$.

One can easily see that ignoring the BF property, this result remains valid. Thus, for the integral classes $B \subset B_2$, the *TI*-basis behaves like B_2 or B_1 (B_1 is the basis formed of square intervals). The B_Z -basis illustrates that an analogous fact does not hold for nonnegative individual functions and, generally speaking, if we combine Stokoloc's assertion and Theorem 1, then we shall have:

1) if $\overline{B}_2 \in LR(\overline{B})$, then $B \Leftrightarrow B_2$;

2) if $\overline{B}_2 \notin LR(\overline{B})$ and B possesses the property (S), then $B \in D(L \ln^+ L)$ and $F_{B_2}^+ \subset F_B^+$ (strictly);

3) if B does not possess the property (S), then $B \in D(L)$.

(3) Let $B \subset B_2$ be a *TI*-basis. Consider the intervals $I \in \overline{B}$ of the type $I = (0, x^1) \times (0, x^2)$. Denote the set of points (x^1, x^2) by A_B . The set A_B indicates how rich the family \overline{B} is.

One can easily prove the following criterion of local regularity of \overline{B}_2 with respect to $\overline{B}: (\overline{B}_2 \in LR(\overline{B})) \Leftrightarrow (\exists m, k_0 \in \mathbb{N} : A_B \cap ([1/m^k, 1/m^{k-1}) \times [1/m^{k'}, 1/m^{k'-1})) \neq \emptyset$ for $k, k' > k_0$).

(4) The basis B is said to be invariant (HI-basis) with respect to homotheties if for every $x \in \mathbb{R}^n$ and every homothety H centered at x we have $B(x) = \{H(R) : R \in B(x)\}.$

If \overline{B} is locally regular with respect to \overline{B}' and, moreover, if δ is equal to ∞ , then \overline{B} is called regular with respect to \overline{B}' .

For the basis $B \subset B_2$ define the sets: $R_{1,B} = \{r > 1 : \exists I \in \overline{B}, |\operatorname{pr}_1 I|_1 = r |\operatorname{pr}_2 I|_1\}, R_{2,B} = \{r > 1 : \exists I \in \overline{B}, |\operatorname{pr}_2 I|_1 = r |\operatorname{pr}_1 I|_1\}.$

For the basis $B \subset B_2$ which is simultaneously the *TI*- and *HI* basis one can easily verify that $(\overline{B}_2 \in LR(\overline{B})) \Leftrightarrow (\overline{B}_2$ is regular with respect to $B) \equiv \leftrightarrow (\exists m \in \mathbb{N} : R_{i,B} \cap [m^k, m^{m+1}) \neq \emptyset, k \in \mathbb{N}, i = \overline{1,2}).$

(5) Let B_2 $(B_2 = B_2(\mathbb{R}^n))$ be the basis in \mathbb{R}^n for which $B_2(x)$ $(x \in \mathbb{R}^n)$ consists of all *n*-dimensional intervals containing the point x.

Theorems 1–4 are also valid for $B \subset B_2(\mathbb{R}^n)$ $(n \geq 3)$, *TI*-bases. Proofs for the *n*-dimensional case are similar to those for the two-dimensional case.

(6) Let $\delta_k^1 \downarrow 0, \ldots, \delta_k^n \downarrow 0 \ (k \to \infty)$. Denote $\Delta_{k,m}^i = [(m-1)\delta_k^i, m\delta_k^i)$ $(i = \overline{1, n}; k, m \in \mathbb{N})$. Let *B* be the basis in \mathbb{R}^n for which $B(x) = \left\{\prod_{i=1}^n \Delta_{k^i, m^i}^i : \prod_{i=1}^n \Delta_{k^i, m^i}^i \ni x; k^i, m^i \in \mathbb{N}\right\}$. Such bases are sometimes called nets. We call them *N*-bases.

Let *B* be the *N*-basis in \mathbb{R}^n $(n \geq 2)$. Denote by B_T the least *TI*-basis containing *B*. For *B* the following analogue of Theorem 1 is valid: the following conditions are equivalent: (i) $F_B^+ = F_{B_2}^+$; (ii) $B \Leftrightarrow B_2$; (iii) \overline{B}_2 is locally regular with respect to \overline{B}_T .

Obviously, (ii) \Rightarrow (i), the implication (i) \Rightarrow (iii) follows directly from Theorem 1. Thus it remains only to show that (iii) \Rightarrow (i). To this end, note that using Lemma 1 of [2] one can easily obtain the inequality

$$|\{M_{B_T}^{(r)}(f) > \lambda\}| \le 3^n \left| \left\{ M_B^{(r)}(f) > \frac{\lambda}{2^n} \right\} \right| \quad (f \in L(\mathbb{R}^n); \lambda, r > 0).$$

From this and Lemma 5 we get the upper bound of the distribution function of $M_{B_2}^{(r)}(f)$ by means of the distribution function of $M_B^{(cr)}(f)$. It easily follows from the relation $\overline{B}_2 \in LR(\overline{B})$ that *B* contains a regular subbasis. Hence *B* possesses the property (*E*). Next, we obtain the implication (iii) \Rightarrow (ii) from Lemma 6.

Note that for $\delta_k^i = 1/2^k$ $(i = \overline{1, n}; k \in \mathbb{N})$ the relation $B \Leftrightarrow B_2$ was proved earlier in [2].

(7) The basis *B* constructed in Theorem 4 is not a *BF*-basis, which is not a casual fact. In particular, the following assertion is valid: let $B \subset B_2$ $(B_2 = B_2(\mathbb{R}^n))$ be a *BF*-basis and let $\overline{B}_2 \in LR(\overline{B})$. Then $B \stackrel{+}{\Leftrightarrow} B_2$.

To prove the above assertion we have to consider the following facts which easily follow from the Busemann-Feller property of the basis B and from the relation $\overline{B}_2 \in LR(\overline{B}:$ (i) B contains a regular subbasis; (ii) for every $f \in L(\mathbb{R}^n)$,

$$|\{M_{B_2}^{(r)}(f) > \lambda\}| \le \left| \left\{ M_B^{(cr)}(f) > \frac{\lambda}{c} \right\} \right| \quad (\lambda > 0, \ 0 < r < \delta),$$

where c and δ are the constants from the definition of local regularity of \overline{B}_2 with respect to \overline{B} .

G. ONIANI AND T. ZEREKIDZE

From (i) we have that *B* possesses the property (*E*). Now, taking into account (ii) and using Lemma 6, we can conclude that the relation $B \stackrel{+}{\Leftrightarrow} B_2$ is valid.

Acknowledgement

The authors express their gratitude to the referee for his useful remarks.

References

1. M. de Guzmán, Differentiation of integrals in \mathbb{R}^n . Lecture Notes in Math. 481, Springer, 1975.

2. T. Sh. Zerekidze, Convergence of multiple Fourier–Haar series and strong differentiability of integrals. (Russian) *Trudy Tbilis. Mat. Inst. A. Razmadze* **76**(1985), 80–99.

3. A. M. Stokoloc, On the differentiation of integrals of functions from $L\varphi(L)$. Studia Math. **88**(1988), 103–120.

(Received 17.05.1995)

Authors' address: Faculty of Mechanics and Mathematics I. Javakhishvili Tbilisi State University 2, University St., Tbilisi 380043 Republic of Georgia