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HARMONIC MAPS OVER RINGS

A. LASHKHI

Abstract. For the torsion-free modules over noncommutative prin-
cipal ideal domains von Staudt’s theorem is proved. Moreover, more
general (nonbijective) harmonic maps with the classical definition of
harmonic quadruple is calculated.

Introduction

K. von Staudt stated a theorem which clearly shows that it is important
to consider the manner in which the blocks are embedded in order to get in-
formation on the surrounding geometrical structure. It could be considered
as the spring of the geometric algebra.

The modern flavor of the subject was established by E. Artin [1], R. Baer
[2], and J. Dieudonné [3]. These classic studies described the theory over
division rings. R. Baer and J. von Neumann pointed out a possible ex-
tension of the structural identity between (projective) geometry and linear
algebra to the case of a ring, generating intense research activity in the
area of geometric algebra over rings. The main problem in this field is to
translate the specific maps from the geometrical point of view (perspectivi-
ties. collineations, harmonic maps) in algebraic language (by the semilinear
isomohphisms) – the fundamental theorems of geometric algebra. A con-
tinuing investigation by many scholars over the last 30 years has charted
the evolution of the classical setting into a stable form for the general rings.
NATO ASI held conferences twice on the subject and published two books
[4], [5].

The boundaries of the subject “What is geometric algebra?” were es-
tablished by Artin, Baer, and Dieudonné. These classic studies described
the structure theory, actions, transitivity, normal subgroups, commutators
and automorphisms of the classical linear groups (general linear, symplectic,
orthogonal, unitary) from the geometrical point of view.
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On the other hand this field of problems is central in the isomorphism the-
ory of the classical groups, which gave way to an extensive isomorphism the-
ory of certain full classical groups. The isomorphism GLn(K) → GLn(K1)
in turn gives rise to isomorphisms between the corresponding elementary
groups and the (projective) geometric versions of these groups.

What is the fundamental theorem of geometric algebra? For different
geometries it can be stated in various ways. However, in general, the prob-
lem is to represent specific geometrical maps by the linear functions, i.e.,
with the elements of GL(k, X), where X is a k-module. In the classical case
when k = F is a field or division ring the following approximate versions of
the representations are well known:

(P1) Perspectivities by linear maps + trivial automorphism of F ;
(P2) Collineations by linear maps + automorphism of F ;
(P3) Harmonic maps by linear maps + automorphism or antiautomor-

phism of F .
Naturally, for different geometries (affine, projective, symplectic, orthog-

onal, unitary, etc.) all the above-mentioned versions have a specific flavor.
The most developed ring version is the projective case. Recall that the pro-
jective geometry PG(k,X) of a torsion-free k-module X can be realized as
the lattice of all k-free submodules. In this direction the most significant
result is Ojanguren and Sridharans’ theorem which generalizes to commu-
tative rings the classical theorem of projective geometry [6].

These and some later results give us a reason to suppose that the theorem
of type (P3) is true for some general noncommutative rings.

Let us formulate the theorem (K. von Staudt’s theorem) for the classical
case, i.e., for vector spaces over skew fields.

Theorem A (Case dimp A = 1). Let X and X1 be vector spaces over
the skew fields F and F1, respectively, dimp X = dimp X1 = 1. Let f :
P (X) −→ P (X1) be some map. Then the following alternatives are equiva-
lent:

(a) f is bijective and harmonic;
(b) f is bijective and f, f−1 are harmonic;
(c) f is a nontrivial harmonic map;
(d) f is bijective and harmonic for the fixed quadruple;
(e) there exists either an isomorphism or an anti-isomorphism σ : F −→

F1 and a σ-semilinear isomorphism µ : X −→ X1 such that f(Fx) = F1µ(x)
for all x ∈ X.

The definition of a semilinear isomorphism with respect to the anti-
isomorphism will be given later (Definition 5).

Naturally, for general rings the conditions (a)–(d) are not equivalent and
we get the following implications:
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To prove the fundamental theorem means to show the validity of (e) from
one of the conditions (a)–(d).

When trying to extend the concepts of (projective) geometry for a given
ring, the following question arises: what is the projective space? It can be
defined in two ways:

(i) ˜P (X) as the set of all k-free direct summands of rank 1.
(ii) P (X) as the set of all k-free submodules of rank 1.
It is known that ˜P (X) does not always give the desired results. However,

taking into consideration P (X), we can get positive results for some general
noncommutative rings.

The first generalization of von Staudt’s theorem belongs to G. Ancochea
[7]. In spite of the foregoing theorem one can extend K. von Staudt’s theo-
rem to some special commutative rings, in particular, if k is a commutative
local or semilocal ring (N. B. Limaye [8], [9]), or if k is a commutative alge-
bra of finite dimension over a field of sufficiently large order (H. Schaeffer
[10]), or if k is a commutative primitive ring (B. R. McDonald [11]). Fur-
thermore, B. V. Limaye and N. B. Limaye [12] generalized the theorem to
noncommutative local rings by adopting the definition of a harmonic map.
However, for commutative principal ideal domains the Staudt’s theorem is
invalid [13], [14].

W. Klingenberg in 1956 introduced the idea of “non-injective collinea-
tions” between projective spaces of two and three dimensions. In a series of
papers F. Veldkamp (partly together with J. C. Ferrar) developed the theory
of homomorphisms of ring geometry, which are, roughly speaking, nonin-
jective collineations [15], [16], [17], [18]. The first article of non-injective
harmonic maps between projective lines was due to F. Buekenhout [19],
after D. G. James [20] got the same result. Buekenhout’s work described
the situation for division rings. In 1985 C. Bartolone and F. Bartolozzi
extended some of Buekenhout’s ideas for the ring case [14].

Cross-ratio, harmonic quadruple, and von Staudt’s theorem in Moufang
planes was studied by V. Havel [21], [22] and J. C. Ferrar [23].

Many interesting and fundamental results according, this and boundary
problems were obtained by W. Benz and his scholars [10], [24]–[26]. A.
Dress and W. Wenzel constitute an important tool of cross-ratios from a
combinatorial point of view [27].

Some other generalizations and related problems can be found in [28]–
[41]. For more complete information and an exhaustive bibliography in this
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area see [14], [28], [35].
Our aim is to calculate more general (nonbijective) harmonic maps satis-

fying the condition (c) with the classical definition of a harmonic quadruple
for some general noncommutative rings and to obtain a complete analog of
the classical case. Moreover, using some ideas from [37] we’ll consider not
only free modules but also the torsion-free ones and calculate σ and µ (i.e.,
semilinear isomorphism) having given f , X, k, P (X), PG(k, X).

The notions and definitions are standard. k is an arbitrary integral do-
main with unity; all modules are over k; PG(k, X) is the projective geometry
of the k-module X, i.e., the lattice of all k-free submodules; M(X) is the
complete lattice of all submodules X; 〈Y 〉 denotes the submodule generated
by the set Y . Note also that to fix the basic ring k sometimes we’ll write
Pk(X) and Mk(X).

1. Projective Space, Collineation and Cross-Ratio

Let k be a commutative ring with unit. For each k-free module X we can
construct a new object (see [6], [14]–[18], [35]), the projective space ˜P (X)
corresponding to X. The elements of ˜P (X) are k-free direct summands of
rank 1. It is clear that each element of ˜P (X) has the form ke, i.e., is a
one-dimensional submodule generated by the unimodular element e ∈ X.
Remember that an element e is unimodular if there exists a linear form
µ : X −→ k such that µ(e) = 1, i.e., the coordinates of e in one of the
bases X generate the unit ideal of k. If e1, e2, . . . , en, . . . is a basis of the
k-module X, then e =

∑

aiei is unimodular if and only if
∑

kai = k. This
definition of the projective space we widen in the following way:

Definition 1. Let k be an integral domain (not necessarily commuta-
tive). X is a torsion-free module over k. The projective space P (X) corre-
sponding to X is the set of all k-free submodules of rank 1.

Note that Definition 1 is meaningful for every torsion-free module X and
it can happen that for some k-module X, ˜P (X) = ∅ while P (X) 6= ∅.
It is also obvious that if U ⊂ X is a submodule, then e is unimodular in
U while e is not unimodular in X. For every k-free submodule U ↪→ X
the projective dimension dimp will be defined as dimp U = dim U − 1. We
shall use the terms: “point”, “line”, “plane” for free submodules of the
projective dimensions 0,1,2. We shall condider the zero submodule as an
“empty element” of the projective space P (X) with projective dimension
−1.

Definition 2. The set of points {Pα, α ∈ Λ} of the projective space
P (X) will be called collinear, if there exists a line U ↪→ X such that Pα ∈ U
for every α ∈ Λ and strictly collinear if there exists a line U for which
U = Pα + Pβ , for every α, β ∈ Λ.
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If the set of points is strictly collinear, then the line U will be called the
principal line passing through these points.

In the sequel k∗ is the group of units of the ring k. If s ∈ k is an arbitrary
element, then by [s] we denote the set of conjugate elements of the form
t−1st, where t ∈ k∗.

The points P, Q ∈ P (X) are independent if P ∩Q = 0 and dependent if
P ∩Q 6= 0.

Let P1 = ke1, P2 = ke2 be independent. If U = P1 + P2 and P3 =
k(αe1 + βe2) ↪→ U is an arbitrary point, then it is obvious that the points
P1, P2, P3 are strictly collinear if and only if α, β ∈ k∗. It is also obvious
that if P1, P2, P3, P4 are strictly collinear points and U is a principal line
passing through these points, then there exist unimodular elements e1, e2

of this line U and an invertible element s ∈ k∗ such that

P1 = ke1, P2 = ke2, P3 = k(e1 + e2), P4 = k(e1 + se2).

The element s ∈ k∗ is called the cross-ratio of these points. If k is
commutative, then s is unique. For the non-commutative situation the
cross-ratio is [s]. For s′ = tst−1 we have

P1 = k(te1), P2 = k(te2), P3 = k(te1 + te2), P4 = k(te1 + s′(te2)).

On the other hand, if

P1 = ke1, P2 = ke2, P3 = k(e1 + e2), P4 = k(e1 + s1e2),

then we have

P1 = ke1, P2 = ke2, P3 = k(e1 + e2), P=k(e1 + s′te2)),

e1 = µ1e1, e2 = µ2e2, e1 + e2 = µ3(e1 + e2),

e1 + s′e2 = µ4(e1 + se2) =⇒ µ1e1 + µ2e2 = µ3(e1 + e2),

µ1 = µ2 = µ3 =⇒ µ1e1 + s′µ2e2 = µ4e1 + µ4se2,

µ1 = µ4 =⇒ s′µ4 = µ4s.

For the quadruple of strictly collinear points and their cross-ratio we use
the notation

[P1, P2, P3, P4] = [s].

We remark that the order of the points Pi is essential.
Let now e1 and e2 be generators of a k-free submodule U of rank 2.
Consider the points k(αie1 + βie2), αi, βi ∈ k∗, 1 ≤ i ≤ 4. For i 6= j we

shall use the notation

Dij =
∣

∣

∣

∣

αi, βi

αj , βj

∣

∣

∣

∣

= αiβj − αjβi; ˜Dij =
˜∣

∣

∣

∣

αi, βi

αj , βj

∣

∣

∣

∣

= αiα−1
j − βiβ−1

j .
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Proposition 1. The points k(αiei + βie2) are strictly collinear if and
only if

Dij ∈ k∗, ˜Dij ∈ k∗.

Proof. We have

β−1
i (αie1 + βie2) = β−1

i αie1 + e2 = e1,

β−1
j (αje1 + βje2) = β−1

j αje1 + e2 = e2;

e1 − e2 = (β−1
i αi − β−1

j αj)e1,

βi(β−1
i αi − β−1

j αj)α−1
j = αiα−1

j − βiβ−1
j ∈ k∗

=⇒ e1, e2 ∈ k(αie1 + βie2) + k(eje1 + βje2).

The inclusion Dij ∈ k∗ is proved straightforward.

Proposition 2. If P1, P2, P3, P4 are strictly collinear points and α1 = 0,
β1 = α2 = α3 = α4 = 1, then

D32D−1
42 ∈ [P1, P2, P3, P4].

Proof.

k(e1 + β3e2) = k[(β3 − β2)e2 + (e1 + β2e2)],

k(e1 + β4e2) = k(β4e2 − β2e2 + e1 + β2e2

= k[(β4 − β2) + e2 + e1 + β2e2]

= k[e2 + (β4 − β2)−1(e1 + β2e2)]

= k[(β3 − β2)e2 + (β3 − β2)(β4 − β2)−1(e1 + β2e2)].

Proposition 3. If in Proposition 2, α1 = α2 = α3 = α4 = 1, then

D41D−1
42 D32D−1

31 ∈ [P1, P2, P3, P4].

Proof. Suppose that

e1 + β3e2 = λ1(e1 + β1e2) + λ2(e1 + β2e2)

=⇒
{

λ1 + λ2 = 1
λ1β1 + λ2β2 = β3

=⇒
{

λ1 = 1− λ2

λ1β1 + λ2β2 = β3

=⇒ β1 + λ2(β2 − β1) = β3.

Consequently, λ2 = D13D−1
12 . In the same way λ1 = D23D−1

12 . From
Proposition 1 we have βi − βj ∈ k∗ and 1 − βj ∈ k∗. In our conditions for
1 ≤ i, j, k ≤ 4 we have

(βi − βj)(βk − βj)−1 − 1 = (βi − βj − βk + βj)(βk − βj)−1

= (βi − βk)(βk − βj)−1;
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(βi − βj)(βk − βj)−1βk − βi = (βi − βj)(βk − βj)−1βk − βk − (βi − βk)

= [(βi − βj)(βk − βj)−1 − 1]βk − (βi − βk)

= (βi − βk)(βk − βj)−1βk − (βi − βk)

= (βi − βj)(βk − βj)−1[βk − (βk − βj)]

= (βi − βj)(βk − βj)−1βj .

Taking into account these equations, we find

k[−(e1 + β1e2) + (β1 − β3)(β2 − β3)−1(e1 + β2e2)]

= k[((β1 − β3)(β2 − β3)−1 − 1)e1 + [(β1 − β3)(β2 − β3)−1β2 − β1]e2]

= k[(β1 − β2)(β2 − β3)−1e1 + (β1 − β2)(β2 − β3)−1β3e2]

= k(β1 − β2)(β2 − β3)−1(e1 + β3e2)]

= k[e1 + β3e2] = P3;

k[−(e1 + β1e2) + (β1 − β4)(β2 − β4)−1(e1 + β2e2)]

= k[(−1+(β1−β4)(β2−β4)−1)e1+[(β1−β4)(β2−β4)−1β2−β1]e2]

= k[(β1 − β2)(β4 − β2)−1e1 + (β1 − β2)(β4 − β2)−1β4e2]

= k(e1 + β4e2) = P4 = k[−(e1 + β1e2)

+ (β1 − β4)(β2 − β4)−1(β2 − β3)(β1 − β3)−1(β2 − β3)−1(e1 + β2e2)]

= k[−(e1 + β1e2) + D41D−1
42 D32D−1

31 (β1 − β3)(β2 − β3)−1(e1 + β2e2)].

Consequently, the equations

P1 = k[−(e1 + β1e2)],

P2 = k[(β1 − β3)(β2 − β3)−1(e1 + β2e2)]

complete the proof.

The set k∗ ⊂ k splits in equivalent classes of conjugate elements. Then
for each class [sα] on the line U = P1 ∪ P2 = P1 ∪ P3 = P2 ∪ P3 we can
always find the point P4 such that [P1, P2, P3, P4] = [s]. In fact, we can find
basic elements e1, e2 ∈ U such that P1 = ke1, P2 = ke2, P3 = k(e1 + e2)
and then choose the point P4. The point P4 is not uniquely defined by the
points P1, P2, P3 and the cross-ratio. If the element s belongs to the center
of the ring k, then P4 is unique, which is easy to check by straightforward
calculations.

Let P1, P2, P3, P4 be a quadruple of strictly collinear points on the pro-
jective line U . Then the cross-ratio depends on the order of the points. The
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effect of inversion is illustrated by the equations (see [2])

[P1, P2, P3, P4] = [P2, P1, P3, P4]−1 = [P1, P2, P4, P3]−1,

[P1, P2, P3, P4] = 1− [P1, P3, P2, P4].

Note that if A ⊂ k is a subset then A−1 def= {x−1, for all x ∈ A}. The
first two equations we can check from Proposition 3. The generator of the
point can always be chosen in such a way that the coefficient of e1 will be
1. Let

P1 = ke1, P2 = ke2, P3 = k(e1 + e2), [P1, P2, P3, P4] = [s].

Choose the basis {e1, e2} on {−e1, e1 + e2}. Then

e2 = −e1 + (e1 + e2), se1 + e2 = (1− s)(−e1) + (e1 + e2)

=⇒ [P1, P2, P3, P4] = 1− [s].

The quadruple of the strictly collinear points P1, P2, P3, P4 ∈ P (X) is
in a harmonic relation if [P1, P2, P3, P4] = −1. Note that this definition
implies that 1

2 ∈ k.

Proposition 4. Let X1 and X2 be torsion-free modules over the rings k1

and k2; α : P (X1) −→ P (X2) = 2 be a bijection, and rank X1 = rank X2;
then the following statements are equivalent:

(a) P1, P2, P3, P4 ∈ P (X1) are harmonic if and only if α(P1), α(P2),
α(P3), α(P4) are harmonic;

(b) if P1, P2, P3, P4 are harmonic, then α(P1), α(P2), α(P3), α(P4) are
harmonic, and if Q1, Q2, Q3, Q4 ∈ P (X2) are harmonic, then α−1(Q1),
α−1(Q2), α−1(Q3), α−1(Q4) are strictly collinear.

Proof. (a)=⇒ (b) is obvious. (b) =⇒ (a). Let {e1, e2} and {f1, f2} be
bases of the lines U = Qi + Qj ⊆ X2 and α−1(U) = α−1(Qi) + α−1(Qj),
1 ≤ i, j ≤ 4. Suppose that

α(k1e1) = Q1 = k2f1, α(k1e2) = Q2 = k2f2,

α(k1(e1 + e2)) = Q3 = k2(f1 + f2),

α(k1(e1 + µe2)) = Q4 = k2(f1 − f2).

It is clear that µ ∈ k∗. Since the triple of the strictly collinear points
Q1, Q2, Q3 represents the fourth harmonic point Q4, we have

α(k1(e1 − e2)) = Q4 = α(k1(e1 + µe2)) =⇒ µ = −1.

The map f : P (X1) −→ P (X2) will be called harmonic if the images
of harmonic points are harmonic. f : P (X1) −→ M(X2) will be called a
collineation if P1 ⊂ P2 + P3 implies f(P1) ⊂ f(P2) + f(P3). The map f
preserves linear independence if P1, . . . , Pα ∈ P (X1) are independent if and
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only if f(P1), . . . , f(Pα) ∈ M(X2) are independent, i.e., for every β ∈ Λ we
have

Pβ ∩





⋃

γ∈Λ,γ 6=β

Pγ



 = 0 ⇐⇒ f(Pβ) ∩





⋃

γ∈Λ,γ 6=β

f(Pγ)



 = 0.

A collineation which preserves linear independence will be called an LIP-
collineation.

Let e be the unimodular element in the k-free submodule A. Then k1e ⊂
∑m

i=1 k1ei, where {ei, i = 1, . . . , m} is some finite subset of the basis A. It
is obvious that if f is a collineation, then f(k1e) ⊂

∑m
i=1 f(k1ei).

Recall that the 1–1 map f : X1 −→ X2 is a semilinear (σ-semilinear)
isomorphism with respect to σ if σ : k1 −→ k2 is a ring isomorphism and

f(ax1 + bx2) = σ(a)f(x1) + σ(b)f(x2)

for each a, b ∈ k1, x1, x2 ∈ X2.
Let U ⊆ X1 be a k1-free submodule; f : X1 −→ X2 be a σ-semilinear

map. It is clear that the image of the unimodular element e ∈ U is unimodu-
lar. So we get an induced map, i.e., the projection P (f) : P (X1) −→ P (X2),
for which P (f)(k1e) = k2f(e) for all unimodular elements of all lines of X1.
It is also obvious that P1 ⊂ P2+P3 implies P (f)P1 ⊂ P (f)P2+P (f)P3.

2. Some Facts Concerning Harmonic Maps and Collineations

Let k be a commutative principal ideal domain, F be the quotient field
of k. The canonical map σ : k ↪→ F induces the semilinear isomorphism

σn : kn = k + k + · · ·+ k
︸ ︷︷ ︸

n

−→ Fn = F + F + · · ·+ F
︸ ︷︷ ︸

n

, n ≥ 2.

This one defines the map P (σn) : ˜P (kn) −→ P (Fn). When k = K〈x〉
is the ring of formal power series in x of some field, then P (σn) is bijective
[6], [13], [14].

Example 1. Let n ≥ 3 and define the map α by Fig.1.



50 A. LASHKHI

Q3=<0,1,0>Q2=<x,1,0>Q1=<1,0,0>=<x,0,0>

eee

e e eP3=<0,1,0>P2=<x,1,0>⊃<αx,α,0>P1=<1,0,0>⊃<x,0,0>

6

?

6

?

6

?

l1=P1∪P3

α α−1 α α−1 α α−1

l2=P2∪P3⊂l1

a a

L=Q1∪Q2

Figure 1
The lines l1 and l2 are defined over the ring k and the line L over the

field F .
The map α−1 : P (L) −→ ˜P (l1) is not a collineation. It is clear that

Q1 ⊂ Q2 + Q3. On the other hand,

l1 = P1 ∪ P2 = P1 ∪ P3 ⊃ l2 = P2 ∪ P3

=⇒ α−1(Q1) = P1 6⊆ α−1(Q2) ∪ α−1(Q3) = P2 ∪ P3.

Note that 〈x, 0, 0〉 6∈ ˜P (kn).

Example 2. Suppose that n = 2 and define the harmonic map α :
˜P (l) → P (L) by Fig. 2

Q4=<0,1>=<0,2>Q2=<x,−1>Q1=<x,1>

eee

e e eP4=<0,1>P2=<x,−1>P1=<x,1>

6

?

6

?

6

?

l=P1∪P2

α α−1 α α−1 α α−1

l⊂l1=P1∪P3

Q3=<1,0>=<2x,0>

e

eP3=<1,0>

6

?

α α−1

L1=Q1∪Q2

Figure 2

It is easy to see that α is not harmonic, though it is bijective. Note that
the lines l and l1 are defined over the ring k and the line L over the field F .
It is obvious that α−1 is not harmonic because the points P1, P2, P3, P4 are
not strictly collinear.

For the completion of the picture we shall give an example which shows
that for the system of points ˜P (X) over the principal ideal domain, von
Staudt’s theorem is not true.
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Example 3 (C. Bartolone and F.Di Franco [13]). Let k=F < x >,
where F is a field, charF 6= 2. Define the bijective map α : ˜P (k2) −→ ˜P (k2)
by the equations

α(k(0, 1)) = k(0, 1), α(k(1, 0)) = k(1, 0) for k(f, g) ∈ ˜P (k2),

α(k(f, g)) =

{

k(f, g) if deg(f) ≡ deg(g) (mod 2),
k(−f, g) if deg(f) 6≡ deg(g) (mod 2).

This map is harmonic on both sides but is not induced by the semilinear
isomorphism [13], [14].

Further, k is a non-commutative left principal ideal domain. Let us
investigate the map

f : M(X) −→ M(X1),

which preserves the lattice-theoretical operation of union (∪-preserving
map).

Thus, such map is defined with its restriction on the projective space
P (X), so it is natural for the beginning to consider the map f : P (X) −→
M(X1). Since for our general maps the images of the points are not always
points, it is natural to generalize the definition of the harmonic map.

Definition 3. The map f : P (X) −→ M(X1) will be called harmonic
if for each quadruple of harmonic points P1, P2, P3, P4 ∈ P (X) and their
images f(P1), f(P2), f(P3), f(P4) ∈ M(X1) there exist y1, y2 ∈ X1 such
that

Q1 = k1y1 ↪→ f(P1),

Q2 = k1y2 ↪→ f(P2),

Q3 = k1(y1 + y2) ↪→ f(P3),

Q4 = k1(y1 − y2) ↪→ f(P4),

i.e., the points Q1, Q2, Q3, Q4 are in a harmonic relation.

Let F be a quotient field of k. According to U. Brehm [37], consider the
tensor product X = F ⊗k X and the canonical map i : X −→ F ⊗k X. The
module X will be considered as a k-submodule of the F -vector space X. It
is obvious that FX = 〈FX〉 = X.

Suppose as well that F1 is some skew field and k1 is a subring of F1.
Let X1 be a F1-vector space and X1 be a k1-submodule of X1 such that
〈F1X1〉 = X1.
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Proposition 5. Let f : M(X) → M(X1) be ∪-preserving map and µ :
X −→ X1 be a semilinear isomorphism with respect to the isomorphism
σ : F −→ F1. If there exists a subring K1 ↪→ F1 for which

σ(k) ⊆ K1 ⊆ F1, K1µ(X) ⊆ X1, f(kx) = K1µ(x),

then f is a LIP-collineation.

Proof. Let P1 = kx1 , P2 = kx2, P3 = kx3, P1 ⊆ P2 + P3 then we have

x1 = mx2 + nx3 =⇒ µ(x1) = σ(m)µ(x2) + σ(n)µ(x3) =⇒ K1µ(x1)

⊆ [K1σ(k)µ(x2)] ∪ [K1σ(k)µ(x3)] ⊆ [K1µ(x2)] ∪ [K1µ(x3)]

=⇒ f(kx1) ↪→ f(kx2) ∪ f(kx3) =⇒ f is a collineation,

so that

0 6= F1[f(kx)] ∩ F1[f(ky)] = F1[K1µ(x)] ∩ F1[K1µ(y)]

=⇒ µ(x) ∈ F1µ(y) =⇒ x ∈ Fy

=⇒ f preserves linear independence .

Suppose that f : M(X) → M(X1) is an LIP-collineation. Let us observe
some general facts concerning collineations and harmonic maps.

(l1) From the linear independence of f we get f(0) = 0. It is also clear
that dim F1f(kx) = 1 for all x ∈ X. Indeed, let P be a point, i.e., P = kx
and dim F1f(P ) = 2, then all submodules of this point are one-dimensional
and have non-zero intersections. Since in F1f(P ) we can always find two
non-incident points, we get a contradiction.

(l2) Let us show that if Fx1 = Fx2 for x1, x2 ∈ F , then F1f(kx1) =
F1f(kX2).

By the condition there exists s, r ∈ F such that rx1 = sx2. Consequently,
we can find s, r ∈ k for which rx1 = sx2. So we have

k(sx2) ⊆ k(x2), k(sx2) = k(rx1) ⊆ k(x1)

=⇒ f(k(sx2)) ⊆ f(kx1) ∩ f(kx2)

=⇒ F1f(kx1) = F1f(kx2).

(l3) Define the map

f1 : X \ 0 −→ MF1(X1)

in the following way: for x ∈ X, x 6= 0,

f1(x) = F1f(ky), y ∈ X ∩ (Fx \ 0).

For each n ∈ N and arbitrary x, y1, . . . , yn ∈ X \ 0 from (l2) we get

Fx ∩ (∪n
i=1Fyi) = 0 =⇒ f1(x) ∩ (∪n

i=1f1(yi)) = 0

=⇒ if Fx 6= Fy, then f1(x) 6= f1(y).
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Since f is a collineation for x, y1, y2 ∈ X \ 0, we have: if x ∈ Fy1 + Fy2,
then f1(x) ⊆ f1(y1) + f1(y2).

(l4) By induction we can prove that if x ∈ Fx1 + Fx2 + · · ·+ Fxm, then
f1(x) ⊆ f(x1) + f1(x2) + · · ·+ f1(xm).

For m = 1, 2 and x ∈ Fxm the statement is obvious. Let x 6∈ Fxm, then
there exist y, z ∈ X such that

x ∈ F (y + z), y ∈ Fx1 + · · ·+ Fxm−1, z ∈ Fxm, y 6= 0.

Consequently, by the induction hypothesis we get

f1(y) ⊆ f1(x1) + · · ·+ f1(xm−1).

On the other hand,

x ∈ Fy + Fxm =⇒ f1(x) ⊆ f1(y) + f1(xm)

=⇒ f1(x) ⊆ f1(x1) + f1(x2) + · · ·+ f1(xm−1) + f1(xm).

(l5) In the sequel we shall often use the following fact:

Proposition 6. Let x and y be linear independent elements of X and
0 6= z ∈ X, z ∈ (Fx + Fy) \ Fy. Then there exists 0 6= d ∈ F such that
F (x + dy) = Fz.

It is obvious that Fz = F (ax + by) and d = a−1b. It is also obvious that
d has only one representation by Fz.

(l6) Let B be a basis of X and x0 be an arbitrary but fixed element of
B. Define

µ̃ : B −→ X1, F1µ̃(x) = f1(x), x ∈ B.

So we have

x0 + x ∈ Fx0 + Fx, x ∈ B \ x0 =⇒ f1(x0 + x)

⊆ f1(x0) + f1(x) = F1µ̃(x0) + F1µ̃(x).

Taking Proposition 6 into consideration, we conclude that there exists d ∈
F , d 6= 0 such that

f1(x0 + x) = F1(µ̃(x0) + dµ̃(x)).

Definition 4. µ(x) def= dµ̃(x), x0 6= x ∈ B, µ(x0)
def= µ̃(x0).

So for all x ∈ B we have f1(x) = F1µ(x) and f1(x0 + x) = F1(µ(x0) +
µ(x)), where x ∈ B \ x0. Consequently, from (l3) we conclude that µ(B) ⊆
X1 is a linear independent set.

(l7) Let a ∈ F, x ∈ B \ x0, x0 + ax 6∈ Fx. Then from Proposition 6 we
can conclude that there exists only one element σ(a, x) ∈ F1 for which

f1(x0 + ax) = F1[µ(x0) + σ(a, x)µ(x)].
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Note that the theorem of von Staudt deals with the harmonic maps of
the projective line, i.e., it considers the case when dimp X = 1. In this
situation B = {x0, x} and σ(a, x) = σ(a).

Generally, as we shall show in [9], σ does not depend on x, i.e., σ(a, x) =
σ(a).

So σ is an injective map. From the above we conclude that σ(0) =
0, σ(1) = 1.

3. Harmonic Maps Generated by Semilinear Isomorphisms

Let 1
2 ∈ k, dimp X = 1 and f : P (X) −→ Mk1(X1), be a harmonic map

(Definition 3). In the previous paragraph we have defined the maps f1, σ, µ.
It is clear that a set-theoretical map f1 defined on the elements of X can
also be considered as the map determined on P (X). Let us show now that
σ is either a isomorphism or an anti-isomorphism. Recall that σ : k −→ k1

is an anti-homomorphism if σ(x + y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x) for
all x, y ∈ k. We cannot use the classical theorem of K. von Staudt because,
on the one hand, f1 is the map of the projective line over a ring which is
not in general a skew field, and on the other hand, f1 is not bijective.

Consider the lines l = kx0 + kx and L = F1µ(x0) + F1µ(x). On the line
l the points

k(x0 + ax), k(x0 + bx),

k(x0 +
a + b

2
x) = k[2x0 + (a + b)x], k[(a− b)x] = k

(a− b
2

x
)

are in a harmonic relation. According to the definition of f we have

F1(σ(a−b)µ(x))F1(µ(x0)+σ(b)µ(x))F1(µ(x0)+σ(a)µ(x))

eee

e e e(a−b)xx0+bxx0+ax

? ? ?

f1 f1 f1

F1(µ(x0)+σ( a+b
2 )µ(x))

e

ex0+ a+b
2 x
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X
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Figure 3
Figure 3 represents the map of the elements of the k-module X on the

projective line L over the skew field F1.
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Note that since f is a harmonic map, for the elements x1, x2, x3, x4 ∈ X̄
we have that if the points kx1, kx2, kx3, kx4 are in a harmonic relation,
then the points f1(x1), f1(x2), f1(x3), f1(x4) are also in a harmonic relation.
Consequently, the quadruple

F1(µ(x0) + σ(a)µ(x)), F1(µ(x0) + σ(b)µ(x)),

F1(µ(x0) + σ
(

a + b
2

)

µ(x)), F1(σ(a− b)µ(x) = F1µ(x)

is harmonic. So, taking Proposition 3 into consideration, we get

[

− σ
(

a + b
2

)

+σ(b)
][

− σ
(

a + b
2

)

+σ(a)
]−1

=−1 ⇒ σ
(

a + b
2

)

−σ(b)

= −σ
(

a + b
2

)

+ σ(a) ⇒ σ
(

a + b
2

)

=
σ(a)

2
+

σ(b)
2

.

Suppose that in this equation b = 0; then we get σ
(a

2

)

= σ(a)
2 . If now we

suppose that b = a, then we have

σ
(

2a
2

)

= σ(a) =
σ(2a)

2
⇒ σ(2a) = 2σ(a) ⇒ σ(a + b)

= σ
(

2(a + b)
2

)

= 2σ
(

a + b
2

)

= 2
(

σ(a)
2

+
σ(b)
2

)

= σ(a) + σ(b).

So σ is an additive isomorphism.
Suppose now that [σ(a)]−1 = σ(a−1) for every a ∈ F . Then we have

a = a(1− a)(1− a)−1 = a(1− a)−1 − a2(1− a)−1

⇒ a + a2(1− a)−1 = 1 + a(1− a)−1 − 1 ⇒ a2[a−1 + (1− a)−1]

= a[a−1 + (1− a)−1]− 1 ⇒ a2 = a− [a−1 + (1− a)−1]−1

⇒ σ(a2) = σ(a)− [σ(a)−1 + (1− σ(a))−1]−1 = [σ(a)]2,

ab + ba = (a + b)2 − a2 − b2 ⇒ σ(ab) + σ(ba)

= [σ(a + b)]2 − [σ(a)]2 − [σ(b)]2 = [σ(a)]2 + [σ(b)]2

+ σ(a)σ(b) + σ(b)σ(a)− [σ(a)]2 − [σ(b)]2

⇒ σ(ab) + σ(ba) = σ(a)σ(b) + σ(b)σ(a).

From (l6) it is obvious that µ̃, and consequently µ can be defined in many
different ways, i.e., for every α ∈ F one can define µ1 = αµ, and µ1 also
has the same meaning. Consequently σ is defined for fixed x0 and for fixed
µ(x0) ∈ X̄1. If now we start from x1 and µ(x1), then in the same way we
can construct τ : F −→ F1.
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In fact, [τ(a)]−1 = σ(a−1). Indeed,

f1(ax0 + x1) = F1[τ(a)µ(x0) + µ(x1)] = F1[µ(x0) + [τ(a)]−1µ(x1)]
∥

∥

∥

f1(x0 + a−1x1) = F1[µ(x0) + σ(a−1)µ(x1)] ⇒ [τ(a)]−1 = σ(a−1);

Similarly,
[σ(a)]−1 = τ(a−1).

So we have to prove that σ(a−1) = [σ(a)]−1. Suppose that 1+a and 1−a
are units of k. Then the points

P1 = k(x0 + ax1), P2 = k(ax0 + x1),

P3 = k[(x0 + ax1) + (ax0 + x1)] = k[(1 + a)(x0 + x1)] = k(x0 + x1),

P4 = k[(x0 + ax1)− (ax0 + x1)] = k[(1− a)x0 + (a− 1)x1]

= k[(1− a)(x0 − x1)] = k(x0 − x1)

are in a harmonic relation. On the other hand, consider the points

Q1 = k(ax0 + a2x1), Q2 = k(a2x0 + ax1),

Q3 = k[(a + a2)(x0 + x1)], Q4 = k[(a− a2)(x0 − x1)].

It is obvious that they are in a harmonic relation while they are strictly
collinear, i.e., Qi ⊆ Qj ∪Qk, 1 ≤ i, j, k ≤ 4.

We have

(a + a2)(x0 + x1) + (−a2x0 − ax1) = ax0 + a2x1 ∈ k(a2x0 + ax1)

+ k[(a + a2)(x0 + x1)] ⇒ Q1 ∈ Q2 ∪Q3;

(a− a2)(x0 − x1) + (a + a2)(x0 + x1) = 2ax0 + 2a2x1

⇒ 2(ax0 + a2x1), ax0 + a2x1 ∈ k[(a + a2)(x0 + x1)]

+ k[(a− a2)(x0 − x1)] ⇒ Q1 ∈ Q3 ∪Q4.

All other inclusions can be proved similarly. Further,

f1[a(x0 + ax1)] = f1(x0 + ax1) = f1(ax0 + a2x1) =

= F1[µ(x0) + σ(a)µ(x1)] = L1,

f1(ax0 + x1) = f1(a2x0 + ax1) = F1[τ(a)µ(x0) + µ(x1)]

= F1[µ(x0) + [τ(a)]−1µ(x1)] = L2,

f1[(a + a2)(x0 + x1)] = f1(x0 + x1) = F1[µ(x0) + µ(x1)] = L3,

f1[(a− a2)(x0 − x1)] = f1(x0 − x1) = F1[µ(x0)− µ(x1)] = L4.
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Either the quadruple P1, P2, P3, P4 or the quadruple Q1, Q2, Q3, Q4 is
harmonic, so we get that the quadruple L1, L2, L3, L4 is also harmonic. For
the points L1, L2, L3, L4 we have

D41 =
∣

∣

∣

1, −1
1, σ(a)

∣

∣

∣, D42 =
∣

∣

∣

1, −1
1, [τ(a)]−1

∣

∣

∣,

D32 =
∣

∣

∣

1, 1
1, [τ(a)]−1

∣

∣

∣, D31 =
∣

∣

∣

1, 1
1, σ(a)

∣

∣

∣.

Let now ˜P1, ˜P2, ˜P3, ˜P4 be arbitrary strictly collinear points over the ring
k. Then we can assume that

˜P1 = ke1, ˜P2 = ke2, ˜P3 = k(e1 + e2),

˜P4 = k(e1 + se2), [ ˜P1, ˜P2, ˜P3, ˜P4] = [s].

As 1− t−1st = t−1(1−s)t we can conclude: if s passes through the whole
class of conjugate elements, then 1 − s is also the whole class of conjugate
elements. Consequently, to each class [s] there corresponds the class [1− s].
Taking into consideration that

˜P4 = k(e1 + se2), ˜P1 = k(−e1), ˜P2 = [k(e1 + se2) + (−e1)],

˜P3 = k[(e1 + se2) + (1− s)(−e1)] = k[s(e1 + e2)],

we conclude that for arbitrary strictly collinear points the equation

[ ˜P4, ˜P1, ˜P2, ˜P3] = 1− [ ˜P1, ˜P2, ˜P3, ˜P4]

is true.
Turning back to our consideration, we can check

[L4, L1, L2, L3] = 1− [L1, L2, L3, L4] = 2.

From Proposition 3 we get [P1, P2, P3, P4] = D14D−1
24 D23D−1

13 . Redenote
L4 = L̄1, L1 = L̄2, L2 = L̄3, L3 = L̄4; then we have

2 = [L̄1, L̄2, L̄3, L̄4] = D̄14[D̄24]−1D̄23[D̄13]−1

=
∣

∣

∣

∣

1, −1
1, 1

∣

∣

∣

∣

·
∣

∣

∣

∣

1, σ(a)
1, 1

∣

∣

∣

∣

−1

·
∣

∣

∣

∣

1, σ(a)
1, σ(a−1)

∣

∣

∣

∣

·
∣

∣

∣

∣

1, −1
1, σ(a−1)

∣

∣

∣

∣

−1

= 2[1− σ(a)]−1[σ(a−1)− σ(a)][σ(a−1 + 1]−1

⇒ [σ(a−1)− σ(a)][σ(a−1) + 1]−1 = [1− σ(a)]

⇒ σ(a−1)−σ(a)=[1−σ(a)][σ(a−1)+1]=1+σ(a−1)−σ(a)σ(a−1)−σ(a)

⇒ σ(a)σ(a−1) = 1 ⇒ σ(a−1) = [σ(a)]−1.
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So we have constructed the map σ with the following properties:

(1) σ(0) = 0, σ(1) = 1;

(2) σ is an additive isomorphism;

(3) [σ(a)]−1 = σ(a−1);

(4) σ(ab) + σ(ba) = σ(a)σ(b) + σ(b)σ(a).

Thus, σ satisfies the conditions of the Theorem 1.15 from [1]. Taking
into consideration that this theorem formulated for skew fields is also true
for general rings we conclude that σ is either an isomorphism or an anti-
isomorphism (see, also, [2], [29], [32]–[34]).

Let k1 and k2 be arbitrary rings. The map σ : k1 −→ k2 will be called
a semi-isomorphism if it is either an isomorphism or an anti-isomorphism.
So for fixed x0 ∈ B and µ : B −→ X̄1 we can construct a semi-isomorphism
σ : F −→ F1 (see (l6)). If now we replace µ by µ1 = ᾱµ, this will influence σ.

Definition 5. Let X1 and X2 be vector spaces over the skew fields k1

and k2,dim X1 = dim X2 = 2 and σ : k1 −→ k2 is an anti-isomorphism. The
map µ : X1 −→ X2 will be called a semilinear isomorphism with respect to
σ (σ is a semilinear anti-isomorphism), if µ is defined on the basis B (i.e.,
for e1, e2 the images µ(e1) and µ(e2) are fixed), and then we shall continue
as follows:

(i) µ(aei) = σ(a)µ(ei), i = 1, 2;

(ii) µ(a1e1 + a2e2) = [σ(a2)]−1µ(e1) + [σ(a1)]−1µ(e2).

for each a, a1, a2 ∈ k, a1, a2 6= 0.

It is clear that µ0 = 0 and µ(e1 ± e2) = µ(e1)± µ(e2).
Now let us turn back to our considerations. We have the following alter-

natives:
(i) σ is an isomorphism. Then

f1(ax0 + a1x1) = f(x0 + a−1
0 a1x1) = F1[µ(x0) + σ(a−1

0 a1)µ(x1)]

= f1[µ(x0) + [σ(a0)]−1σ(a1)µ(x0)] = F1[σ(a0)µ(x0) + σ(a1)µ(x1)].

(ii) σ is an anti-isomorphism. Then

f1(a0x0 + a1x1) = f1(x0 + a−1
0 a1x1) = F1[µ(x0) + σ(a−1

0 a1)µ(x1)]

= F1[σ(a−1
1 a0)µ(x0) + µ(x1)] = F1[µ(x0) + σ(a1)[σ(a0)]−1µ(x1)]

= F1[σ(a0)[σ(a1)]−1µ(x0) + µ(x1)] = F1[[σ(a1)]−1µ(x0) + [σ(a0)]−1µ(x1)].

Thus, for fixed x0 ∈ B and µ : B −→ X̄1 we have defined the semi-
isomorphism σ and the σ-semilinear (anti)-isomorphism µ, though for all
x ∈ X̄ it is true that f1(x) = F1µ(x).
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Define the subring K1 ↪→ F1 as follows: f(kx0) = K1µ(x0). It is clear
that K1 is a k1-submodule in F1. Let us show that

(a) f(kx1) = K1µ(x1),

(b) f(k(a0x0 + a1x1)

=

{

K1([σ(a1)]−1µ(x0)+[σ(a0)]−1µ(x1) if σ is an anti-isomorphism,
K1(σ(a0)µ(x0)+σ(a1)µ(x1) if σ is an isomorphism.

(a) The k-points kx0, kx1, k(x0+x1), k(x0−x1) are harmonic and kx0 ⊂
k(x0 ± x1) + kx1. From this in general we cannot conclude that f(kx0) ⊂
f(k(x0 ± x1)) + f(kx1), though F1µ(x0) ⊆ F1[µ(x0) ± µ(x1)] + F1µ(x1),
and the points F1µ(x0), F1µ(x1), F1[µ(x0) + µ(x1)], F1[µ(x0) − µ(x1)] are
harmonic. By the definition of the harmonic map, in the images f(kx0),
f(kx1), f(k(x0 + x1), f(k(x0 − x1)), we can find harmonic k1-points

k1[α1µ(x0)], k1[α2µ(x1)], k1[α3(µ(x0)+µ(x1))], k1[α4(µ(x0)−µ(x1))].

In fact, we can choose the elements α1, α2, α3, α4 in such a way that
αi = α, i = 1, 2, 3, 4:

k1[α1µ(x0)] ⊂ k1[α2µ(x1)] + k1[α3(µ(x0)− µ(x1))] ⇒ α1 = α3β = α2,

k1[α3(µ(x0)− µ(x1))] ⊂ k1[α1µ(x0)] + k1[α2µ(x1)] ⇒ α3 = ξα1 = γα2.

Consequently, β, ξ, γ are invertible elements so that α1 = α2 = α3. The
same version is also true for α4, i.e., αi = α4. It is obvious that we can
choose α such that k1[αµ(x0)] ⊆ k1µ(x0) ⊆ f(kx0).

Thus we have

k1[αµ(x0)] ⊂ k1[α(µ(x0)± µ(x1))] + k1[αµ(x1)]

⋂
∣

∣

⋂
∣

∣

⋂
∣

∣

k1µ(x0) k1[µ(x0)± µ(x1)] k1µ(x1)

⋂ ⋂ ⋂

f(kx0) f [k(x0 ± x1)] f(kx1)

⋂ ⋂ ⋂

F1µ(x0) ⊂ F1[µ(x0)± µ(x1)] + F1µ(x1) .

Let b ∈ K1 be an arbitrary element. Then we get

b[αµ(x0)] = α1[α(µ(x0)− µ(x1))] + α2[αµ(x1)]
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⇒ b = α1 = α2 ⇒ bµ(x1) ∈ f(kx1) ⇒ K1µ(x1) ⊆ f(kx1).

Suppose now that cµ(x1) ∈ f(kx1). Changing the roles to x0 and x1, we
get cµ(x0) ∈ f(kx0) = K1µ(x0) ⇒ c ∈ K1 ⇒ f(kx1) = K1µ(x1). It is clear
that f(k(axi)) = K1µ(axi), i = 0, 1 are true for arbitrary a ∈ K.

(b) Suppose that σ is an anti-isomorphism. The k-points

k(a0x0), k(a1x1), k(a0x0 + a1x1), k(a0x0 − a1x1)

are harmonic. So we have

f(k(aixi)) ↪→ F1µ(aixi), i = 0, 1;

f [k(a0x0 ± a1x1)] ↪→ F1([σ(a1)]−1µ(x0) + [σ(a0)]−1µ(x1)].

Let b ∈ K1, then

bµ(a0x0) = bσ(a0)µ(x0) ∈ F1([σ(a1)]−1µ(x0)

+ [σ(a0)]−1µ(x1)) + F ([σ(a1)]−1µ(x0)− [σ(a0)]−1µ(x1))

⇒ bσ(a0)µ(x0) = a1([σ(a1)]−1µ(x0) + [σ(a0)]−1µ(x1))

+ a2([σ(a1)]−1µ(x0)− [σ(a0)]−1µ(x1))

⇒ a1 =a2⇒bσ(a0)µ(x0)=2a1[σ(a1)]−1µ(x0)⇒2a1 =bσ(a0)σ(a1)

⇒ bσ(a0)σ(a1)([σ(a1)]−1µ(x0) + [σ(a0)]−1µ(x1))

∈ f [k(a1a0(a0x0 + a1x1))] ↪→ F1σ(a0)σ(a1)
[

[σ(a1)]−1)µ(x0)

+ [σ(a0)]−1µ(x1)
]

⇒ K1([σ(a1)]−1µ(x0)

+ [σ(a0)]−1µ(x1)) ⊆ f [k(a0x0 + a1x1)].

On the other hand, if

c([σ(a1)]−1µ(x0) + [σ(a0)]−1µ(x1)) ∈ f [k(a0x0 + a1x1)],

then we get

c[σ(a1)]−1µ(x0) = cµ(a−1
1 x0) ∈ f [kµ(a−1

1 x0)]

= K1µ(a−1
1 x0) = K1[σ(a1)]−1µ(x0);

c[σ(a0)]−1µ(x1) ∈ K1[σ(a0)]−1µ(x1) ⇒ c ∈ K

⇒ f [k(a0x0+a1x1)]=K1([σ(a1)]−1µ(x0)+[σ(a0)]−1µ(x1)).

The case where σ is an isomorphism is easier and can be proved by similar
arguments.

If α ∈ k, x ∈ X̄ \ 0, then we have

K1σ(α)µ(x) = K1µ(αx) = f [k(αx)] ⊆ f(kx)

= K1µ(x) ⇒ K1σ(k) ⊆ K1.
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In general, the constructed subring and the maps µ and σ are not unique.
If 0 6= a ∈ F , then K2 := K1a−1 is a k1-submodule and µ1 := aµ is the
semilinear (anti)-isomorphism with respect to σ1 = aσa−1. In fact

K2σ1(k) = K1a−1aσ(k)a−1 = K1σ(k)a−1 = K1a−1 = K2

⇒ K2µ1(x) = K1a−1aµ(x) = K1µ(x).

Consequently, there exists a ring K1 such that 1 ∈ K1. In fact, K1 and
µ can be constructed up to a constant factor.

Thus the following inclusions are true:

σ(k) ↪→ K1, σ(k) ↪→ k1 ↪→ F1.

By the definition of f : M(x) −→ (X1) we have K1µ(X) ⊆ X1. Thus we
prove

Theorem 1 (Representation of Harmonic Maps by the Semi-
linear Isomorphisms). Let k be a non-commutative left principal ideal
domain, 1

2 ∈ k and X be a torsion-free module over k, dimp X = 1.
If f : P (X) −→ Mk1(X1) is a harmonic map, then there exist a semi-
isomorphism σ : F −→ F1, a σ-semilinear (anti)-isomorphism µ : X −→
X1 and a subring K1 ↪→ F1, 1 ∈ K1, such that K1µ(X) ⊆ X1,

σ(k) K1

k1 F1

��� � � �
��? ?

-

-

and f(kx) = K1µ(x) for all x ∈ X.

From the theorem we get: if f : P (X) → P (X1) is a bijection, then
K1 = k1 and k1µ(X) = X1. So we have

Corollary (K. von Staudt’s Theorem). Let k be a noncommutative
left principal ideal domain, 1

2 ∈ k; X be a torsion-free module over k,
dimp X = 1. The bijection f : P (X) −→ P (X1) is harmonic if and only
if there exist an isomophism or an anti-isomorphism σ : k −→ k1 and σ-
semilinear isomorphism µ : X −→ X1 such that f(kx) = k1µ(x) for every
x ∈ X.

Proposition 7. Let µ and µ1 be the semilinear (anti)-isomorphisms with
respect to σ, σ1 : F −→ F1 and dim X̄ ≥ 2. If K and K1 (1 ∈ K,K1) are
subrings of F such that K1µ1(x) = Kµ(x) for all x ∈ X and
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K

F1

� � ��

��

σ(k) K1

k1 F1

��� � � �
��? ?

-

-

?

�

�

then there exists an element a ∈ K such that

K1 = Ka−1, µ1 = aµ.

For this suppose that the points Fx and Fy are distinct. Then there
exist a, b, c ∈ F such that

µ1(x) = aµ(x), µ1(y) = bµ(y), µ1(x + y) = cµ(x + y)
⇒ aµ(x) + bµ(y) = µ1(x) + µ1(y) = µ1(x + y)

= cµ(x + y) ⇒ a = b = c ⇒ µ1(z) = aµ(z).

Since FX = X, we get µ1(x) = aµ(x) for all x ∈ X̄. Let x ∈ X \ 0; then

Kµ(x) = K1µ1(x) = K1aµ(x) ⇒ K = K1a,K1 = Ka−1.

As 1 ∈ K1, it is clear that a ∈ K.
Some of results presented here were announced in [40], [41].
To conclude we would like to note that the remarkable comprehensive

monograph [42] has recently been published, describing the state of the art
of this field and prospects for further study.
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