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A;-NUCLEAR OPERATORS AND A,-NUCLEAR SPACES IN
p-ADIC ANALYSIS

A. K. KATSARAS AND C. PEREZ-GARCIA

ABSTRACT. For a Kothe sequence space, the classes of Ag-nuclear
spaces and spaces with the Ag-property are introduced and studied
and the relation between them is investigated. Also, we show that,
for Ag # co, these classes of spaces are in general different from the
corresponding ones for A9 = cp, which have been extensively studied
in the non-archimedean literature (see, for example, [1]-[6]).

INTRODUCTION

Throughout this paper K will be a complete non-archimedean valued
field whose valuation | - | is non-trivial, and F, F, ... will be locally convex
spaces over K. We always assume that F, F,... are Hausdorff.

It is well known (see [5]) that a locally convex space E is nuclear if and
only if

(1) For every Banach space F', every continuous linear map (or operator)
from FE into F' is compact.

Nuclear spaces are closely related to the locally convex spaces E satisfying
the following property:

(2) Every operator from F into ¢ is compact (see [5]).

On the other hand, it is well known that if F' is a normed space, then an
operator T from F into F' is compact if and only if there exist an equicon-
tinuous sequence (f,,) in E’, a bounded sequence (y,) in F, and an element
(An) of ¢g such that

T(x) =Y Aufal@)yn Ve E (+)
n=1
(an operator satisfying this condition is called a nuclear operator, see [7]).
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In [7] and [8] the authors studied several properties of operators T which
can be represented as in (*) where ()\,) belongs to some Kothe sequence
space Ag. They are called Ag-nuclear operators.

Let us introduce for a locally convex space E the following properties:

(1) For every Banach space F', every operator from F into F is Ag-
nuclear.

(2") Every operator from F into ¢g is Ag-nuclear.

In this paper we study property (1) as related to (2'). We show that if
Ao # co, the class of spaces satisfying property (1) (resp. (2')) is in general
different from the corresponding one for Ag = ¢g.

In the classical case of spaces over the real or complex field, analogous
problems have been studied by several authors (see, for example, [9]-[14]).

§ 1. PRELIMINARIES

Let E be a locally convex space over K. We will denote by cs(E) the
collection of all continuous non-archimedean seminorms on E. For p €
cs(E), E, will be the associated normed space E/ker p endowed with the
usual norm, and 7, : E — E, will be the canonical surjection. F is said to
be of countable type if for every p € cs(E), E, is a normed space of countable
type (i.e., E, is the closed linear hull of a countable set). For p € cs(E) and
r >0, B,(0,r) will be the set {x € E : p(z) < r}. Also, for each continuous
linear functional f € E’, we define || f]|, = sup{|f(x)|/p(z) : x € E, p(z) #
0}.

Next, we will recall the definition of a non-archimedean Koéthe space
A(P). By a Kothe set we will mean a collection P of sequences a = (a,)
of non-negative real numbers with the following properties:

(1) For each n € N there exists & € P with «a,, # 0.

(2) If o, € P, then there exists 8 € P with o, o’ < 3, where o < 8
means that there exists d > 0 such that a,, < dg,, for all n.

For @ € P and a sequence & = (§,) in K, we define p,(§) = sup,, an|&n].
The non-archimedean Kothe sequence space A(P) is the space of all se-
quences ¢ in K for which p,(§) < oo for all @« € P. On A(P) we consider
the locally convex topology generated by the family {p, : & € P} of non-
archimedean seminorms. Under this topology A(P) is a complete Hausdorff
locally convex space over K. The set |A] = {|z| : + € A(P)} is a Kothe
set. By A we will denote the Kéthe space A(|A]). Also, by Ag = Ao(P) we
will denote the closed subspace of A(P) consisting of all £ = (&,,) for which
anl&n| — 0 for each a@ = (av,) € P. In case P consists of a single constant
sequence (1,1,...), we have A(P) = £* and Ao(P) = ¢o. Also, we give the
following interesting example:

Let B = (b*) be an infinite matrix of strictly positive real numbers and
satisfying the conditions b < bF+1 for all k,n. For each k, let ak) =
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(b%,05,...). Then, P = {a® : k = 1,2,...} is a Kothe set for which
Ao(P) coincides with the Kothe space K(B) = {(Ay) : Ay € K,Vn and
lim,, [\, [bF = 0, k = 1,2,3,...} associated with the matrix B (see [4]).
Also, the topology on Ag(P) for this P coincides with the normal topology
on K (B) considered in [4]. This kind of spaces play an important role in p-
adic analysis, since every non-archimedean countably normed Fréchet space
E with a Schauder basis can be identified with K (B), for some infinite
matrix B ([4], Proposition 2.4).

We will say that the Kothe set P is a power set of infinite type if (i): For
each o € P we have 0 < «a,, < a 41 for all n, and (ii): For each o € P there
exists 8 € P with o? < 3. We will say that P is stable if for each a € P
there exists § € P such that sup,, aa, /0, < 0o . By [7], Proposition 2.11,
P is stable if and only if A(P) (or Ag(P)) is stable. (Recall that a locally
convex space F is called stable if E x F is topologically isomorphic to E.)

Finally, we will recall the concepts of Ag-compactoid sets and Ag-nuclear
operators (see [7]). For a bounded subset A of a locally convex space F,
p € cs(E) and a non-negative integer n, the nth Kolmogorov diameter
On,p(A) of A with respect to p is the infimum of all |u|, u € K, for which there
exists a subspace F' of E with dim(F") < n such that A C F+uB,(0,1). The
set A is called Ag-compactoid if for each p € cs(E) there exists £ = (&,) € Ao
such that 6, ,(A) < |£,41] for all n (or equivalently a,,d,—1,(A) — 0 for
all & € P). An operator (continuous linear map) T' € L(FE, F') between two
locally convex spaces E,F over K is called:

(1) Ag-nuclear if there exist an equicontinuous sequence (f,) in E', a
bounded sequence (y,) in F, and an element (\,,) of Ay such that

Tx = Z Anfn(@)yn Yz € E;
n=1

(2) Ag-compactoid if there exists a neighborhood V' of zero in E such
that T'(V') is Ag-compactoid in F

(3) Ap-quasinuclear if for each ¢ € cs(F') there exist a sequence (f,) in
E’, ap e cs(E), and an element (A,,) of Ag such that || f,||, < [As| (n € N)
and ¢(Tz) < sup,, |fn(z)| for all x € E. (For the ideal structure of these
classes of operators see [7].)

By Theorem 4.4 of [7], every Ag-nuclear operator is Ag-compactoid.
Also, every Ag-compactoid operator is Ag-quasinuclear. Indeed, if T" is Ag-
compactoid and ¢ € cs(F), then 7, 0T : E — Fy, is also Ag-compactoid
([7], Proposition 3.21) and so my0T is Ag-nuclear ([7], Theorem 4.7). Hence,
T is Ap-quasinuclear.

It follows from Theorem 4.6 of [7] that if F' is a normed space, then T is
Ag-nuclear & T is Ag-compactoid < T is Ag-quasinuclear.
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In case Ag = ¢, the concepts of Ag-compactoid set, Ag-compactoid op-
erator, and Ag-nuclear operator coincide with the concepts of a compactoid
set, a compact operator, and a nuclear operator, respectively.

For further information we refer to [15] (for normed spaces) and to [16]
(for locally convex spaces).

From now on in this paper we will assume that the Kothe set P is a
power set of infinite type.

§ 2. SPACES WITH THE Ag-PROPERTY

Locally convex spaces E for which every T € L(F,cp) is compact have
been studied by N. De Grande-De Kimpe in [2] and [3] and more recently
by T. Kiyosawa in [6].

A natural extension of this kind of spaces is given by

Definition 2.1. We say that a locally convex space E has the Ag-pro-
perty if every T' € L(E, ¢g) is Agp-nuclear (or, equivalently, Ag-compactoid).

In this section, we study several properties of spaces with the Ag-property.
In this way, we extend and complete the results previously obtained by N.
De Grande-De Kimpe and T. Kiyosawa.

Proposition 2.2.

(a) If E has the Ag-property and M is a subspace of E such that every
T € L(M,cy) has an extension T € L(FE,c) (e.g., when M is dense or
when M is complemented), then M has the Ag-property.

(b) A locally convex space E has the Ag-property if and only if its com-
pletion E has the Ag-property.

(¢) A quotient of a space E with the Ag-property also has the same prop-
erty.

(d) If P is stable, then the product of a family of spaces with the Ag-
property has the same property.

Proof. Property (a) is obvious.

(b): It follows by (a) that if F has the Ag-property, then F has also the
same property.

Conversely, suppose that E has the Ag-property. Let T € L(E’, ¢p) and
let T} be the restriction of T to E. Since T is Ag-compactoid, there exists
a zero-neighborhood U in E such that T7(U) is Ag-compactoid in ¢y. Then
V = U¥ is a zero-neighborhood in E for which T(V) is Ag-compactoid in
co, and so T is Ag-compactoid.
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(¢): Let M be a closed subspace of E and let S € L(E/M,cy). If
m: E — E/M is the quotient map, then ' = Sow € L(E,¢) is Ag-
compactoid. If V' is a neighborhood of zero in E such that T'(V) is Ao-
compactoid in ¢y, then 7(V') is a neighborhood of zero in E/M for which
S(m(V)) =T (V) is Ag-compactoid in ¢g. Hence S is Ag-compactoid.

(d): Let E = [], E;, where each E; has the Ag-property, and let T €
L(E,cp). Then T is bounded on a neighborhood W of zero in E. This
neighborhood can be taken in the form W = Hl U;, where U; is a zero-
neighborhood in E; and the set J = {i € I : U; # E;} is finite. Clearly,
T vanishes on the subspace [[;; E; of E and so we may assume that [ is
finite, i.e., F = F1 X Fy X ... X E, for some n € N. For j =1,2,...,n, let
mj : E; — E be the canonical inclusion. Since T; = T om; € L(Ej, o) is
Ao-compactoid, there exists a zero-neighborhood V; in E; such that T);(V;)
is Ag-compactoid in ¢yg. Then, V =V; x V4 x - -+ XV, is a zero neighborhood
in E for which T(V) = T4(V4) + ... + T (Vy) is Ag-compactoid in ¢y ([7],
Proposition 3.14). Thus T is Ag-compactoid. [

Now, we fix some notation which we will use in the sequel. For each n €
N, there are unique k, m € N such that n = (2m — 1)2k_1. In the following
lemma 71,72 : N — N will be defined by 71(n) = k and m2(n) = m when
n=(2m — 1)2F-1,

Lemma 2.3. Suppose that P is countable and stable and, for each k €
N, let €% = (¢F),, € Ag. Then there erists a sequence (\y)r of mon-zero

elements of K such that (A m(n)fﬂl((:)) € Ap.

Proof. We may assume that P = (a®),cn, where o) < oFt1 for all
k. Since P is stable, we may also assume that for each k € IV there exists
0 < dp < oo with dp < diy1 such that sup,, a (k) /a(k'H < dj. Choose
Ax € K, 0 < | M| <1 such that p, s (A€F) < k: 1d ' (k € N). We claim
that the sequence () satisfies the requirements.

Indeed let r € NV and let € > 0 be given. Choose ko > max{r, 1/€e}. Also,
choose nf € K with |nf| = max,;,>, |5, | (k,n € N). Then = (nF)n € Ao
for all k € N and so there exists mg € N such that dy, o D)|77m| < € for all
m > mg and all k < kg. Let n > mg2F. If k = m;(n) < r, then k < ko and
hence m > mg. Thus, for k = m1(n) < r, we have

A Ay mEm M| < ok | < ol

ma(n) m2"

77m| < dko 750)|nm| < €.

For r <k = m1(n) < ko, we have

(T)<oz( <dak+1<d ozk‘))
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and, since m > mg we obtain that
al ARl | < diy a0 IER | < e
Analogously, we can prove that if m1(n) = k > ko > r, then we have
ol Akel| < e

Hence, for n > mg.2%, we obtain an |/\m(n)§
completes the proof. [J

m1(n

)| < €, which clearly

Theorem 2.4. Let P be countable and stable. Then the locally convex
direct sum and the inductive limit of a sequence of spaces with the Ag-
property have also the same property.

Proof. Let E = @, E), where each Ej, has the Ag-property and let T' €
L(E, cp). If Iy, : Ey, — E is the canonical inclusion, then T'o I € L(Ey, cp)
is Ag-nuclear (k € N). Therefore, for each k, there exist &¥ = (¢5),, € Ao,
a sequence (yX),, in the unit ball of c, and an equicontinuous sequence
(RE)s in B}, such that

(T o In)(y Z@’;hfn Yk, (y € Ey).

m=1

For each k € N let g, € cs(Ey) with |hE | < g for all m. Also, let
71,72 and (\g)g be as in Lemma 2.3. Then q(z) = maxy |\g| 1qr(zk)
(x = (x)r € F) defines a continuous seminorm on E. For each pair (m, k)
of positive integers, the function g¥ : E — K, x — A 'hF (z;) is a
continuous linear map on E such that |gk, | < ¢ for all k,m. Also, for each
= (k) = > ey Iu(zi) € E we have

Z Z Mg (2

k=1m=1

For n = (2m — 1)28=1 set f, = g¥, € E', 2, = yF, € co, & = Mk, € K.
By Lemma 2.3 (£,)n € Ag. Further, Tw = Y07 | &, fn(z)z, for all z € E,
and so T is Ag-nuclear.

Finally, we observe that the inductive limit of a sequence of spaces is
linearly homeomorphic to a quotient of the corresponding direct sum. [

Remark. A subspace of a space with the Ag-property need not have
in general the same property. Indeed, let Ay = ¢y and suppose that the
valuation on K is dense. Then, > has the Ag-property ([15], Corollary
5.19) but, clearly, cg does not have the same property.

Examples.
1. As we will see in the next section, every Ag-nuclear space has the
Ag-property.
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2. If Ag = co and the valuation on K is dense, then £°° has the Ag-
property.

3. If P is countable and K is not spherically complete, then A has the
Ag-property ([8], Corollary 4.6).

4. If F is an infinite-dimensional Banach space with a basis, then E does
not have the Ag-property. Indeed, FE contains a complemented subspace
linearly homeomorphic to ¢y ([15], Corollary 3.18).

For a locally convex space E over K, we will denote by Ag{ E'} the family
of all sequences (g,) in E’ for which there exist p € cs(E) and (\,) € Ao
such that ||g,||, < |An| for all n. For a sequence w = (g,,) € Ag{E"}, we

define a continuous non-archimedean seminorm p,, on F by
pw(x) = sup|gn(z)] (v € E).
n

The next Theorem gives several descriptions of spaces with the Ag-
property.

Theorem 2.5. For a locally convex space E, the following properties are
equivalent:

(i) E has the Ag-property.

(ii) For every T € L(E,cy) there exist Ty € L(E,Ag), which is Ag-
nuclear, and Ty € L(Ag, co) such that T =Ty o Ty.

(iii) If F is a locally convex space of countable type, then every T €
L(E, F) is Ao-quasinuclear.

(iv) If F is a normed space and T € L(E,F), then T is Ag-nuclear if
and only if its range, R(T), is of countable type.

(v) Let (T},) be an equicontinuous sequence of operators from E into a
normed space F' such that R(T,,) is of countable type for all n and such that
(T}) converges pointwise to a T € L(E,F). Then T is Ag-nuclear.

(vi) For every equicontinuous sequence (f,) in E', which converges point-
wise to zero, there exists w € Ag{E'} such that || fnllp, <1 for all n.

(vii) For every equicontinuous sequence (fy,) in E', which converges point-
wise to zero, there exist (g,) € Ao{E'}, a € P, d > 0, and an infinite matrix
(&) of elements of K, with limy,_,o &y = 0 for all i and |;,] < do; for all
n, such that

If, in addition, P is stable, then properties (1) — (vii) are equivalent to:

(viii) The topology of uniform convergence on the members of Aog{E’'}
coincides with the topology 19 of countable type which is associated with the
topology of E (see [17]).
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Proof. For the equivalence of (i) and (ii) see the proof of Theorem 4.6 in
[7].

(i) = (iii): Let F be a locally convex space of countable type. For every
p € cs(F), the associated normed space F, is of countable type and so F),
is linearly homeomorphic to a subspace of ¢y. Hence mp o T : B — F}, is
Ag-nuclear ([7], Theorem 4.11). Thus T is Ap-quasinuclear.

(iii) = (iv): Observe that, since Ay C cp, we have that every Ag-nuclear
operator is also nuclear, and hence its range is of countable type.

(iv) = (v): Let (T},) and T be as in (v). Since every R(T,,) is of countable
type, the closed linear hull Z of | J,, R(T},) is of countable type. Also, since
Tz € Z for all x € E, (iv) implies that T is Ag-nuclear.

(i) & (vi): From Theorem 4.6 of [7] it follows that a map T € L(F, ) is
Ao-nuclear if and only if there exists w € Ag{E’} such that ||Tz| < p,(z)
for all x € E. Now, apply Lemma 2.2 of [3] to get the conclusion.

(ii) < (vil): By Lemma 2.2 of [3] it follows that a linear map T from
Ao into ¢g is continuous if and only if there exist an infinite matrix (&;;)
of elements of K, an o« € P and d > 0 such that |§;;| < da; for all 4,7,
lim;_o &; =0 for all ¢ and Tw = (3.2, 2;&;5); for all z = (x;) € Ag. Also,
by Theorem 3.3 of [8], it follows that a linear map S € L(E,Ap) is Ao-
nuclear if and only if there exists (gn) € Ag{E’} such that Ta = (g, (x)),
for all z € E. Now, the conclusion follows again by Lemma 2.2 of [3].

Finally, suppose that P is stable.

(vi) & (viil): We first observe that, since P is stable, the family of
seminorms {p,, : w € Ag{E’}} is upwards directed. Also, we know that 7
is the topology of uniform convergence on the equicontinuous sequences in
E’ which converge pointwise to zero. Now, the result follows. [J

Remark. 1If a locally convex space E has the Ag-property, then every
T € L(E,cp) is compact, since Ag C ¢g. But the converse is not true in
general.

Example. Suppose that the valuation on K is dense. It is well known
that every T' € L(€*°, cg) is compact. However, if Ay # ¢, there are opera-
tors from (> to ¢y which are not Ag-nuclear ([8], Corollary 3.7).

§ 3. Ao-NUCLEAR SPACES

Nuclear spaces have been extensively studied in the non-archimedean
literature (see, for example, [5] for a collection of the basic properties of
these spaces). A natural extension of this kind of spaces is the following:

Definition 3.1. A locally convex space F is called Ag-nuclear if for each
p € cs(F) there exists ¢ € cs(E), p < ¢, such that the canonical map
®,, : E, — E, is Agp-nuclear (or, equivalently, Ag-compactoid).
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In this section we study the relationship between the Ag-nuclear spaces
and the spaces with the Ag-property considered in the previous section. We
first need some preliminary machinery.

Let m € N and let €0, ... £0™) be m elements of Ag. For j = (n —
1)m + k, where 1 < k < m, set §; = 57(116). If P is stable, then £ = (&;) € A
(we will denote & by &) % £2) 5 ¢m),

Indeed, let @ € P and let m; € N be such that m < 2™!. Since P is
stable, there exist 3 € P and d > 0 such that a,.am:1 /3, < d for all n.
Given € > 0, there exists ng € N such that dﬁn|§7(,,k)\ <efork=1,....,m
and n > ng. If j > ngm and j = (n — 1)m + k, then n > ngy and so

&1 < dBae] < e

Lemma 3.2. Let P be stable. Then, for each positive integer m, the
function W, + ATF — Ao, W, (€D M) = W x5 €0 s g linear
homeomorphism from Af* onto Ag.

aj|£j| < anm|£j| < Q. 9m1

Proof. Tt is easy to see that ¥, is a bijection. To prove the continuity
of U,,, recall that, given o € P, there exist 8 € P and d > 0 such that
apm < df, for all n, and so, p (¥, (£)) < dmaxlgkgmpﬁ(f(k)) for all
€= (&M, ... ¢M) € AP which proves that ¥,, is continuous.

Also, W1 is continuous. In fact, for £ = (£,) € Ag we have ¥ 1(¢) =
(€D e where €5 = (&, Epmais Eomars---) (k=1,...,m). Also,
for each @ € P we get p,(§) > max1§k§7npa(§(k)), and the result fol-
lows. [

Proposition 3.3. For a locally convex space E consider the following
properties:

(i) For every Banach space F and for every T € L(E,F), there are
Ty € L(E,Ay) and Tx € L(Ag, F') such that T =Ty o Tj.

(ii) E is of countable type and for every T € L(E,cy) there exist Th €
L(E,Ao) and Ty € L(Ag,co) such that T =Ty o Ty.

(iil) If {p; : i € I} is a generating family of continuous seminorms on E,
then E is linearly homeomorphic to a subspace of the product space AJ.

(iv) E is linearly homeomorphic to a subspace of AJ for some set J.

Then, (i) < (i) = (iii) = (iv).

If, in addition, P is stable, then properties (i) — (iv) are equivalent.

Proof. The implication (i) = (iii) can be proved analogously to (1) = (2)
in Proposition 3.7 of [18].

(i) = (ii): Since (i) implies (iii) and since Aq is of countable type, we
derive that E is also of countable type ([16], Proposition 4.12).

(ii) = (i): Let F be a Banach space and let T' € L(E, F).

First, assume that the range, R(T'), is finite-dimensional. Then, there
exists a linear homeomorphism h from R(T') onto a closed subspace M of
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Ap. On the other hand, since the dual of Ay separates the points, there
exists a continuous linear projection ) from Ay onto M. Hence T'= Th o T7,
where Ty = hoT € L(E,Ag) and T, = h™ 1 o Q € L(Ao, F).

Now, assume that R(T) is infinite-dimensional. Since FE is of countable
type, the closure of R(T) is an infinite-dimensional Banach space of count-
able type and so it is linearly homeomorphic to ¢g. Now, the conclusion
follows by (ii).

Now, assume that P is stable. Then, the implication (iv) = (i) can be
proved by using Lemma 3.2 in a similar way as (3) = (1) in Proposition 3.7
of [18]. O

As in Theorems 3.2 and 3.4 of [18] we obtain the following

Proposition 3.4. For a locally convex space E, consider the following
properties:

(i) E is Ap-nuclear.

(ii) For every locally convex space F, every T € L(E, F) is Ao-quasinu-
clear.

(iii) For every Banach space F, every T € L(E, F) is Ag-nuclear.

(iv) For every p € cs(E) there exists w € Ng{E’'} such that p < p,.

(v) The topology of E coincides with the topology of uniform convergence
on the members of Ag{FE'}.

Then (i) < (i) & (iil) < (iv) = (v).

If, in addition, P is stable, then properties (1) — (v) are equivalent.

It is well known (see, for example, [5], Proposition 5.4) that a locally
convex space F is nuclear if and only if F is of countable type and every
T € L(E,cg) is compact. Now, using Propositions 3.3 and 3.4 we get the
following descriptions of Ag-nuclear spaces.

Theorem 3.5. For a locally convex space E, consider the following prop-
erties:

(i) E is Ag-nuclear.

(ii) For every Banach space F and every T € L(E, F), there exists Ty €
L(E,Ao) Ao-nuclear and Ty € L(Ag, F) such that T =Ty 0 Tj.

(iii) E has the Ag-property and it is linearly homeomorphic to a subspace
of AL for some set I.

(iv) E is of countable type and has the Ag-property.

(v) E is linearly homeomorphic to a subspace of some product A} and
every T € L(E, Ag) is Ao-quasinuclear.

Then (i) & (ii) < (iii) < (iv) = (v).

If, in addition, P is stable, then properties (1) — (v) are equivalent.
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Proof. By using Proposition 3.4, the implication (i) = (ii) can be proved
as in Theorem 4.6 of [7].

(ii) = (iii): It follows from Proposition 4.5 of [7] and Proposition 3.3.

(iii) = (iv): It is obvious (recall that Ag is of countable type).

(iv) = (i): Let F be a Banach space and let T € L(E,F). Since F
is of countable type, we have that the closure of R(T) is a Banach space
of countable type, and so it is linearly homeomorphic to a subspace of cg.
By (iv) and Theorem 4.11 of [7] we derive that T is Ag-nuclear. Now, the
conclusion follows by Proposition 3.4.(i) < (iii).

(iii) = (v): It is a direct consequence of Theorem 2.5.(1) =>(iii).

Finally, if P is stable, the implication (v) = (iii) follows from Proposition
4.5 of [7] and our Proposition 3.3. O

Putting together Proposition 2.2, Theorems 2.4, 3.5 and the stability
properties of spaces of countable type ([16], Proposition 4.12), we obtain
the following extension of 5.7 of [5] and Proposition 3.5 of [19].

Corollary 3.6.

(a) Every subspace of a Ag-nuclear space is again Ag-nuclear.

(b) A locally convex space E is Ag-nuclear if and only if its completion
E is Ag-nuclear.

(¢) A quotient of a Ag-nuclear space is also Ag-nuclear.

(d) If P is stable, then the product of a family of Ag-nuclear spaces is
also Ag-nuclear.

(e) If P is countable and stable, then the locally convex direct sum and
the inductive limit of a sequence of Ag-nuclear spaces are also Ag-nuclear.

8 4. SOME REMARKS AND EXAMPLES

It is well known that if F is a nuclear space, then every bounded subset of
FE is compactoid. The corresponding counterpart is also true for Ag-nuclear
spaces.

Proposition 4.1. Fach bounded subset of a Ag-nuclear space E, is Ag-
compactoid.

Proof. Let B be a bounded set of E and let p € cs(E). Since m, : B — E,
is Ag-compactoid (Proposition 3.5), we have that m,(B) is Ag-compactoid in
E,. By [7], Proposition 3.10, we derive that B is Ag-compactoid in E. [J

Remark. The converse of Proposition 4.1 is not true in general. For an
example see [20].

Now, we will give some examples of spaces which are, or are not, Agp-
nuclear.
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By Proposition 3.4 and with an argument analogous to the one used in
the proof of Theorem 5.2 in [18], we can obtain the following result which
will be crucial for our purpose.

Theorem 4.2. Let QQ be a Kdthe set (not necessarily of infinite type).
Then the following properties are equivalent:

(i) A(Q) is Ao(P)-nuclear.

(i) Ao(Q) is Ao(P)-nuclear.

(iii) For each a € Q there exist § € Q with a < B, a permutation o on
N, and (\n) € Ao(P) such that as(ny < [An|By(n) for alln € N.

As a direct consequence we derive the following assertion (cf. [4], Propo-
sition 3.5).

Corollary 4.3. Let K(B) be the Kdithe space associated to an infinite
matriz B = (bF). Then K(B) is Ao-nuclear if and only if for every k there
exist k1 > k, a permutation o on N, and (\,) € Ay such that bf_(n)/b’;tn) <
[An| for all n.

Remark. The criterion in 4.3 can be used to decide easily whether a
non-archimedean countably normed Fréchet space with a Schauder basis is
Ag-nuclear (recall that a such space can be identified with some K (B)).

Observe that since Ag C ¢y, every Ag-nuclear space is nuclear. But the
converse is not true in general. Indeed, we know (see [7], Lemma 2.3) that A
(or Ag) is nuclear if and only if there exists o € P with o, — oo . However,
we have the following

Proposition 4.4. None of the spaces A and Ay is Ag-nuclear.

Proof. Suppose that one of the spaces A or Ay is Ag-nuclear. By Theorem
4.2, given a € P, there exist 8 € P with a < 3, a permutation o on N,
and (A,) € Ag such that ag(ny < [An|Bs(n) for all n. It is easy to see that
the set Ny = {n € N :n > o(n)} is infinite. For n € N; we have

ar < Qg (n) < |>‘n|ﬂa(n) < |>‘n|ﬂn
This contradicts the fact that (\,) € Ag. O

Observe that every Ag-nuclear space has the Ag-property (Theorem 3.5).
But the converse is not true in general. Indeed, if P is countable and K is
not spherically complete, then A has the Ag-property (see the examples in
Section 2). However, with regard to the Ag-nuclearity of A, we have

Proposition 4.5. A is Ag-nuclear if and only if A = Ag.
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Proof. Assume that A = Ag. Let € = (&,) € A and let A € K with [A] > 1.
For each n € N, choose A, € K with |A,| < \/|6n] < |AAL]. Then (A,) € A
and |&,] < |An|.]A2\,| for all n. By Theorem 4.2 we conclude that A is Ag-
nuclear.

Conversely, assume that A is Ag-nuclear and let ¢ € A. By Theorem
4.2, there exist y € A, a permutation o on N, and (\,) € A such that
I€o(m)] < [An¥Yomyl for all n. Since A, — 0, given € > 0 and o € P, there
exits m € N such that |\, |pa(y) < € if n > m. Then, for n > m we have

Oéa(n)|§a(n)| < ‘)‘nlaa(nﬂyo(n)‘ < [Anlpa(y) <e
Hence, £ € Ag. O
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