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LITTLEWOOD-PALEY OPERATORS ON THE
GENERALIZED LIPSCHITZ SPACES

SHANZHEN LU, CHANGMEI TAN, AND KOZO YABUTA

ABSTRACT. Littlewood—Paley operators defined on a new kind of gen-
eralized Lipschitz spaces Sg’p are studied. It is proved that the im-
age of a function under the action of these operators is either equal
to infinity almost everywhere or is in Sg"p, where —n < a < 1 and
1<p<oo.

1. INTRODUCTION

For z € R™, iy > 0, the Poisson kernel is P(z,y) = c,y(y? + |z|?)~(TD/2,
Denote the Poisson integral of f by

faw) = [ £GP~ 29)dz.
Rﬂ.
We have (see [1])

Vf(a,y)] < / G @+ |z — =)~V (1)
RTL

Let us now consider the following two kinds of Littlewood—Paley functions:

s = ( [[ v 1vsePaa)”

I'(z)

and

5@ ={ [[ (=) v stasany
Ryt
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The generalized Lipschitz space £*P consists of functions f which are locally
integrable and satisfy the following condition: there exists a constant C' such
that for any cube @

/ (@) — folPde < ClOI22, ()
Q

where fo = é fQ f(z)dz. Denote the norm of f in £*P by

[ flla,p = inf {C’l/p : C satisfies (2)}.

Recently, Qiu [2] has obtained the following result.

Theorem A. Let 1 < p < o0, —n/p < a < 1/2, a # 0, and X >
max(1,2/p). If f € E*P and Tf is S(f) or gi(f), then either T f(x) = oo
a.e. or Tf(z) < oo a.e., and there exists a constant C' independent of f
such that

1T Fllap < Cllfllap-

We notice that the range of « in Theorem A seems somewhat rough. It
is natural to consider whether the conclusion of the above theorem holds
for —n < a < 1. The last named author of this paper proved that the
conclusion of Theorem A holds for —n/p < a < 1 (see [3]). In this paper,
with the aid of the idea in [4], we shall introduce a variant of £*7, £, and
prove that the conclusion of Theorem A holds for £5"" with —n < a < 1.
Let us first definie &;".

Definition. A locally integrable function f is called a generalized Lips-
chitz function of central type if there exists a constant C' such that (2) holds
for any cube @ centered at the origin. Moreover, the space consisting of all
generalized Lipschitz functions of central type is denoted by &;". We call
Ey'? the generalized Lipschitz space of central type.

It is easy to see that £*P C &P and £;"" is just the bounded mean
oscillation space of central type, BMOg in [4]. Let us now formulate our
results.

Theorem 1. Let 1 <p < oo and —n < a < 1. If f € EF, then either
S(f)(x) = 0o a.e. or S(f)(x) < oo a.e., and there exists a constant C
independent of f such that

1S(Hllap < Cllfllap-
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Theorem 2. Let 1 < p < oo, —n < a < 1, and A > max(1,2/p) + 2/n.
If f € &7, then either g5 (f)(z) = 00 a.e. or g5(f)(z) < o© a.e., and there
exists a constant C = C(n,«,p, \) such that

193 (Plasp < Cll fllwp-

2. SOME LEMMAS

Lemma 1. Let 1 <p< oo, n<a<l,a#0,and0<d, a <d. If
[ €& and Q is a cube centered at the origin with the edge length r, then
there exists a constant C = C(n,p, a,d) such that for any y > 0

/ |f(33) - le dr < Oy—d(ya _,'_Ta)”f‘

yner + |x|n+d

ap- (3)
]R‘!L
See [1] and [2] for its proof.

Lemma 1'. Let 1 <p < oo andd > 0. If f € BMOy = 58”’ and @Q
is a cube centered at the origin with the edge length r, then there exists a
constant C' = C(n,p,d) such that for any y > 0,

/(=) — fol —d y
—_— 7 X < = )
/ gt fapera 4 < O (1+ [lom 211
Rn

Proof. By the known result in [5] we have

/ W@ =Foly < cr=aifo,.

,rn+d + ‘x|n+d

R™

Let R be the cube centered at the origin with the edge length y. Then

|f(z) — fal f(z) — fr]
/yn+d + |x|n+d d(E S / yn+d+ |x|n+d diC
R’n

R

dx _ _
+1fr = fol [ e do < Oyl + o~ — ol
]Rn

Thus it remains to prove

0,p-

fr = fol < C(1+ |10g, 2| ) 17

r
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Let y > r, and let k satisfy 2¥ <y < 28*1pr. Then k < log, 4 and

k
\fr = fal <1fr = faul + > Ife, — fo, |

j=1
ol 1 U s
<> (g R/ 160) = falrde) "+ 32 o

<21+ F)Ifllop
Y

< Z

< C(1+1og2 T)||f|

0,p>

where @}, is the concentric extension of @ by 2* times.

When y < r, by exchanging y and r, we shall get the same estimate as

above with log, { = |log, 4|. O

Let x be the characteristic function of E. For a cube ) in R® and d > 0

let d@Q be the concentric extension of @) by d times.

Lemma 2. Suppose that 1 < p < oo, —n < a < 1, and f € E;P. Let

Q@ be a cube centered at the origin with the edge length r, and hg(z) =
[f(x) — folxoe (x). If there is o' € dQ such that S(hq)(x') < oo, where

d = (8y/n)~ 1, then there exists a constant C = C(n,,p) such that
S(hg)(z) < 00, Yz €dQ

and

1S(hQ) (@) = S(ho)(@)] < Cr|fllap: Vo € dQ.
Proof. Let us first consider the case of o # 0. Fix z € dQ. Set
I~ (x) = {(zy) €T(x) 1y < dr}

and
I'f(z) = {(z,y) €T(z) : y > dr}.
Then
S(hg)(z) < S~ 4+ 8%, 2 €dQ,
where
1/2
s = ([[ v "IVhatewPazdy)
r=(z)
and

—+ 1—n 2 1/2
St = (//y [Vhq(2,y)| dzdy) .

I+ (z)
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Estimating S~ as in [2], we have
ST <O fllap- (4)

For ST we have

+ lfn 2 1/2
ST = |Vhg(z + 2,y)|“dz dy)

F+(0
// =" Vho (2! + 2, )] dzdy)
't (0)
1-n l 2 1/2
//y [Vha(e +2,y) — Vho(a' + 2,y) dz dy)
rt(0)
< S hQ // 1=n
r+(0)
2 1/2
/ IVP(x+ 2 —t,y)VP(' + 2z +t,y)| | f(t) — fQ|dt) dz dy}
Qc
Note that
n+1 1/2

VP(a,y) - VP, y"(Z\ax] r) = 5 PE)

where —2— = -2 By the mean value theorem we have
a:l?n+1 By

0 0
_— — _— P(2
‘ o, p(x,y) oz, («',y)

0
= |V— P(x, -2, 0<0;, <1,
‘ 8:vj ( y) z-‘raj(w—w')' | /
where
0 C

LA PR

| az; VN Wyt el
Thus

IVP(z+z—ty) — VP +z—t,y)|
n+1 1/2
—2(n+2
SC’|x—x'|{z(y—|—|x—|—z—t+9j(x—a:’)|) (“} . )
j=1
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Since (z,y) € TT(0), z,2' € dQ, and t € Q, we have [t| > r/2, |z| < v,
|z] <r/16 < |t|/8, and |z — 2’| < r/8 < |¢|/4. Thus,

t] < |z 42—t +0;(x — )| + |z + [2] + |z — 2|
<l|lv+z—t+0;(x—2)|+t]/8+y+|t|/4

and
5 WHlt) <le+z—t+0;(z—a)|+y,
where 1 < j < n|+ 1. Therefore
|VP(ac+z—t,y)—VP(x’—!—z—t,y)\SL. (6)
(y +[t))"+2
Using (6) and (3), we obtain
1/2
ST < S(ho)(w +C // 1- " /W } dzdy}/
1/2
< S(he)(') + // 2 [y 4 1) Sl ) ddy
r'+(0)
1/2
< S(hQ)(ﬂf’)JrC?“IIfllmp{/ / Yy ) dzdy |
dr |z|<y
< S(hQ)(@") + Cr|| flla.p- (7)

Combining (4) with (7) we have

S(he)(x) < S(he)(@") + Cr| fllap-
Thus S(hg)(x) < co. Exchanging x and z’, we obtain

5(hq)(x) = S(hQ) (@) < CT|| fllap-

Hence the proof of Lemma 2 is complete for the case of a # 0.
When a = 0, by using Lemma 1’ instead of Lemma 1 we obtain

.l o] 10~ o %
St < S(hg)(a') + C // /y+|t|)n+2dt} dzdy}

r+(0)

< () ") + C{ [ s [y 1+ |1og, L))l Pt}

r+(0)
1/2
0,p / / 1—|—|log2 |) dzdy}

dr |z|<y

< S(hg)(@") + Crl| fllo
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7 /
< S(ha)(@') + Crfllop{ [ u (1 + logyul)*au}

1
< S(hq)() + €1 o 0

Now, it is easy to see that the conclusion of the lemma for o = 0 follows
from (8) and (4) with a =0. O

Lemma 3. Under the hypothesis of Lemma 2, if there is ' € dQ such
that gx(hqg)(z') < oo, where X > max(1,2/p) + 2/n, then there exists a
constant C = C(n,a, A\, p) such that g5 (hg)(z) < co and

93(h@) (@) = g3(z') < CT|fllacp, Vo € dQ.

Proof. We only consider the case of a@ # 0. As in Lemma 2, the proof in
the case a = 0 is similar. Let

Je={(z,9) € Riﬂ Szl <28 0<y < Zk_zr}, k>0.
For fixed x € d@ we have
gi(hQ)(z) < G +GT,

“ = (// <yf|z)myl_n|w@(x+ Z»y)\dedy)l/2
Jo

o= // (yflzl)knyl_nwhcz(f“rZ7y)|2dzdy)1/2

R+

b \o

Note that if (z,y) € Jo, x € dQ, and t # @, then |z| < r/4, |z| < r/16, and
|t| > r/2. Thus

where

and

5)
|t|S|t—$—z|+|x\+|z\§|x+z—t|+§|t|

and

1
Sl < fotz—tl+y.

By (1) and Lemma 1 we get

no r _ 2 1/2
¢ <cf //(ny)A y [/ (yﬂ';ﬁ(j)z fﬁl)nﬂdt} dzdy}
Ji

c

0

" r — 2 1/2
ol [[ () )

c
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<o [ [ L) v b gy}

dr |z|<y

1/2
< Cr |l ([ o)

0
<O fllap

To estimate CT we observe that

o <{ J] G2)"vwrats o)

R\ Jo

] (2 oot

R\ Jo

/ 2 1/2
— Vhg(z' + z,v)| dzdy}
< gi(ho)(@') + D,
where

p={ ] ()"t

Ri+1\J0

_vh , 9 1/2
0@ + z,y)|*dzdy

<0{§1<2’“r>”" [ e

T\ Tk -1

x {/|VP(:17+zft,y) ~ VP& +z—t,y)| |f(t)—fQ|dt]2dzdy}1/2
QC

> 1/2

< C{ Z(Qk’l“)_ML(Ak +Bk)}

k=1

Here
Ak — // y)\n—i-l—n
J\JTk—1

X [ / |VP(x 4z —t,y) — VP + 2z —t,y)||f(t) — foldt 2dzdy7

:
Qs
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Bk _ // y)\n+17n

J\Jk—1
2
<[ [ OP@ ety - VPG = )£~ faldt] dedy,
Qr+1\Q
and Qpry1 = 2FM1Q. Without loss of generality we may assume that

max(1,2/p) +2/n < A < 3+ 2/n. By the easy inequality (see [3])

VP (x,y) = VP, y)|

1 1
<C —’( ),v,’eR”, >0,
== e\G e Y ey T !

together with the Minkowski inequality for integrals, we have

By < Cr? // y)‘nH_n{ / |f(t) _fQ|((y_|_ |x—|—1z—t|)"+2

Jk\Jk,1 Qk+1\Q

1 2
dt} dzd
+(y+\m’+z—t|)"+2> =

< Cr? // Antt= " / 1£(t) = fol (y+|x+1z_t|)n+z

0 Rn Qrt1

1 2
dt} dzd
+(y+\x’+z—t|)"+2> =
® Ant+l-n 1/2 12
<o [[ [ 11wl . dy) " dt] dz
(y+|x + 2 — t])2(n+2)
R Qri1 0
7 An+17n J 1/2d 2d
d
/ 6= Jal /(y+|x '+ z — t])2(n+2) y) i
R™ Qk+1 0
fQ| 7 /\n+1 n 1/2 12
=Cr / \z+x t| (Bn—An+2) /2 1+y )2(n+2) y) dt} dz
R™ Qg1 0
2 |f(t) - fal y e )1/2 r
+Cr /[ ot —t|Gn— ,\n+2)/2 1—|—y 2(n+2) dt| dz
R™ Qrq1 0

2 lf(t) — fal 2
=Cr /(/ |u_t|n7[(/\n71)72]/2dt) du.

R™ Q41
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Using the Hardy-Littlewood—Sobolev theorem on fractional integration with
vy=[A=1)n—-2]/2,g=2,and 1/s =1/g+v/n=X/2—1/n (see [6]), we
obtain

<cr{( [ 112~ fapraz)"”

Qr+1
2
Qa7 forss — fQ|} Qg [2075-1/9)
< CT2{|Qk+1|1/p+a/n||f||a,p

oY 2 s
F1Qks 1|22l b2 Qi [207541/P)
< Cr3 (2% (2072 fllap
< (2 (@2@-Dpa| p)

To estimate Ay we observe that if (z,y) € Jp\Jk—1 and ¢ &€ Qi11, then
t| > 2%, k> 1, and |z| < 25727 < |t|/4. Thus,

ItIS|x+z—t+9j(x—x’)|+lw\+|Z|+Ix—ff’|

<|J;+z—t—|—9(x—a:)|+f|t|

By Lemma 1 we have

Ak<0// Ant1— n /Wdt} dz dy

T\ Jk+1
n n « «@ 2
<o [[ @ @+ ) e dy
Je\Jrk+1
2k
<C’I" ( ) 4+2aHf||a’p/ / y/\7z+1—ndzdy
0 |z|<2Fkr

< CTQa (2k7,)/\n22k(a71) ||fHap
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Combining the estimate of Ay with that of By, we obtain

o 1/2
D < e Y @n @iy rreaen ) 1, VY < oo,
k=1

Therefore
9 (he)(@) < gi(hQ) (") + Cr%| flla,p-

As in the last part of the proof of Lemma 2, we have
1931Q)(@) = g3(hQ)(@') < Cr¥ fllayp- O

3. THE PROOFS OF THE THEOREMS

Let T be one of the Littlewood—Paley functions as in Section 1. Suppose

that T'f(x) # oo a.e. Then |F| = H{z : Tf(x) < co}| > 0. Thus there is
a cube @' centered at the origin such that |Q' N E| > 0. Set @ = (1/d)Q’
(then Q' = dQ). We write f as

@)= fo +[f(x) = folxo () + [f(2) — folxy. (2)
£ fo +90(@) + ha(x).
Since
Tf(x) <Tgq(z) + Tho(z) 9)
and
Tho(z) <Tf(z)+ Tgq(w), (10)

it is easy to see that the inequality

1/
laally = ( [ 17) = foldt) " < CIQM™ oy (11)
Q

implies that go € LP. Then it follows from the LP-boundedness of the
Littlewood—Paley operator that T'gg(z) < oo a.e.. Since |Q'NE| > 0, there
is 2’ € Q' NE C dQ such that T f(2') < oo and Tgg(2") < co. By (10) and
Lemmas 2 and 3, we have Thg(z') < oo and

Thg(z) < oo, VxedQ =Q'.
By (9) we obtain
Tf(z) <oco ae z€Q.

Finally, let the edge length of Q' tend to oco; we have T'f(x) < oo a.e.,
x e R™.
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Let @' be a cube centered at the origin, and @ = (1/d)@’. Choose
x’ € dQ@ so that Thg(z') < co. Then it follows from (11) and Lemmas 2
and 3 that

([ 15w - Thotepraz)
J

< ([ Iraotpas) " + ( [ Irha(e) - Tho(erar) "
Q' Q'

< Clgally + CIQ TP r( fllaw
< CIQ' TP fll -
This completes the proof of the theorems. [
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