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GEOMETRY OF POISSON STRUCTURES

7. GIUNASHVILI

ABSTRACT. The purpose of this paper is to consider certain mecha-
nisms of the emergence of Poisson structures on a manifold. We shall
also establish some properties of the bivector field that defines a Pois-
son structure and investigate geometrical structures on the manifold
induced by such fields. Further, we shall touch upon the dualism
between bivector fields and differential 2-forms.

1. SCHOTEN BRACKET: DEFINITION AND SOME PROPERTIES

1.1. Let L be any Lie algebra over the field of real numbers and F' be
any commutative real algebra with unity. It is assumed that L acts on F
and this action has the following properties:

(a) F is an L-modulus: for each (u,v,a,b) € L x L x F x F we have
[u, v]a = uva — vua;

(b) Leibnitz’ rule: u(a-b) = (ua) - b+ a- (ub).

1.2. Let us consider the spaces:

CH(L,F)={a:Lx---xL — F | aisan antisymmetric and polylinear
form}, k > 0;

CY(L,F) = F;

CK(L,F) = {0} for k <0.

The space C(L, F') = > ,.cs C¥(L, F) is an antisymmetric graded algebra
with the operation of exterior multiplication (see [1]).
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348 7. GIUNASHVILI

1.3. We have two endomorphisms on the space C(L, F):

(81&)(“1, s 7uk+1) = Z(_l)i+j71a([uia uj]7u17 ceey aia s aajv s 7uk+1)a
1<j
k+1
(O2a)(ut, ..., upy1) = Z(_l)liluia(ulv oy Uy URg1),
i=1

where « is an element of C*(L, F).

The endomorphism d = d — 0; is the coboundary operator defining the
cohomology algebra of L (see [1]).

1.4. Tt is easy to check that the operators J; and J- are antidifferentia-
tions, i.e., for each « € C™ (L, F) and 3 € C(L, F) we have

81(0& /\ﬁ) - (8104 A B+ (—1)ma AN 816) =0,
62(a AN ﬁ) — ((920[ NGB+ (—1)ma N 826) =0.

Therefore the operator d is an antidifferentiation, too.

1.5. For each k € Z the space Cx(L, F) = End(F)®(A¥ L), where End(F)
is the algebra of endomorphisms of F and A*L is the exterior degree of
L, is a subspace of Hom(C*(L, F), F): for p ® u € End(F) ® (A*L) and
w € CK(L, F), we have (p ® u)(w) = p(w(u)).

The multiplication in C*(L, F') =}, ., Cx(L, F') is defined by the equa-
tion (p @ u) - (b © v) = (90 1) & (u A v).

1.6. Define the operators:

ot = (81)*, 9*> = (82)* : Hom(C*(L, F), F) — Hom(C*~Y(L, F), F)
(az(@)(a) = (P(ai(a))v 1=1,2, p€ Hom(ck(L’F)’F)a
aecCYL,F), nel.

The subspace C*(L,F) C Y, ., Hom(C*(L, F), F) is invariant with re-
spect to the operators ' and 0°:

O (@ (A Au)) = 0@ Y (=) ug, ug] A

i<j
/\ul/\/\ﬁl/\/\ﬁj/\/\um,
m
(@ (ur A Ag)) = D (=1) " Hpou) ®
=1

®u1/\~--/\ﬂi/\.../\um.

The operator 9% — 9! will be denoted by d*.
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1.7. Let us consider the exterior algebra of L : A(L) = Y722, A*L which
is a subalgebra of C*(L, F'). The space A(L) is an invariant subspace with
respect to the action of the operator d':

On(ur A M) =D (=1 ug ug) Aug Ao ATy A AT AL A .
1<J

1.8. Generally speaking, the operator d' is not an antidifferentiation.

Definition. We define the map (Schoten bracket [2]) [, | : A(L) x
A(L) — A(L) as follows: let [u,v] = O (uAv) — (0% (u) Av+(—1)"undt (v)
for u € AL and v € A(L).

1.9. The space A(L) is not an invariant subspace of C*(L, F') with respect
to the action of the operator 92:

PA@ (A Aum)) =D (1) @ (ug Ao Al Ao A,
=1

However it is easy to show that for each u € A™L and v € A(L) we have
*(uAv) — (0*(u) - v+ (—=1)™u - 9*(v)) = 0.
Therefore we can define the bracket as
[u,v] = (d*(u) - v+ (=1)"u-d*(v)) — d*(u - v).

1.10. Tt is easy to check that for each u € AL, v € AL, w € A*L, we
have:

(a) [’LL,’U] = (_1)mn[vvu];

(b) [u,v A w] = [u,v] ANw + (—=1)™" "0 A [u, w];

(©) (—1)™*([a, o], 0] + (—1)™ [0, w], u] + (—1)"¥[[w, ], v] = 0.

Let L be an F-modulus and assume that for each (u,v,a,b) € L x L X
F x F we have:

(a) (au)b = a(ub);

(b) [u, av] = (ua)v + alu,v].

For each k = 1,2,...,00 let V¥(L, F) denote an exterior degree of L as
an F-modulus: for a € F and {uq,...,ux} C L we have au; AugA...Aug =
up Aaug Aug A ... Aug. Assume that VO(L, F) = F and V*(L, F) = {0}
when k < 0.

The space V(L,F) = 3, ., V¥(L, F) is an aniticommutative graded al-
gebra.

1.12. Let J : A(L) — V(L, F')/ be the natural homomorphism which is
an epimorphism onto ZkeZ\{O} VE(L, F).
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Proposition. If elements {u,u',v,v'} C A(L) are such that J(u) =
J@W') and J(v) = J(v'), then J([u,v]) = J([u/,v']).

It is easy to prove this using the formulas (b) (1.10) and (b) (1.11).

1.13. Definition. We define the Schoten bracket on V (L, F') as follows:
for {z,y} C ke (o) VE(L, F) the bracket [z,y] is defined as J([u,v])
where J(u) = z and J(v) = y. We extend the definition to the space
V(L, F) using equalities (b) (1.10) and (b) (1.11), namely: if u € V'(L, F)
and a € VO(L, F) = F, then [u,a] = u(a); for u=wuy A... Auy, € VF(L, F)
and ¢ € F we use formula (b) (1.10). Finally, we recall that elements
auy Aug A ... Aug form the basis of V(L, F).

1.14. In the special case where F' = C°°(M) is the algebra of smooth
functions on a smooth manifold M, L = V’(M) is the Lie algebra of smooth
vector fields on the manifold M and V¥(M) is the space of antisymmetric
contravariant tensors of degree k (V¥ (M) is locally isomorphic to AKV/(M)).
The bracket defined above coincides with the well-known Schoten bracket
(see [2]).

In that case if u € V™(M), v € V*(M), and w € Hom(V™+ "1 (M),
C>*(M)) is a differential form, then the formula defining the bracket by
means of d* (see 1.9) gives

w(lu, v]) = (=1)"™" 7 (d(iuw)) (w) + (1) (d(iuw)) () = (dw)(u Av),

where d is the well-known exterior differentiation of differential form (see
[3]).

The above formula can be used as yet another definition of the Schoten
bracket.

2. PoI1ssoN BRACKET AND A BIVECTOR FIELD

2.1. Thus we have:
M is a finite-dimensional smooth manifold;
VO(M) = C>(M) is the algebra of real-valued smooth functions on M;

VE(M), k > 0, is the space of antisymmetric contravariant tensor fields
of degree k;

VE(M) = {0} when k < 0;

V(M) =3,c; VE(M) is the exterior algebra of polyvector fields;
A0(M) = C (M)

A*(M) = {0} when k < 0;

A*(M), k > 0, is the space of exterior differential forms of degree k.
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At the same time it is clear that A*(M) = Hom(V*(M),C>(M)) and
VE(M) = Hom(A*(M),C>(M)) for k € Z (in the sense of homomorphisms
of the C'*°(M)-moduli).

2.2. An element of the space V(M) will be called a bivector field on the
manifold M.

Given any bivector field &, for f,g € C°°(M) the bracket {f, g} € C*(M)
is defined to be (df A dg)(€).

It is easy to show that the bracket defined by & satisfies the following
conditions:

(a) antisymmetricity: {f,g} = —{g, [ };

(b) bilinearity: {f,cig91+cag2} = c1{f, g1} +ca2{f, g2} for each c1,co € R;
(c) Leibnitz’ rule: {f,g-h} ={f,9} -h+{f,h} g;

(d) for f,g,h € C>°(M) we have

[ 0h B+ (00, 7o) + {ho, b, £} = 3 (df A dg A dh) (6, €)

where [, ] is the Schoten bracket (see 1.14).

2.3. Proposition. Let {, } be any bracket on C*° (M), having properties
(a), (b), (¢) from 2.2. There is one and only one bivector field & on M,
defining the bracket { , } as describe in 2.2.

The bracket { , } defines the structure of a Lie algebra on a subspace
A C C*°(M) when and only when for each f, g,h € A we have (df Adg)(&) €
A and (df Adg A dh)([€,€]) = 0.

2.4. We can consider §{ as a homomorphism of exterior algebras: for

feANM), a, B € A'(M) we have £(f) = f, B(&(a)) = (a A B)().

As follows from 2.3, the bracket { , } defines in exact terms the structure
of a Lie algebra on C°°(M) when [, ¢] = 0.

Proposition. If [,&] =0, then the map Eo d:C®M)— V' (M) is a

homomorphism of Lie algebras; C>°(M) is a central extension of In,(€ o d)
and R C Ker(€ od).

Proof. In that case the pair (C*°(M),{, }) is called the Poisson structure
on M and the map f —— &(df) = {f, } is the so-called Hamiltonian map
which is a homomorphism of Lie algebras (see [4]). O

2.5. Let w be any differential 2-form on the manifold M, giving rise to
the homomorphism of C*°(M)-moduli: @ : V(M) — A (M), &(X) =
w(X, ), which is an isomorphism when w is nondegenerate. In that case the
induced map denoted similarly by & : VF(M) — A¥(M), S(ui A. .. Auy) =
O(ur) Ao A@(ug), k=1,...,00, is also an isomorphism. Let &, € VZ(M)
be @~ (w).
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More clearly, let w = Y0 a; Ab;, a;,b; € A'(M), i = 1,...,n; the
nondegeneracy of w means that {a;,b; | i = 1,...,n} is a basis of A'(M)
as a C*°(M)-modulus. We introduce the following vector-fields on M: %,
1=1,...,n

() =) = [0 vhen kg K=

(82) b (82,1)20’ p,g=1,...,n

With this notation and keeping in mind the definition of w we have

&(a‘zi) = b, fu(a%i) = —a;, i = 1,...,n. Consequently, &, = > | 8?“ A
d
b, *

2.6. Theorem. W([{,,&0]) = —2dw.

0
db;

Proof. Using property (b) from 1.10 and the bilinearity of the Schoten
bracket, we obtain

[€w: €] = [Z da; ab Zaak abk}

[ N b aim%FZ(-[a%»a%M

i,k ik

0 0 { 0 i} A 0 0 n

8b 8[)19 8ai’ 8bk abi aak
[3 i}A 4 Ai_[a i}A 0 9
8bi’ Bak aai 8bk 8b2’ 8bk aai 8ak ’

By the definition of @ (see 2.5) we have

(6w, 8ul) = Z (bm([%, %]) cam Nag Nag —

i,m,k

—am([aii,ai%}) -bmAaiAaHbm({aii,a%]) g A A by —

—am([a(zi,a%}) -bm/\ai/\bk—l—bm([aii,%}) g Abi Ny —

_am([a%’a%j) -bm/\bi/\ak—kbm([%,aibkb g A by A by —
*“m({aii’aibkb by A bi A by = €.

It is obvious that dw = Y. | (da; A b; — a; A db;).
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o) P 9 .2 _ 9 A8 A8 .3 _
The monomials u),., = Far N 3a; NN Bar Umik = 3o, N a; N dagp > Ymik =

%m A a A 82k Uppie = Bl?m A 3 - A a‘z , {m,i,k} C {1,...,n} form the
basis of V3( )asa C®(M)- modulus and it is easy to check that Q(u/ ) =
—2(dw)(u mlk) for each j € {1,2,3,4} and {m,4,k} C {1,...,n}.

We have therefore ascertained that 2 = —2dw. O

2.7. Let (M,w) be a symplectic manifold (see [3], [5]). For f € C*™(M)
we define the vector field Xy by the formula df = w( , X;). It is a well-known
fact (see [3], [5]) that w defines a Poisson structure on M: for f,g € C*°(M)
we have {f,¢9} = w(Xy, Xy). It is easy to show that the corresponding
bivector field is &, i.e., (df A dg)(&w) = w(X ¢, Xy).

As follows from 2.6, the equality dw = 0 is equivalent to [£,,£,] = 0.

2.8. Lemma. Ifw € A2(M), a,3 € A/(M) and X,Y € V2(M), then
we have (WA aAB)(XAY) =w(X) - (aAB)(Y)+wl)- (anpB)(X)-
w(X(a),Y(8)) +w(X(8),Y ().

Proof. It is sufficient to prove the lemma for the case w = ¢ A b where

e, € A'(M).
So, using the definition of the exterior product of differential forms (see
[3]), we obtain

(A AQABXAY) = (p A)(X)-(ahB)(Y)+
Hp Aa)(X) - (BAG)Y) + (9 AB)(X) - (4 Aa)(Y) +
WA )(X) - (9 ABYY) + (@ AB)X) - (@ A)(Y) +
HaAB)(X) - (p AY)Y) = w(X) - (a A B)(Y) +
+(Y) - (@A B)(X) - w(X (), V(8) +w(X(3). V(). O

2.9. A submodulus W C V(M) is said to be an involutory differential
system if for each pair X, Y € W we have [X,Y] € W (see [6]).

Theorem. Ifg: A" (M) — V'(M) is the homomorphism corresponding
to the bivetor field £ (see 2.4), then the differential system I, is involutory
in exact terms when [£,€] € L& N In& N 1€

Proof. We can use any local coordinate system {z1,...,2,}. So, we want to
show that for each pair {i,j} C {1,...,n} the vector field [£(dz;), g(d:rj)] is
an element of Img or, which is the same thing, that J([g(dxi),g(dxj)]) =0
for each o € (I,,&)+ c A'(M).

By the definition of the Schoten bracket (see 1.14) we obtain (do A dz; A

da;)(€ A &) = 2(do)(€) - (dxi A daj)(§) = (o A da; A dij)([€,€]). Using
Lemma 2.8, we have (do A dx; A dx;)(E NE) = 2(do)(€) - (da; A dx;)(E) —
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2(do)(E(dar), E(da;)). Thus (o A day A day)([€,€]) = 2(dor) Elds), E(de;)).
Clearly, (do)(&(dx;),&(dx;)) = —o([€ £(dxy), 5( )]) _Keeping in mind these
identities, we obtain (o A dz; A dz;)([€,€]) = ([ﬁ(drz),ﬁ(dz])}). O

2.10. Definition. An integer 2k > 0 is said to be a rank of the bivector
field ¢ at a point a € M if (A*E,) # 0 and AFFLE, = 0.

Let e = {e1,...,e,} be a basis of T,(M) and ¢ = {e',...,e"} be the
corresponding dual basis of T(M). As is known (see [3]), a basis e can be
chosen so that &, = e; Aeg + -+ + eap_1 A ear. From the definition of 5
(see 2.4) it follows that {e!, ..., e2*} is a basis of I,,&,. Also, it is clear that
/\kfa =e1 A... Negy and /\k"’lfa = 0. We have therefore ascertained that
dim(7,,&,) = rank &,.

2.11. If the rank £ = const and [¢,&] € A3T,,€, then Theorem 2.9 and
Frobenius’ theorem imply that the differential system Img is integrable (see
[3]), i.e., for each point a € M there is a submanifold N C M such that
a € N and for each X € N we have Imgx = T,(N). It is clear that
dim N = rank &.

2.12. Proposition. If [£,&] = 0, then the differential system I,€ is
integrable.

The proof follows from Hermann’s generalization of Frobenius’ theorem
(see [7]) and the fact that for each function f € C'*°(M) the one-parameter
group corresponding to & (df) preserves £. Consequently, the rank § is in-
variant under the action of this group.

2.13. Definition. The bivector field ¢ is said to be nondegenerate at a
point a € M if the rank £, = dim M. It is said to be nondegenerate on the
manifold M if it is nondegenerate at each point of M.

2.14. If £ is nondegenerate on M, then 5 is an isomorphism defining the
differential 2-form w = £-1(¢), which is a symplectic form exactly when
§,¢] =0.

The Poisson bracket defined by £ coincides with that defined by w.

As mentioned in 2.12; if [£,£] = 0, then £ defines the foliation on M
perhaps with fibers of different dimensions. Let N be any fiber from this
foliation and &y be the restriction of £ on the manifold N. It is easy to
check that

(a) En € VZ(N);

(b) &n is nondegenerate on N.

Consequently,

(¢) N is a symplectic manifold with the differential 2-form wy = E;,l (&N).
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3. SOME COHOMOLOGY PROPERTIES OF BIVECTOR FIELDS

3.1. Let £ be a bivector field on the manifold M. Setting v = & in
equality (b) of 1.10, we obtain

€ v Aw] = [, 0] Aw + (—1)" A€, ]
which implies that the endomorphism
€, ]: V(M) — V(M)
is an antidifferentiation of degree 1:
[, V™(M)] Cc V™Y (M), m € Z.

Let [£,€] = 0. Then by (c) from 1.10 we obtain [¢, [¢, X]] = 0 for each
X € V(M). So the endomorphism [, ] can be regarded as a coboundary
operator defining some cohomology algebra He(M).

To investigate bivector fields from this standpoint we have to prove some
propositions.

3.2. Lemma. If ¢ is a bivector field with [§,&] = 0, then for each closed
I-form o we have [£,&(a)] = 0.

Proof. Using the local coordinate system x1, ..., Zp,, the formula from 1.14,
and the definition of £ (see 2.4), we find that for each i,7 = 1,...,n we have

(d; Adz;)([§, €()]) = —(d((aAda;) () ((-daj — (N da;)(€) - dwi)) () +a A
d((dw; Adz;)(€)) = —=(d((dws ANd;)(§) - a — (dai Na)(§) - daj + (dej Aa)(E) -

dz;)) (&) = —%(da:i Ndz; Aa)([€,€]) = 0. Consequently, [€,&(a)] =0. O

3.3. Theorem. If ¢ is a bivector field with [£,£] = 0, then the diagram

AM) —2— A(M)

| 15

v &1 v

is commutative.

Proof. So, the aim is to show that for each form w we have {(dw) = [€, &(w)].
It is suffiecient to show this for w = f-dz1 A ... Adz,,, where f,21,..., 2,
are smooth functions on M:

Ew) = f-&(dr) Ao ANE(dTm);

S 8] =& f-&ldza) Ao NE(dam)] =

= [&, f - &ldzr)] A&(dma) A ... AE(da) £

£f - &(dwy) A€ E(da2) AL A E(dan)] =
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= frl&&ldz)] A E(dwz) Ao A E(dem) +

FE(f) A E(dar) A ... A E(da)

£ - &(drn)] NS, E(dwa) Ao A E(dam)].

The preceding lemma and formula (b) from 1.10 give

[€,€(dxy)] = [€,€(dxr) A ... A E(dwm)] = 0.

Eventually, [¢,&(w)] = &(df) Aé(dxi) A ... ANE(dxy,) = (E(dw). O

3.4. To say otherwise, we have the following homomorphism of cochain
complexes:

R —— A(M) =C™(M) —"— A'(M) —— --.

o el d
R —— VO(M) = co(M) =L,

where the top complex is that of De-Rham.
The above homomorphism defines the homomorphism between the De-
Rham cohomology algebra H(M,R) and the cohomology algebra He(M),

which will also be denoted by &.

3.5. Example. Let M = T*(X) where X is any smooth manifold. As
known, there is a canonical symplectic form w on M (see [3], [4], [5]), defining
the Poisson structure on C°°(M). Consider the corresponding bivector field
€o = &N w) (see 2.5, 2.7). Tt is clear that &,(w) = &,. Since w = dA,
where X is the Liouville form (see [3]), by the theorem from 3.3 we obtain
§w = €(d)‘) = [éwyfw(/\)} "

It is easy to show that the vector field &, (\) is the vector field corre-
sponding to the one-parameter group ¢;(u) = e ' -u, t € R, u € T*(X).
Otherwise, &,(\)]y = —u.

3.6. Example. Let L be a finite-dimensional real vector space and
s: L NL — L be any linear map. We have the bivector field £ on the
manifold M = L* defined by means of s. Clearly, T*(M) = L* x L and for
each point a € L* we have A>T (M) = L A L. Now we define £ as follows:
let a(&,) = a(s(a)) for a € L* and o € A2T*(M).

3.7. Theorem. The equality [£,£] = 0 for the above-defined bivector field
holds if and only if the linear map s defines the structure of a Lie algebra
on L, i.e., we have

s(s(u Av) Aw) + s(s(wAu) Av)+s(s(v Aw) Au) =0
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for each u,v,w € L.

Proof. Let {u,v,w} C L and w = u Av A w be an element of V3(L*).
Clearly, dw = 0 and for p € L* we have (iew)|, = (uAv)(§) - w+ (wA
u) (&) v+ (vAw)(E) - u)lp = p(s(uv)) - w+p(s(wAw) - v+p(svAw))-u.
As one can see, the form icw depends linearly on p and therefore d(iew) =
s(uAv) Aw+s(wAu) Av+ s(vAw) Au.

Using the formula from 1.14, we obtain w([¢,&])], = 2d(iew)(€)]p
p(s(s(uAv) Aw+ s(s(wAu)) Av+ s(s(vAw)) Au)), p € L*.

Thus [£,£] = 0 exactly when w([£,£])], = 0 for each w = u Av A w and
p € L*; otherwise, p(s(s(uAv) Aw) + s(s(wAu) Av) +s(s(v Aw) Au)) =0
for each p € L*, which is the same as s(s(u A v) A w+ s(s(w Au)) Av+
s(s(vAw))Au)=0. O

3.8. We have ascertained that £ defines the Poisson structure on C'*°(L*)
if and only if the bracket [u,v] = s(u A v) defines the structure of a Lie
algebra on L.

Clearly, L is a subspace of C*°(L*). Moreover, L is a Lie subalgebra of
the Poisson algebra C°>°(M) and the bracket |, | coincides with the Poisson
bracket { , } on L: for u,v € L we have {u,v}(p) = (u,v)(§)], = p([u,v]),
p € L*. Finally, we find that the element [u,v] as a linear function on L*
coincides with {u, v}.

3.9. Let us consider the exterior algebra A(L*) = >, ., A"L*. Clearly,
A(L*) is a subalgebra of the exterior algebra V' (L*).

Theorem. The subalgebra A(L*) in V(L*) is an invariant subspace of
the operator [&, |, and [€, | : A(L*) — A(L*) is the Chevalley—FEilenberg
operator (see the operator 0p in 1.3) defining the cohomology of the Lie
algebra L with coefficients in R.

Proof. Let a € AFL*. Then [¢,a] € A**1L*. We must prove that for
up Ao Augry € AFPLL © ARFL(L®) we have (up A ... A ug,)([€,a]) =
Zi<j(—1)i+j_1a([ui7uj]7u1, ..y Ukt1) (recall that for X € A™L* C V™(L*)
and A € AL C A™(L*) we have A(X) = X(N\)) : (u1 A ... Augg1)([E, @]) =
(=D (d(ia(ur A Ages1)))(€) + (dig(ur A+ Argegr))) (@) = (d(ur A A
ug+1))(E A ). Clearly,

diag(ur Ao o Auggr)) =d(ur Avoo Auggr) =05

ig(ur Ao Augy)lp = Z(—l)iﬂ_lp([uiyuj]) “UL A A Uk
1<j
pE Li and d(ig(ul AN /\Uk+1)) = Zi<j(—1)”j71[u,’,uj]) Aui A... AU A
...AujA...Auk+1.
Therefore we obtain

(ul ARES /\Uk+1)([€,OZD = [6701](?,“, s 7uk+1) =
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= O[(Z(*l)i+j71[ui7Uj] ANup A... /\ﬂl AN /\ﬁj VAN /\uk-i-l)' O
i<j
3.10. Let A(M) be a sheaf of local differential forms on M and V(M)

be a sheaf of local polyvector fields on M. Since the diagram in 3.3 is
commutative, the diagram of morphisms of sheaves

AM) —2— A(M)

| &

vy S v

will also be commutative. Therefore we can talk about the sheave I mfN,
with the coboundary operator [¢, | : I,,é — I,,€. On the global sections
of I_mg the operator [£, ] defines some cohomology algebra which will be
denoted by he(M). The homomorphism 5 induces a homomorphism from
H(M,R) into he(M). The element ¢ € V(M) defines some cohomology
class [¢] € he(M).

3.11. Let IV be any integral manifold of the differential system I mg Then
the restriction map [, 3 X — Xy € V(N) induces a homomorphism
from h¢(M) into He, (N). Since the bivector field {y is nondegenerate,
there is an isomorphism &y : H (N,R) — H¢, (N) and therefore we have
a homomorphism from h¢(M) into H(N,R). Finally, we find that for each
N which is an integral manifold of I mg there is a homomorphism

N hg(M) — H(N,R)

3.12. Let us return to 3.6, 3.7, 3.8. As was proved, the canonical bivector
field £ on L*, where L is a Lie algebra, is such that [§,¢] = 0. Therefore &
defines the foliation in L*. One can show that if L is a Lie algebra of the
connected Lie group G, then the orbits of the Ad*G-representation (see [1],
[4]) are just the fibers of the foliation defined by &, while for each fiber N
the symplectic form 5&1(5 ~) is just the Souriau—Kostant form on the orbits
of the coadjoint representation.

If the cohomology class [£] € he(M) is zero, then, as follows from 3.11,
each orbit satisfies the Souriau—Kostant prequantization condition (see [8]).

REFERENCES

1. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras. (Rus-
sian) Nauka, Moscow, 1984.

2. A. Lichnerowicz, Les variéteés de Poisson et leurs algébres de Lie
associées. J. Diff. Geom. 12(1977), 253-300.



GEOMETRY OF POISSON STRUCTURES 359

3. C. Godbillon, Géometrie différentielle et mécanique analytique. Col-
lection Methods. Hermann, Paris, 1966.

4. P. J. Olver, Applications of Lie groups to differential equations.
Springer-Verlag, New York, 1986.

5. R. Abraham and J. E. Marsden, Foundations of mechanics, 2nd ed.
Benjamin—-Cummings, Reading, Mass., 1978.

6. P. A. Griffiths, Exterior differential systems and the calculus of vari-
ations. Birkhduser, Boston—Basel-Stuttgart, 1983.

7. R. Hermann, The differential geometry of foliations. J. Math. Mech.
11(1962), 303-315.

8. V. Guillemin and S. Sternberg, Geometric asymptotics. Mathematical
Surveys, No. 14. Amer. Math. Soc., Providence, R.1. 1977.

(Received 21.10.1993)

Author’s address:

Department of Applied Mathematics
Georgian Technical University

77, M. Kostava St., Thilisi 380075
Republic of Georgia



