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Abstract

The main purposes of this paper are to establish some new Brunn-

Minkowski inequalities for width-integrals of mixed projection bodies and

affine surface area of mixed bodies, and get their inverse forms.
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1 Introduction

In recent years some authors including Ball[1], Bourgain[2], Gardner[3], Schnei-
der[4] and Lutwak[5-10] et al have given considerable attention to the Brunn-
Minkowski theory and Brunn-Minkowski-Firey theory and their various gen-
eralizations. In particular, Lutwak[7] had generalized the Brunn-Minkowski
inequality (1) to mixed projection body and get inequality (2):

The Brunn-Minkowski inequality If K, L ∈ Kn, then

(1) V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homothetic.
The Brunn-Minkowski inequality for mixed projection bodies If

K, L ∈ Kn, then

(2) V (Π(K + L))1/n(n−1) ≥ V (ΠK)1/n(n−1) + V (ΠL)1/n(n−1),
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with equality if and only if K and L are homothetic.
On the other hand, width-integral of convex bodies and affine surface areas

play an important role in the Brunn-Minkowski theory. Width-integrals were
first considered by Blaschke[11] and later by Hadwiger[12]. In addition, Lutwak
had established the following results for the width-integrals of convex bodies
and affine surface areas.

The Brunn-Minkowski inequality for width-integrals of convex

bodies[10]

If K, L ∈ Kn, i < n − 1

(3) Bi(K + L)1/(n−i) ≤ Bi(K)1/(n−i) + Bi(L)1/(n−i)

with equality if and only if K and L have similar width.

The Brunn-Minkowski inequality for affine surface area [9]

If K, L ∈ κn, and i ∈ R, then for i < −1

(4) Ωi(K+̃L)(n+1)/(n−i) ≤ Ωi(K)(n+1)/(n−i) + Ωi(L)(n+1)/(n−i)

with equality if and only if K and L are homothetic , while for i > −1

(5) Ωi(K+̃L)(n+1)/(n−i) ≥ Ωi(K)(n+1)/(n−i) + Ωi(L)(n+1)/(n−i)

with equality if and only if K and L are homothetic.

In this paper, there are two purposes:
Firstly, we generalize inequality (3) to mixed projection bodies and get its

inverse version.
Result A If K1, K2, . . . , Kn ∈ Kn, let C = (K3, . . . , Kn), then for

i < n − 1

(6) Bi(Π(C, K1 + K2))
1/(n−i) ≤ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

While for i > n or n > i > n − 1,

(7) Bi(Π(C, K1 + K2))
1/(n−i) ≥ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

Secondly, we prove that analogs of inequalities (4)-(5) for affine surface
area of mixed bodies.

Result B If K1, K2, . . . , Kn ∈ Kn and all of mixed bodies of K1, K2, . . . , Kn

have positive continuous curvature functions, respectively, then for i < −1

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)
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(8) ≤ Ωi([K1, K3, K4 . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i).

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

While for i > −1

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)

(9) ≥ Ωi([K1, K3, K4, . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i)

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

Please see the next section for above interrelated notations, definitions and
their background materials.

2 Notations and Preliminary works

The setting for this paper is n-dimensional Euclidean space R
n(n > 2). Let

C
n denote the set of non-empty convex figures(compact, convex subsets) and

Kn denote the subset of C
n consisting of all convex bodies (compact, convex

subsets with non-empty interiors) in R
n, and if p ∈ Kn, let Kn

p denote the
subset of Kn that contains the centered (centrally symmetric with respect to
p) bodies. We reserve the letter u for unit vectors, and the letter B is reserved
for the unit ball centered at the origin. The surface of B is Sn−1. For u ∈ Sn−1,
let Eu denote the hyperplane, through the origin, that is orthogonal to u. We
will use Ku to denote the image of K under an orthogonal projection onto the
hyperplane Eu.

2.1 Mixed volumes

We use V (K) for the n-dimensional volume of convex body K. Let h(K, ·) :
Sn−1 → R, denote the support function of K ∈ Kn; i.e.

(10) h(K, u) = Max{u · x : x ∈ K}, u ∈ Sn−1,

where u · x denotes the usual inner product u and x in R
n.

Let δ denote the Hausdorff metric on Kn; i.e., for K, L ∈ Kn,

δ(K, L) = |hK − hL|∞,

where |·|∞ denotes the sup-norm on the space of continuous functions, C(Sn−1).
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For a convex body K and a nonnegative scalar λ, λK, is used to denote
{λx : x ∈ K}. For Ki ∈ Kn, λi ≥ 0, (i = 1, 2, . . . , r) ,the Minkowski linear
combination

∑r
i=1 λiKi ∈ Kn is defined by

(11) λ1K1 + · · · + λrKr = {λ1x1 + · · · + λrxr ∈ Kn : xi ∈ Ki}.

It is trivial to verify that

(12) h(λ1K1 + · · · + λrKr, ·) = λ1h(K1, ·) + · · · + λrh(Kr, ·).

If Ki ∈ Kn(i = 1, 2, . . . , r) and λi(i = 1, 2, . . . , r)are nonnegative real num-
bers, then of fundamental impotence is the fact that the volume of

∑r
i=1 λiKi

is a homogeneous polynomial in λi given by [4]

(13) V (λ1K1 + · · · + λrKr) =
∑

i1,...,in

λi1 · · ·λinVi1...in ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not ex-
ceeding r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . , Kin , and
is uniquely determined by (13), it is called the mixed volume of Ki1 , . . . , Kin ,
and is written as V (Ki1 , . . . , Kin). Let Ki1 = · · · = Kn−i = K and Kn−i+1 =
· · · = Kn = L, then the mixed volume V (K1 . . . Kn) is usually written Vi(K, L).
If L = B, then Vi(K, B) is the ith projection measure(Quermassintegral) of
K and is written as Wi(K). With this notation, W0 = V (K), while nW1(K)
is the surface area of K, S(K).

2.2 Width-integrals of convex bodies

For u ∈ Sn−1, b(K, u) is defined to be half the width of K in the direction
u. Two convex bodies K and L are said to have similar width if there exists
a constant λ > 0 such that b(K, u) = λb(L, u) for all u ∈ Sn−1. For K ∈ Kn

and p ∈ intK, we use Kp to denote the polar reciprocal of K with respect
to the unit sphere centered at p. The width-integral of index i is defined by
Lutwak[10]: For K ∈ Kn, i ∈ R

(14) Bi(K) =
1

n

∫

Sn−1

b(K, u)n−idS(u),

where dS is the (n − 1)-dimensional volume element on Sn−1.

The width-integral of index i is a map

Bi : Kn → R.
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It is positive, continuous, homogeneous of degree n − i and invariant under
motion. In addition, for i ≤ n it is also bounded and monotone under set
inclusion.

The following results[10] will be used later

(15) b(K + L, u) = b(K, u) + b(L, u),

(16) B2n(K) ≤ V (Kp),

with equality if and only if K is symmetric with respect to p.

2.3 The radial function and the Blaschke linear combination

The radial function of convex body K, ρ(K, ·) : Sn−1 → R, defined for
u ∈ Sn−1, by

ρ(K, ·) = Max{λ ≥ 0 : λµ ∈ K}.

If ρ(K, ·) is positive and continuous, K will be call a star body. Let ϕn denote
the set of star bodies in R

n.

A convex body K is said to have a positive continuous curvature function[5],

f(K, ·) : Sn−1 → [0,∞),

if for each L ∈ ϕn, the mixed volume V1(K, L) has the integral representation

V1(K, L) =
1

n

∫

Sn−1

f(K, u)h(L, u)dS(u).

The subset of Kn consisting of bodies which have a positive continuous cur-
vature function will be denoted by κn. Let κn

c denote the set of centrally
symmetric member of κn.

The following result is true[6], for K ∈ κn

∫

Sn−1

uf(K, u)dS(u) = 0.

Suppose K, L ∈ κn and λ, µ ≥ 0(not both zero). From above it follows that the
function λf(K, ·) + µf(L, ·) satisfies the hypothesis of Minkowski’s existence
theorem(see [13]). The solution of the Minkowski problem for this function is
denoted by λ · K+̃µ · L that is

(17) f(λ · K+̃µ · L, ·) = λf(K, ·) + µf(L, ·),

where the linear combination λ·K+̃µ·L is called a Blaschke linea combination.
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The relationship between Blaschke and Minkowski scalar multiplication is
given by

(18) λ · K = λ1/(n−1)K.

2.4 Mixed affine area and mixed bodies

The affine surface area of K ∈ κn, Ω(K), is defined by

(19) Ω(K) =

∫

Sn−1

f(K, u)n/(n+1)dS(u).

It is well known that this functional is invariant under unimodular affine trans-
formations. For K, L ∈ κn, and i ∈ R, the ith mixed affine surface area of K

and L, Ωi(K, L), was defined in[5] by

(20) Ωi(K, L) =

∫

Sn−1

f(K, u)(n−i)/(n+1)f(L, u)i/(n+1)dS(u).

Now, we define the ith affine area of K ∈ κn, Ωi(K), to be Ωi(K, B), since
f(B, ·) = 1 one has

(21) Ωi(K) =

∫

Sn−1

f(K, u)(n−i)/(n+1)dS(u), i ∈ R.

Lutwak[8] defined mixed bodies of convex bodies K1, . . . , Kn−1 as
[K1, . . . , Kn−1]. The following property will be used later:

(22) [K1 + K2, K3, . . . , Kn] = [K1, K3, . . . , Kn]+̃[K2, K3, . . . , Kn]

2.5 Mixed projection bodies and their polars

If K is a convex that contains the origin in its interior, we define the polar
body of K, K∗ ,by

(23) K∗ := {x ∈ R
n|x · y ≤ 1, y ∈ K}.

If Ki(i = 1, 2, . . . , n − 1) ∈ Kn, then the mixed projection body of Ki(i =
1, 2, . . . , n− 1) is denoted by Π(K1, . . . , Kn−1), and whose support function is
given, for u ∈ Sn−1, by[7]

(24) h (Π(K1, . . . , Kn−1), u) = v(Ku
1 , . . . , Ku

n−1).

It is easy to see, Π(K1, . . . , Kn−1) is centered.
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We use Π∗(K1, . . . , Kn−1) to denote the polar body of Π(K1, . . . , Kn−1),
and is called polar of mixed projection body of Ki(i = 1, 2, . . . , n−1). If K1 =
· · · = Kn−1−i = K and Kn−i = · · · = Kn−1 = L, then Π(K1, . . . , Kn−1) will
be written as Πi(K, L). If L = B, then Πi(K, B) is called the ith projection
body of K and is denoted ΠiK. We write Π0K as ΠK. We will simply write
Π∗

i K and Π∗K rather than (ΠiK)∗ and (ΠK)∗ ,respectively.
The following property will be used:

(25) Π(K3, . . . , Kn, K1 + K2) = Π(K3, . . . , Kn, K1) + Π(K3, . . . , Kn, K2)

3 Main results and their proofs

Our main results are The following Theorems which were stated in the intro-
duction.

Theorem 1 If K1, K2, . . . , Kn ∈ Kn, let C = (K3, . . . , Kn), then for

i < n − 1

(26) Bi(Π(C, K1 + K2))
1/(n−i) ≤ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

While for i > n,

(27) Bi(Π(C, K1 + K2))
1/(n−i) ≥ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

Proof Here, we only give the proof of (27).
From (12), (14),(15),(25) and notice for i > n to use inverse the Minkowski

inequality for integral[14,P.147], we obtain that

Bi(Π(C, K1 + K2))
1/(n−i) =

(

1

n

∫

Sn−1

b(Π(C, K1 + K2), u)n−idS(u)

)1/(n−i)

=

(

1

n

∫

Sn−1

b(Π(C, K1) + Π(C, K2), u)n−idS(u)

)1/(n−i)

=

(

1

n

∫

Sn−1

(b(Π(C, K1), u) + b(Π(C, K2), u))n−idS(u)

)1/(n−i)

≥

(

1

n

∫

Sn−1

b(Π(C, K1), u)n−idS(u)

)1/(n−i)

+

+

(

1

n

∫

Sn−1

b(Π(C, K1), u)n−idS(u)

)1/(n−i)
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= Bi(Π(C, K1))
1/(n−i) + Bi(Π(C, K2))

1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) have similar width, in view
of Π(C, K1) and Π(C, K2) are centered (centrally symmetric with respect to
origin),then with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

The proof of inequality (27) is complete.
Taking i = 0 to (26), inequality (26) changes to the following result
Corollary 1 If K1, K2, . . . , Kn ∈ Kn, let C = (K3, . . . , Kn), then

(28) B(Π(C, K1 + K2))
1/n ≤ B(Π(C, K1))

1/n + B(Π(C, K2)
1/n,

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

Taking i = 2n to (27), inequality (27) changes to the following result
Corollary 2 If K1, K2, . . . , Kn ∈ Kn, let C = (K3, . . . , Kn), then

(29) B2n(Π(C, K1 + K2))
−1/n ≥ B2n(Π(C, K1))

−1/n + B2n(Π(C, K2)
−1/n,

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

From (16),(29) and notice that projection body is centered(centrally sym-
metric with respect to origin), we get

Corollary 3 If K1, K2, . . . , Kn ∈ Kn, let C = (K3, . . . , Kn), then

(30) V (Π∗(C, K1 + K2))
−1/n ≥ V (Π∗(C, K1)

−1/n + V (Π∗(C, K2))
−1/n

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

This is just Brunn-Minkowski inequality of polars of mixed projection bod-
ies. This result first is given in here.

Theorem 2 If K1, K2, . . . , Kn ∈ Kn and all of mixed bodies of

K1, K2, . . . , Kn have positive continuous curvature functions, then for i < −1

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)

(31) ≤ Ωi([K1, K3, K4 . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i)

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

While for i > −1

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)

(32) ≥ Ωi([K1, K3, K4, . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i)
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with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

Proof Firstly, we give the proof of (31).
From (17), (21),(22) and in view of the Minkowski inequality for

integral[14,P.147], we obtain that

Ωi([K1 + K2, K3, K4, . . . , Kn])(n+1)/(n−i)

=

(
∫

Sn−1

f([K1 + K2, K3, K4, . . . , Kn], u)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

=

(
∫

Sn−1

f([K1, K3, K4, . . . , Kn]+̃[K2, K3, . . . , Kn], u)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

=

(
∫

Sn−1

(f([K1, K3, K4, . . . , Kn], u) + f([K2, K3, . . . , Kn], u))(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

≤

(
∫

Sn−1

f([K1, K3, K4, . . . , Kn], u)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

+

(
∫

Sn−1

f([K2, K3, . . . , Kn], u)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

= Ωi([K1, K3, K4, . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i)
,

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3, . . . , Kn] are
homothetic.

Similarly, from (17),(21),(22) and in view of inverse Minkowski
inequality[14,P.147], we can also prove (32).

The proof of Theorem 2 is complete.
Taking i = 0 to (32), we have
Corollary 4 If K1, K2, . . . , Kn ∈ Kn and all of mixed bodies of

K1, K2, . . . , Kn have positive continuous curvature functions, then

Ω([K1 + K2, K3, . . . , Kn])(n+1)/n

(33) ≥ Ω([K1, K3, K4, . . . , Kn])(n+1)/n + Ω([K2, K3, . . . , Kn])(n+1)/n

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

Taking i = 2n to (32), inequality (32) changes to the following result
Corollary 5 If K1, K2, . . . , Kn ∈ Kn and all of mixed bodies of

K1, K2, . . . , Kn have positive continuous curvature functions, then

Ω2n([K1 + K2, K3, . . . , Kn])−(n+1)/n

(34) ≥ Ω2n([K1, K3, K4 . . . , Kn])−(n+1)/n + Ω2n([K2, K3, . . . , Kn])−(n+1)/n,
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with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.

Taking i = −n to (31), we have

Corollary 6 If K1, K2, . . . , Kn ∈ Kn and all of mixed bodies of

K1, K2, . . . , Kn have positive continuous curvature functions, then

Ω−n([K1 + K2, K3, . . . , Kn])(n+1)/2n

(35) ≤ Ω−n([K1, K3, K4 . . . , Kn])(n+1)/2n + Ω−n([K2, K3, . . . , Kn])(n+1)/2n,

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are ho-

mothetic.
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