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Some evaluations of the remainder term:

Daniel Florin Sofonea

Abstract

We present some representations of the remainder f(z)—(L,f)(x),
where L,, is defined in (1). Using Lupasg operators (4), we prove The-

orem 3 and one finds a lower-bound for (L,ez)(x) (see Theorem 4).
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1. Let f:]0,1] — R. The Bernstein polynomials of f is

(an)(x):i<2)xk(l—x)”_kf (%) with n=1,2,..., .

k=0

We consider the operator

(Luf)(@) = (Buf) (@) = an(2)(B, f)(@),
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z(1—x

2(n—1) '

Lpe1) = eq, (Lpes) = eg, with e;(t) =1/, 5 =0,1,.... We obtain the next
J

where a(x) = results from the following condition (L,eq) = ep,

operator (see [2])

) (Lu)(e) = (Buf)lo) = 30— (B 1) (o)

where (B, f)(z) is Bernstein polynomials.

We use the notations

K =la,b], co<a<b< 4o,

2) Ot x) = Q) =|t—af, j=01,..., z€K,

w(f;0) = sup |f(t) = f(z)], txekK, 6=0.
[t—xz|<d

From [3] we obtain

Theorem 1 [fL: C(K) — C(K,y), Ki = [a1,b1] C K, is a linear positive
operator, then for all f € C(K) and § > 0 we have

goor

where || - || = m}z{mx| | and Q,, are defined in (2).

Theorem 2 Let f € C[0,1]. If L, are linear operator defined as in (1),

then
19 1 n 1
1=l g5 (1 57) + 5 ()
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Proof. We consider m = 4. Results
Qt;z) =t —2|* = (t — 2)*.
But for Bernstein operator we know

(BnSy)(x) = % [3(n —2)2*(1 — 2)> + (1 — 2)]

(3)
(B 1)) n—l "i( ) (1= 2y k{i’k—gl’k—;%f

k=0

and using theorem 1 we obtain

19 1
I = Bufll < 130 (75 =)

i

We have
15 =2t = ||7= Lo = 50— DBl + 305
< Nf = Bufll + || 5= 1) B

But from (3) the theorem is proved because

r(1—x) n, z(l—ux) 2‘nn—1 < n—
lB"f_Q(n—l z%( )

kE+1 k:+2] lk +1 ]
2
n

(1 —z)n2F {
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On the other hand we observe

k k+1 k+2
[£k+{k+2j]:f§)_ft%)+fg2)
venoon n? n? n?

() o () (22)] - i (1)
n n n 2 = n
8q75) =32 () (-4 1Go + ),

with r=1,2,..., and h € R.

Using the following definition w,(f,d) = supgop<s ||AL(f;-)|[, with § >

kk+1 k+2 n? 1
[ ) ) af:|<_w2<f 5)7

n n

Syt < e (157) < fen (557

from above formula the following proposition is proved

0, results

and

Corollary 1 Let f € C[0,1]. If L,, are linear operator defined as in (1),

. 1) = (L) < o (£ ) + o ()
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2. For approximation of the continuous functions f : [0,00) — R and which

satisfy an inequality like
|f(z)] < AeP® | (x>0), A>0, B>0

on [0, 00) with A and B independent of f (that is f is of exponential type)

we use linear positive operators as (see [4])
= k

() (L)) = Y onal0)f (), 2 e 0.0)
k=0

where a,  : [0,00) — [0, 00), and

o0

i) the series anx(2)2" are convergent for |z| < r, where r > 1
k=0
B
(‘v’n>n0 =1+ [—}, x € [O,oo))
Inr
i) > ans(z) =1 i) » k- anp(r) = na
k=0 k=0
Examples:
k
L oa,, = e_"‘”mki‘) - L,, = Favard — Szasz operators
11 nERY 2 upas - Baskak i
S pg = ———— - L, = Lupas - Baskakov operators
k n ) (1+x)ntk bas P

(Lnei = €, 1= 0, 1)

Our purpose: a representation of the remainder

(Rnf)(x) := f(x) = (Lnf)(2)-

Known methods:



124 D. F. Sofonea

(A) D.D. Stancu - with the help of divided differences.
(B) Peano’s method. We suppose that f € C?[0,00).

(C) The present method witch is actually a following of those in (A) which
where studied on particular cases. The idea is to use A. Lupa’s oper-

ators defined as

> k
(Suf) (@) = 3 Bl f10)f (—)
k=0 n
21k—1 k kE+1 k
n n n n .
with
(0 k=0, k
2 Tk—1 k k+1 L—tnz} . k=ko
nk(fa ) — y 7|t—IE|+ —
n n 'n n
{nz} , k=kyo—1
0 , k> ko+2

where ko = [nz].

Properties:
e They are positive linear operator (h(t) = |t — z| convex);
o L,Suf=Lnf (*>

Proof. We have

(LnSnf)(x Zank5f<)
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with (5) we obtain

(LnSnf)(x :ki;oankf< ) L.f
(5) (Snf) (%):f(%) i=0,1,...
(6) Spei =e; i €{0,1}, eo(t) =1, ei(t)=t

We write successive

Suf) (%) - gEM (f5§) k=ko=[nal, 2=
(- fa) e H{:ﬂ

but n - % = 0, and from that results

wn(2)-1()

S0 = (= eh)f (0) 4 gy (51)

we have

But
1
[t =zl = St =2l +t = )21, 20, 253 [t — 2]4]e =

1
—[1, 2, w35 [t — 2] +

2 [$17x27x3;t_x]3

1
2

'

0
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Theorem 3 We have the following representation:

(Ruo) = - 2= () {[T]’zl tlns] f} .
23[R E e

k=2

where z, = {nz} and vrn(r) = Un(x) — (L) (z) and Q. (t) =
'k -1 4l
n

Proof. Using the next representation:

(7) (Suf)(x) = aon(f)z+bon(f +%;[ -2 k-l % H’f—l_

n

n

and

—2 k—1 k7f] k_l—t’.
n n

) (5.0 = eoal N+ uat ) +5 3 [57
We calnlate (7)-8):
(Suf)0) ~ (S.£)0) = aoaF)x 1)+
SEER A ()

=2
Applied on (9) linear operator L, refer to ¢t and we take the result on x.
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From that result:

(Snf) () = (LaSnf)(x) = aon(f)(z — (Lner)(x))

0
2 —2 k—1 k
o]

k=2

f@) = f@) + (Snf)(2) = (Ln f)(z)

:_Z[ —2 k ‘1,’14 (U () — (L) ()

E—1

n

— x| — (Lan,n)(x)) .

From (*) result

3

) = (af)@) = 1) = S+ 2 32 [ 220 2] vt
where
Penl®) = Vunl) — (L) @)

But f(z) — (S,f)(x) is a representation introduce by A. Lupas in ([3], p23).

And now we have

(&) = _zn(x)(lgzn(x)) [[nx]’xlvﬂnx];f]
L2 Z{k—2’k—1’i’f} (2]

where z,(z) = {nz}, and

Prn(T) = Qe (@) = (Lo n) ().

If €, are convergent, and if L is linear operator and positive with

Lej =e€j,7=0,1,... then V h convex

W) < (Lh)(2) = puale) <O (see [3)).
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Theorem 4 If L,, verifies the hypothesis, then

nznz] + {nz}(1 + [nz])

(Lne2)(x) = 3 , 20
with ey(t) = 2.
Proof. Let f(t) = ey(t). From Theorem 3 we have:
(R = - 20220 L 2570 o)
n n <
But
(Rnez)(x) = 2* — (Lnea) (),
then
zn(1 = 2p)

Y

25 k) = = (Luen) (o) + 24

and because ¢, < 0, we have

n2

> ouali) = . [x  (Lyes(w) + 1220~ {m})} |

and

k=2

n2
<0

_n [([nxP + 2[nz{nz}) + {nz} -
2

A (L)) <0

From above we have

nznx] + {nz}(l + [nx])

z >0
n? -

(Lnez)(z) =

)

and ey(t) = 2.
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