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Abstract

The main results of this paper establish the superdense unbounded

divergence of some discrete best approximation operators.
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1 Introduction

Denote by C' the Banach space of all continuous real functions defined on

the interval [—1, 1], endowed with the uniform norm || - || and let C° be the
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subspace of all even functions of C'; more generally, if B is a set of real
functions defined on an interval I C R, which is symmetric with respect
to the origin, we put B for the subset of all even functions in B. Let us
consider, too, a sequence (E,),>o of finite subsets of [—1, 1] so that each E,,
contains at least n + 1 points.

Given an integer n > 0, denote by P, the space of all polynomials of real
coefficients having the degree at most n and let us introduce the operator
U, : C — P,, which associates to each f in C' the unique polynomial

U,f € P, for which the infimum of the set
{max{|f(z) — P(z)|: € E,}: Pe€P,}

is attained. The polynomial U, f is said to be the FE,-projection of f €
C on the space P, and the operators U,, n > 0, will be referred to as
E,-polynomial projections. Remark that U, f is the best approximation
polynomial in P, of a function f € C', with respect to the discrete set F,,.

It is known that, in the case when each F, contains n + 1 points or
each FE, contains n + 2 points, the corresponding operators U,, n > 0,
are linear and continuous polynomial projections and there exists g € C
so that the sequence (U,g),>0 is not uniformly convergent to g, [4]. Our
aim is to prove the unboundedness of the set {||U,|| : n > 0}, if each E,
contains at most n + 3 points, then to describe the topological structure
of the set of unbounded divergence of E,-polynomial projections, namely
{f € C : limsup||U,f|| = oo}. To this purpose, we need the following

n—oo

principle of condensation of the singularities, established by I. Muntean

and S. Cobzas.
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Theorem 1 /2], [3]. If X is a Banach space, Y is a normed space and
A, : X = Y, n > 1, are linear continuous operators so that the set
{l|An|l : n > 1} is unbounded, then the set of singularities of the
family {A, : n > 1}, i.e.

{r € X : limsup ||A,z|| = oo}
18 superdense in X.

We recall that a subset S of a topological space T' is named superdense in
X if it is residual (i.e. its complement is of first Baire category), uncountable
and dense in X.

In this paper, we use the following notations. Given a positive integer
m and a subset A of the interval [—1,1] which has m + 1 points t;, 1 <
k<m-+1,let L,(A;f), f € C, be the Lagrange polynomial of degree at
most m which interpolates f at the points of A and let a,,(f) be the leading
coefficient of L,,(A; f). Particularly, denoting by o, a function of C' which
satisfies the equalities o,,(t,) = (—1)%, 1 < k < m + 1, it is easily seen that
A (om) # 0.

2 The unboundedness of the norms
of E,-polynomial projections

Firstly, remark that if the sets E,, n > 1, have n + 1 or n + 2 points,
then the corresponding operator U, are linear and continuous polynomial

projection of C' into P, [4], [6]; more exactly, if F, has n + 1 points, then
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Unf = L,(E,; f). Consequently, in these situations, according to [7], the

following inequalities
4
(1) Ul ZﬁlnnjLO(l), n>1

are satisfied.

In what follows, we assume in this section that the sets E,, have n + 3
points which are symmetric with respect to the origin. Let us examine the
operators Uy, : C' — Py, associated to the corresponding sets Fs, = {x'jn :
1<k<2n+3},n>1.

Let us prove the equality

A2p 42 (f )

(2) Usnf = Lonyo(Eon; f) — Lonio(En; 0ant2),
a2n+2(02n+2)

for each function f in C°.
Denoting by Ps,f the polynomial of the right member in (1) and re-
marking that Lo, o(FEo,; f) and Lo, o(Eoy,; 0o,i0) are even polynomials in

Ponio, it is obvious that Py, f is an even polynomial in Py,,. Moreover,

a2n+2(f )

— ) 1< k< 2n+3.
a2n+2(02n+2)

(3)  (Pof)(ah,) = flah,) = (~1)!

The relations (3), together with Theorem of Charles de la Vallée-Poussin
[1], [5], [8], lead to the equality P, f = Us,f, so that (2) is true.
Further, let us point out a lower bound for the norms of the operators

Ug : C° — Py n>1, where each UY, is the restriction of Us, to C°.

2
Theorem 2 The inequalities || Uy, || > — In(2n) hold for all integers n > 1.
7T
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Proof. Given T > 0, denote by Cr the set of all continuous functions
g : R — R satisfying g(z+7T) = g(z), Ve € R. If f € C, define fE Cso, by
f(z) = f(cosz), ¥V x € R. It is clear that f € CV for each f € C.

The operator F : C° — C9, Ff = f, is an isomorphism and ||f|| =
|Efl = |If]l, V f € C° For each integer n > 0, denote by &, the space of
all trigonometric polynomials of degree n > 0 and introduce the operator

E*Sn : CY — &,, by the equality
(4) (U5, )(@) = Usnf)(cosw) = (Uan(F'f))(cos ), ¥ @ € [0, 7).

In order to establish a lower bound for the norm of (720”, let 7 be a given

real number and define the translation-operator T : Cy, — C5,; as

(T.f)(x) = flx+7), fe&Co, xR

Setting S, = T, + T_,, 7 € R and noticing that STJ? € CY for each

fE CY, we obtain:
) 3= | SO P = (68 + ou) ()

for each fe CY and z € [0, 7|, where ¢, : Cor — Cor, n > 0 are the Fourier

projections

© P =g [ D0 Felu aeR

with Do(t) = 1, D,(t) = 1+ QZcos(k‘t), t € R, n>1and ¢y, is the
k=1
restriction of ¢, to the space CV.

The validity of (5) follows from standard arguments: firstly, it is true

from f € P = span{cy, : 0 < k < n}, with cx(z) = cos(kz), = € R,
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then we use the relation P° = C° and the properties of F', which lead to
the equality PO = CY.
Noticing that ||T;|| = 1 and ||.S;|| < 2, it follows from (5):

165, + doll = sup{[|63,f + ¢ofll : fe€CL [ F] <1}
< s {0 181 11171 [ Fece 17 <1,
l.e.
(7) 165, + ol < 21|T3, |-
On the other hand, according to (5), we obtain:

1 2w
||¢3n+¢oll=§max{/ 11 4 Doy (x — t)|dt : O§x§27r}
0

1 2m 1 T
> 5o [ 1D + Dt = = [ 1Dantt) + Do(o)at
0

- 2m

which, combined with (7) and the inequality [8]:
L /W|D () + Do(O)|dt > = 1n2
T /s 2n 0 = 2 n2n,
gives:
~ 2
(8) 1020l = — In(2n)

Now, the relations ||U2, || = ||[U9,]|, obtained from (4) and (8), complete

the proof.
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3 Superdense Unbounded Divergence
of F,-polynomial Projections

In this section we describe the topological structure of the set of unbounded

divergence of F,-polynomial projections.

Theorem 3 If each set Es,, n > 1, contains 2n + 3 points which are sym-
metric with respect to the origin, then the set of unbounded divergence of the
discrete best approximation operators (i.e. E,-polynomial projections) U,,

namely {f € C: limsup ||U,f|| = 0o ¢, is superdense in the Banach space

(- 11)-

Proof. Indeed, according to Theorem 2, we get:
2

sup{|U] : m > 1} > sup{[|Ull : 1> 1} > sup {—21n<2n> > 1}: .
T

which proves the unboundedness of the set {||U,|| : n > 1}. Now, let
us apply Theorem 1 and remark that the set of singularities of the family

{U, : n > 1} represents the set of the unbounded divergence of this family.

Theorem 4 Denote I ={n >1: cardE, =n+ s}, s € {1,2,3} and let
I? be the subset of all n € I3 with the property that the nodes of Fs, are
symmetric with respect to the origin. If at least one of the sets Iy, Iy and
I is unbounded, then the set of unbounded divergence of the discrete best

approzimation operators U, is superdense in the Banach space (C,|| - ).

Proof. Take into account the inequalities (1) and Theorem 2.
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