Hankel determinant for p-valently starlike and convex functions of order α

Toshio Hayami, Shigeyoshi Owa

Abstract

For p-valently starlike and convex functions $f(z)$ in the open unit disk \mathbb{U}, the upper bounds of the functional $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$, defined by using the second Hankel determinant $H_{2}(n)$ due to J. W. Noonan and D. K. Thomas (Trans. Amer. Math. Soc. 223(2) (1976), 337-346), are discussed.

2000 Mathematics Subject Classification: Primary 30C45
Key words and phrases: Hankel determinant, p-valently starlike function, p-valently convex function.

1 Introduction

Let \mathcal{A}_{p} denote the class of functions $f(z)$ of the form

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}=\{1,2,3, \cdots\})
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
Furthermore, let \mathcal{P} denote the class of functions $p(z)$ of the form

$$
p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}
$$

which are analytic in \mathbb{U} and satisfy

$$
\operatorname{Re} p(z)>0 \quad(z \in \mathbb{U})
$$

Then we say that $p(z) \in \mathcal{P}$ is the Carathéodory function (cf. [1]).

If $f(z) \in \mathcal{A}_{p}$ satisfies the following condition

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leqq \alpha<p)$, then $f(z)$ is said to be p-valently starlike of order α in \mathbb{U}. We denote by $\mathcal{S}_{p}^{*}(\alpha)$ the subclass of \mathcal{A}_{p} consisting of functions $f(z)$ which are p-valently starlike of order α in \mathbb{U}. Similarly, we say that $f(z)$ belongs to the class $\mathcal{K}_{p}(\alpha)$ of p-valently convex functions of order α in \mathbb{U} if $f(z) \in \mathcal{A}_{p}$ satisfies the following inequality

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leqq \alpha<p)$.
As usual, in the present investigation, we write

$$
\mathcal{S}_{p}^{*}=\mathcal{S}_{p}^{*}(0), \quad \mathcal{K}_{p}=\mathcal{K}_{p}(0), \quad \mathcal{S}^{*}(\alpha)=\mathcal{S}_{1}^{*}(\alpha) \quad \text { and } \quad \mathcal{K}(\alpha)=\mathcal{K}_{1}(\alpha)
$$

Hankel determinant for p-valently starlike and convex functions ...

Remark 1. For a function $f(z) \in \mathcal{A}_{p}$, it follows that

$$
f(z) \in \mathcal{K}_{p}(\alpha) \quad \text { if and only if } \quad \frac{z f^{\prime}(z)}{p} \in \mathcal{S}_{p}^{*}(\alpha)
$$

and

$$
f(z) \in \mathcal{S}_{p}^{*}(\alpha) \quad \text { if and only if } \quad \int_{0}^{z} \frac{p f(\zeta)}{\zeta} d \zeta \in \mathcal{K}_{p}(\alpha)
$$

Example 1.

$$
f(z)=\frac{z^{p}}{(1-z)^{2(p-\alpha)}} \in \mathcal{S}_{p}^{*}(\alpha)
$$

and

$$
f(z)=z^{p}{ }_{2} F_{1}(2(p-\alpha), p ; p+1 ; z) \in \mathcal{K}_{p}(\alpha)
$$

where ${ }_{2} F_{1}(a, b ; c ; z)$ represents the hypergeometric function.

In [7], Noonan and Thomas stated the q-th Hankel determinant as

$$
H_{q}(n)=\operatorname{det}\left(\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right) \quad(n, q \in \mathbb{N}=\{1,2,3, \cdots\})
$$

This determinant is discussed by several authors. For example, we can know that the Fekete and Szegö functional $\left|a_{3}-a_{2}^{2}\right|=\left|H_{2}(1)\right|$ and they consider the further generalized functional $\left|a_{3}-\mu a_{2}^{2}\right|$, where μ is some real number (see, [2]). Moreover, we also know that the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is equivalent to $\left|H_{2}(2)\right|$.

Janteng, Halim and Darus [4] have shown the following theorems.

Theorem 1. Let $f(z) \in \mathcal{S}^{*}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq 1
$$

Equality is attained for functions

$$
f(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+4 z^{4}+\cdots
$$

and

$$
f(z)=\frac{z}{1-z^{2}}=z+z^{3}+z^{5}+z^{7}+\cdots
$$

Theorem 2. Let $f(z) \in \mathcal{K}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{1}{8}
$$

The present paper is motivated by these results and the purpose of this investigation is to find the upper bounds of the generalized functional $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$, defined by the second Hankel determinant, for functions $f(z)$ in the class $\mathcal{S}_{p}^{*}(\alpha)$ and $\mathcal{K}_{p}(\alpha)$, respectively.

2 Preliminary results

In order to discuss our problems, we need some lemmas. The following lemma can be found in [1] or [8].

Lemma 1. If a function $p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} \in \mathcal{P}$, then

$$
\left|c_{k}\right| \leqq 2 \quad(k=1,2,3, \cdots)
$$

The result is sharp for

$$
p(z)=\frac{1+z}{1-z}=1+\sum_{k=1}^{\infty} 2 z^{k} .
$$

Using the above, we derive

Lemma 2. If a function $p(z)=p+\sum_{k=1}^{\infty} c_{k} z^{k}$ satisfies the following inequality

$$
\operatorname{Re} p(z)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leqq \alpha<p)$, then

$$
\begin{equation*}
\left|c_{k}\right| \leqq 2(p-\alpha) \quad(k=1,2,3, \cdots) \tag{1}
\end{equation*}
$$

The result is sharp for

$$
p(z)=\frac{p+(p-2 \alpha) z}{1-z}=p+\sum_{k=1}^{\infty} 2(p-\alpha) z^{k} .
$$

Proof. Let $q(z)=\frac{p(z)-\alpha}{p-\alpha}=1+\sum_{k=1}^{\infty} \frac{c_{k}}{p-\alpha} z^{k}$. Noting that $q(z) \in \mathcal{P}$ and using Lemma 1, we see that

$$
\left|\frac{c_{k}}{p-\alpha}\right| \leqq 2 \quad(k=1,2,3, \cdots)
$$

which implies

$$
\left|c_{k}\right| \leqq 2(p-\alpha) \quad(k=1,2,3, \cdots)
$$

Lemma 3. The power series for $p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}$ converges in \mathbb{U} to a function in \mathcal{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right| \quad(n=1,2,3, \cdots)
$$

where $c_{-k}=\overline{c_{k}}$, are all non-negative. They are strictly positive except for $p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k}} z\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$ for $k \neq j$, where $p_{0}(z)=$ $\frac{1+z}{1-z}$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geqq m$.

This necessary and sufficient condition is due to Carathéodory and Toeplitz, and it can be found in [3]. And then, Libera and Zlotkiewicz [5] (see, also [6]) have given the following result by using this lemma with $n=2,3$.

Lemma 4. If a function $p(z) \in \mathcal{P}$, then the representations

$$
\left\{\begin{array}{l}
2 c_{2}=c_{1}^{2}+\left(4-c_{1}^{2}\right) \zeta \\
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} \zeta-\left(4-c_{1}^{2}\right) c_{1} \zeta^{2}+2\left(4-c_{1}^{2}\right)\left(1-|\zeta|^{2}\right) \eta
\end{array}\right.
$$

for some complex numbers ζ and $\eta(|\zeta| \leqq 1,|\eta| \leqq 1)$, are obtained.

By virtue of Lemma 4, we have

Lemma 5. If a function $p(z)=p+\sum_{k=1}^{\infty} c_{k} z^{k}$ satisfies $\operatorname{Re} p(z)>\alpha(z \in \mathbb{U})$ for some $\alpha(0 \leqq \alpha<p)$, then

$$
\begin{align*}
2(p-\alpha) c_{2}= & c_{1}^{2}+\left\{4(p-\alpha)^{2}-c_{1}^{2}\right\} \zeta \tag{2}\\
4(p-\alpha)^{2} c_{3}= & c_{1}^{3}+2\left\{4(p-\alpha)^{2}-c_{1}^{2}\right\} c_{1} \zeta-\left\{4(p-\alpha)^{2}-c_{1}^{2}\right\} c_{1} \zeta^{2} \\
& +2(p-\alpha)\left\{4(p-\alpha)^{2}-c_{1}^{2}\right\}\left(1-|\zeta|^{2}\right) \eta
\end{align*}
$$

for some complex numbers ζ and $\eta(|\zeta| \leqq 1,|\eta| \leqq 1)$.

Proof. Since $q(z)=\frac{p(z)-\alpha}{p-\alpha}=1+\sum_{k=1}^{\infty} \frac{c_{k}}{p-\alpha} z^{k} \in \mathcal{P}$, replacing c_{2} and c_{3} by $\frac{c_{2}}{p-\alpha}$ and $\frac{c_{3}}{p-\alpha}$ in Lemma 4, respectively, we immediately have the relations of the lemma.

We also need the next remark.
Remark 2. If $f(z) \in \mathcal{S}_{p}^{*}(\alpha)$, then there exists a function $p(z)=p+$ $\sum_{k=1}^{\infty} c_{k} z^{k}$ such that $\operatorname{Re} p(z)>\alpha(z \in \mathbb{U})$ and

$$
z f^{\prime}(z)=f(z) p(z)
$$

which implies that

$$
p+\sum_{n=p+1}^{\infty} n a_{n} z^{n-p}=p+\sum_{n=p+1}^{\infty}\left(\sum_{l=p}^{n} a_{l} c_{n-l}\right) z^{n-p}
$$

where $a_{p}=1$ and $c_{0}=p$. Therefore, we have the follwing relation

$$
\begin{equation*}
(n-p) a_{n}=\sum_{l=p}^{n-1} a_{l} c_{n-l} \quad(n \geqq p+1) \tag{3}
\end{equation*}
$$

3 Main results

In this section, we begin with the upper bound of $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ for p-valently starlike functions of order α below.

Theorem 3. If a function $f(z) \in \mathcal{S}_{p}^{*}(\alpha) \quad(0 \leqq \alpha<p)$, then

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq\left\{\begin{array}{cl}
(p-\alpha)\{(2(p-\alpha)+1)-4(p-\alpha) \mu\} & \left(\mu \leqq \frac{1}{2}\right) \\
p-\alpha & \left(\frac{1}{2} \leqq \mu \leqq \frac{p+1-\alpha}{2(p-\alpha)}\right) \\
(p-\alpha)\{4(p-\alpha) \mu-(2(p-\alpha)+1)\} & \left(\mu \geqq \frac{p+1-\alpha}{2(p-\alpha)}\right)
\end{array}\right.
$$

with equality for

$$
f(z)= \begin{cases}\frac{z^{p}}{(1-z)^{2(p-\alpha)}} & \left(\mu \leqq \frac{1}{2} \text { or } \mu \geqq \frac{p+1-\alpha}{2(p-\alpha)}\right) \\ \frac{z^{p}}{\left(1-z^{2}\right)^{p-\alpha}} & \left(\frac{1}{2} \leqq \mu \leqq \frac{p+1-\alpha}{2(p-\alpha)}\right)\end{cases}
$$

Proof. If $f(z) \in \mathcal{S}_{p}^{*}(\alpha)$, then we have the equation (3) which means that $a_{p+1}=c_{1}$ and $a_{p+2}=\frac{c_{2}+c_{1}^{2}}{2}$. Thus, by the inequality (1) and the representation (2), we can suppose that $c_{1}=c(0 \leqq c \leqq 2(p-\alpha))$ without
loss of generality and we derive

$$
\begin{aligned}
\left|a_{p+2}-\mu a_{p+1}^{2}\right| & =\left|\frac{c_{2}+c^{2}}{2}-\mu c^{2}\right| \\
& =\frac{1}{2}\left|(1-2 \mu) c^{2}+\frac{c^{2}+\left\{4(p-\alpha)^{2}-c^{2}\right\} \zeta}{2(p-\alpha)}\right| \\
& =\frac{1}{4(p-\alpha)}\left|\{2(p-\alpha)-4(p-\alpha) \mu+1\} c^{2}+\left\{4(p-\alpha)^{2}-c^{2}\right\} \zeta\right| \\
& \equiv A(\zeta)
\end{aligned}
$$

Applying the triangle inequality, we deduce

$$
\begin{aligned}
& A(\zeta) \leqq \frac{1}{4(p-\alpha)}\left[|(2(p-\alpha)+1)-4(p-\alpha) \mu| c^{2}+\left\{4(p-\alpha)^{2}-c^{2}\right\}\right] \\
&=\left\{\begin{array}{c}
\frac{1}{4(p-\alpha)}\left[2(p-\alpha)(1-2 \mu) c^{2}+4(p-\alpha)^{2}\right] \quad\left(\mu \leqq \frac{2(p-\alpha)+1}{4(p-\alpha)}\right) \\
\frac{1}{4(p-\alpha)}\left[2\{2(p-\alpha) \mu-(p+1-\alpha)\} c^{2}+4(p-\alpha)^{2}\right] \\
\leqq
\end{array}\right. \\
&\left\{\begin{array}{c}
\left(p \geqq \frac{2(p-\alpha)+1}{4(p-\alpha)}\right) \\
p-\alpha)\{(2(p-\alpha)+1)-4(p-\alpha) \mu\} \\
p-\alpha \\
\left(\frac{1}{2} \leqq \mu \leqq \frac{2(p-\alpha)+1}{4(p-\alpha)}, c=0\right) \\
\left(\frac{2(p-\alpha)+1}{4(p-\alpha)} \leqq \mu \leqq \frac{p+1-\alpha}{2(p-\alpha)}, c=0\right) \\
(p-\alpha)\{4(p-\alpha) \mu-(2(p-\alpha)+1)\} \quad\left(\mu \geqq \frac{p+1-\alpha}{2(p-\alpha)}, c=2(p-\alpha)\right)
\end{array}\right.
\end{aligned}
$$

Equality is attained for functions $f(z) \in \mathcal{S}_{p}^{*}(\alpha)$ defined by

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)=\frac{p+(p-2 \alpha) z}{1-z}
$$

for the case $c_{1}=c=2(p-\alpha), \zeta=1$ and $c_{2}=2(p-\alpha)$, or

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)=\frac{p+(p-2 \alpha) z^{2}}{1-z^{2}}
$$

for the case $c_{1}=c=0, \zeta=1$ and $c_{2}=2(p-\alpha)$.

Taking $\alpha=0$ or $p=1$ in Theorem 3, we obtain the following corollaries, respectively.

Corollary 1. If a function $f(z) \in \mathcal{S}_{p}^{*}$, then

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq\left\{\begin{array}{cl}
p\{(2 p+1)-4 p \mu\} & \left(\mu \leqq \frac{1}{2}\right) \\
p & \left(\frac{1}{2} \leqq \mu \leqq \frac{p+1}{2 p}\right) \\
p\{4 p \mu-(2 p+1)\} & \left(\mu \geqq \frac{p+1}{2 p}\right)
\end{array}\right.
$$

with equality for

$$
f(z)= \begin{cases}\frac{z^{p}}{(1-z)^{2 p}} & \left(\mu \leqq \frac{1}{2} \text { or } \mu \geqq \frac{p+1}{2 p}\right) \\ \frac{z^{p}}{\left(1-z^{2}\right)^{p}} & \left(\frac{1}{2} \leqq \mu \leqq \frac{p+1}{2 p}\right)\end{cases}
$$

Corollary 2. If a function $f(z) \in \mathcal{S}^{*}(\alpha)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq\left\{\begin{array}{cl}
(1-\alpha)\{(3-2 \alpha)-4(1-\alpha) \mu\} & \left(\mu \leqq \frac{1}{2}\right) \\
1-\alpha & \left(\frac{1}{2} \leqq \mu \leqq \frac{2-\alpha}{2(1-\alpha)}\right) \\
(1-\alpha)\{4(1-\alpha) \mu-(3-2 \alpha)\} & \left(\mu \geqq \frac{2-\alpha}{2(1-\alpha)}\right)
\end{array}\right.
$$

with equality for

$$
f(z)= \begin{cases}\frac{z}{(1-z)^{2(1-\alpha)}} & \left(\mu \leqq \frac{1}{2} \text { or } \mu \geqq \frac{2-\alpha}{2(1-\alpha)}\right) \\ \frac{z}{\left(1-z^{2}\right)^{1-\alpha}} & \left(\frac{1}{2} \leqq \mu \leqq \frac{2-\alpha}{2(1-\alpha)}\right)\end{cases}
$$

Also, by Corollary 1 and Corollary 2, we readily know
Corollary 3. If a function $f(z) \in \mathcal{S}^{*}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq\left\{\begin{array}{cl}
3-4 \mu & \left(\mu \leqq \frac{1}{2}\right) \\
1 & \left(\frac{1}{2} \leqq \mu \leqq 1\right) \\
4 \mu-3 & (\mu \geqq 1)
\end{array}\right.
$$

with equality for

$$
f(z)= \begin{cases}\frac{z}{(1-z)^{2}} & \left(\mu \leqq \frac{1}{2} \text { or } \mu \geqq 1\right) \\ \frac{z}{1-z^{2}} & \left(\frac{1}{2} \leqq \mu \leqq 1\right)\end{cases}
$$

Next, in consideration of Remark 1, we derive the upper bounds of $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ for p-valently convex functions.

Theorem 4. If a function $f(z) \in \mathcal{K}_{p}(\alpha) \quad(0 \leqq \alpha<p)$, then
$\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq$

$$
\left\{\begin{array}{c}
\frac{p(p-\alpha)\left\{(2(p-\alpha)+1)(p+1)^{2}-4(p-\alpha) p(p+2) \mu\right\}}{(p+1)^{2}(p+2)}\left(\mu \leqq \frac{(p+1)^{2}}{2 p(p+2)}\right) \\
\frac{p(p-\alpha)}{p+2} \quad\left(\frac{(p+1)^{2}}{2 p(p+2)} \leqq \mu \leqq \frac{(p+1)^{2}(p+1-\alpha)}{2 p(p+2)(p-\alpha)}\right) \\
\frac{p(p-\alpha)\left\{4(p-\alpha) p(p+2) \mu-(2(p-\alpha)+1)(p+1)^{2}\right\}}{(p+1)^{2}(p+2)} \\
\left(\mu \geqq \frac{(p+1)^{2}(p+1-\alpha)}{2 p(p+2)(p-\alpha)}\right)
\end{array}\right.
$$

with equality for

$$
f(z)=\left\{\begin{array}{l}
z^{p}{ }_{2} F_{1}(2(p-\alpha), p ; p+1 ; z)\left(\mu \leqq \frac{(p+1)^{2}}{2 p(p+2)} \text { or } \mu \geqq \frac{(p+1)^{2}(p+1-\alpha)}{2 p(p+2)(p-\alpha)}\right) \\
z^{p}{ }_{2} F_{1}\left(\frac{p}{2}, p-\alpha ; 1+\frac{p}{2} ; z^{2}\right)\left(\frac{(p+1)^{2}}{2 p(p+2)} \leqq \mu \leqq \frac{(p+1)^{2}(p+1-\alpha)}{2 p(p+2)(p-\alpha)}\right) .
\end{array}\right.
$$

Proof. Noting that $f(z) \in \mathcal{K}_{p}(\alpha)$ if and only if

Hankel determinant for p-valently starlike and convex functions...

$$
\begin{gathered}
\frac{z f^{\prime}(z)}{p}=z^{p}+\sum_{n=p+1}^{\infty} \frac{n}{p} a_{n} z^{n} \in \mathcal{S}_{p}^{*}(\alpha) \text { and using Theorem 3, we see that } \\
\left|\frac{p+2}{p} a_{p+2}-\nu \frac{(p+1)^{2}}{p^{2}} a_{p+1}^{2}\right| \leqq\left\{\begin{array}{c}
(p-\alpha)\{(2(p-\alpha)+1)-4(p-\alpha) \nu\} \\
p-\alpha \\
(p-\alpha)\{4(p-\alpha) \nu-(2(p-\alpha)+1)\},
\end{array}\right.
\end{gathered}
$$

that is, that $\left|a_{p+2}-\frac{(p+1)^{2}}{p(p+2)} \nu a_{p+1}^{2}\right| \leqq$

$$
\left\{\begin{array}{cl}
\frac{p(p-\alpha)\{(2(p-\alpha)+1)-4(p-\alpha) \nu\}}{p+2} & \left(\nu \leqq \frac{1}{2}\right) \\
\frac{p(p-\alpha)}{p+2} & \left(\frac{1}{2} \leqq \nu \leqq \frac{p+1-\alpha}{2(p-\alpha)}\right) \\
\frac{p(p-\alpha)\{4(p-\alpha) \nu-(2(p-\alpha)+1)\}}{p+2} & \left(\nu \geqq \frac{p+1-\alpha}{2(p-\alpha)}\right) .
\end{array}\right.
$$

Now, putting $\frac{(p+1)^{2}}{p(p+2)} \nu=\mu$, the proof of the theorem is completed.

When $\alpha=0$ or $p=1$ in Theorem 4, the following three corollaries are obtained.

Corollary 4. If a function $f(z) \in \mathcal{K}_{p}$, then

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq\left\{\begin{array}{cc}
\frac{p^{2}\left\{(2 p+1)(p+1)^{2}-4 p^{2}(p+2) \mu\right\}}{(p+1)^{2}(p+2)} & \left(\mu \leqq \frac{(p+1)^{2}}{2 p(p+2)}\right) \\
\frac{p^{2}}{p+2} \quad\left(\frac{(p+1)^{2}}{2 p(p+2)} \leqq \mu \leqq \frac{(p+1)^{3}}{2 p^{2}(p+2)}\right) \\
\frac{p^{2}\left\{4 p^{2}(p+2) \mu-(2 p+1)(p+1)^{2}\right\}}{(p+1)^{2}(p+2)} & \left(\mu \geqq \frac{(p+1)^{3}}{2 p^{2}(p+2)}\right)
\end{array}\right.
$$

with equality for

$$
f(z)= \begin{cases}z^{p}{ }_{2} F_{1}(2 p, p ; p+1 ; z) & \left(\mu \leqq \frac{(p+1)^{2}}{2 p(p+2)} \text { or } \mu \geqq \frac{(p+1)^{3}}{2 p^{2}(p+2)}\right) \\ z^{p}{ }_{2} F_{1}\left(\frac{p}{2}, p ; 1+\frac{p}{2} ; z^{2}\right) & \left(\frac{(p+1)^{2}}{2 p(p+2)} \leqq \mu \leqq \frac{(p+1)^{3}}{2 p^{2}(p+2)}\right) .\end{cases}
$$

Corollary 5. If a function $f(z) \in \mathcal{K}(\alpha)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq\left\{\begin{array}{cl}
\frac{(1-\alpha)}{3}\{(3-2 \alpha)-3(1-\alpha) \mu\} & \left(\mu \leqq \frac{2}{3}\right) \\
\frac{1-\alpha}{3} & \left(\frac{2}{3} \leqq \mu \leqq \frac{2(2-\alpha)}{3(1-\alpha)}\right) \\
\frac{(1-\alpha)}{3}\{3(1-\alpha) \mu-(3-2 \alpha)\} & \left(\mu \geqq \frac{2(2-\alpha)}{3(1-\alpha)}\right)
\end{array}\right.
$$

with equality for

$$
f(z)=\left\{\begin{array}{ll}
\frac{1-(1-z)^{2 \alpha-1}}{2 \alpha-1} \text { and } & \log \left(\frac{1}{1-z}\right)
\end{array}\left(\mu \leqq \frac{2}{3} \text { or } \mu \geqq \frac{2(2-\alpha)}{3(1-\alpha)}\right),\right.
$$

Corollary 6. If a function $f(z) \in \mathcal{K}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq\left\{\begin{array}{cl}
1-\mu & \left(\mu \leqq \frac{2}{3}\right) \\
\frac{1}{3} & \left(\frac{2}{3} \leqq \mu \leqq \frac{4}{3}\right) \\
\mu-1 & \left(\mu \geqq \frac{4}{3}\right)
\end{array}\right.
$$

with equality for

$$
f(z)=\left\{\begin{array}{cl}
\frac{z}{1-z} & \left(\mu \leqq \frac{2}{3} \text { or } \mu \geqq \frac{4}{3}\right) \\
\frac{1}{2} \log \left(\frac{1+z}{1-z}\right) & \left(\frac{2}{3} \leqq \mu \leqq \frac{4}{3}\right)
\end{array}\right.
$$

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8(1933), 85-89.
[3] U. Grenander and G. Szegö, Toeplitz Forms and their Applications, Univ. of California Press, Berkeley and Los Angeles, (1958).
[4] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. Journal of Math. Anal. 1(2007), 619-625.
[5] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(1982), 225-230.
[6] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc. 87(1983), 251-257.
[7] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223(2) (1976), 337-346.
[8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, (1975).

Toshio Hayami
Kinki University
Department of Mathematics
Higashi-Osaka, Osaka 577-8502, Japan
e-mail: ha_ya_to112@hotmail.com

Shigeyoshi Owa
Kinki University
Department of Mathematics
Higashi-Osaka, Osaka 577-8502, Japan
e-mail: owa@math.kindai.ac.jp

