Hankel determinant for p-valently starlike and convex functions of order α

Toshio Hayami, Shigeyoshi Owa

Abstract

For p-valently starlike and convex functions f(z) in the open unit disk U, the upper bounds of the functional $|a_{p+2} - \mu a_{p+1}^2|$, defined by using the second Hankel determinant $H_2(n)$ due to J. W. Noonan and D. K. Thomas (Trans. Amer. Math. Soc. **223**(2) (1976), 337-346), are discussed.

2000 Mathematics Subject Classification: Primary 30C45 Key words and phrases: Hankel determinant, *p*-valently starlike function, *p*-valently convex function.

1 Introduction

Let \mathcal{A}_p denote the class of functions f(z) of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N} = \{1, 2, 3, \dots\})$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Furthermore, let \mathcal{P} denote the class of functions p(z) of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$$

which are analytic in \mathbb{U} and satisfy

Re
$$p(z) > 0$$
 $(z \in \mathbb{U}).$

Then we say that $p(z) \in \mathcal{P}$ is the Carathéodory function (cf. [1]).

If $f(z) \in \mathcal{A}_p$ satisfies the following condition

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathbb{U})$$

for some α $(0 \leq \alpha < p)$, then f(z) is said to be *p*-valently starlike of order α in \mathbb{U} . We denote by $\mathcal{S}_p^*(\alpha)$ the subclass of \mathcal{A}_p consisting of functions f(z) which are *p*-valently starlike of order α in \mathbb{U} . Similarly, we say that f(z) belongs to the class $\mathcal{K}_p(\alpha)$ of *p*-valently convex functions of order α in \mathbb{U} if $f(z) \in \mathcal{A}_p$ satisfies the following inequality

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \mathbb{U})$$

for some α $(0 \leq \alpha < p)$.

As usual, in the present investigation, we write

$$\mathcal{S}_p^* = \mathcal{S}_p^*(0), \quad \mathcal{K}_p = \mathcal{K}_p(0), \quad \mathcal{S}^*(\alpha) = \mathcal{S}_1^*(\alpha) \quad \text{and} \quad \mathcal{K}(\alpha) = \mathcal{K}_1(\alpha).$$

Remark 1. For a function $f(z) \in \mathcal{A}_p$, it follows that

$$f(z) \in \mathcal{K}_p(\alpha)$$
 if and only if $\frac{zf'(z)}{p} \in \mathcal{S}_p^*(\alpha)$

and

$$f(z) \in \mathcal{S}_p^*(\alpha)$$
 if and only if $\int_0^z \frac{pf(\zeta)}{\zeta} d\zeta \in \mathcal{K}_p(\alpha).$

Example 1.

$$f(z) = \frac{z^p}{(1-z)^{2(p-\alpha)}} \in \mathcal{S}_p^*(\alpha)$$

and

$$f(z) = z^p {}_2F_1\left(2(p-\alpha), p; p+1; z\right) \in \mathcal{K}_p(\alpha)$$

where $_2F_1(a,b;c;z)$ represents the hypergeometric function.

In [7], Noonan and Thomas stated the q-th Hankel determinant as

$$H_{q}(n) = \det \begin{pmatrix} a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{pmatrix} \qquad (n,q \in \mathbb{N} = \{1,2,3,\cdots\})$$

This determinant is discussed by several authors. For example, we can know that the Fekete and Szegö functional $|a_3 - a_2^2| = |H_2(1)|$ and they consider the further generalized functional $|a_3 - \mu a_2^2|$, where μ is some real number (see, [2]). Moreover, we also know that the functional $|a_2a_4 - a_3^2|$ is equivalent to $|H_2(2)|$.

Janteng, Halim and Darus [4] have shown the following theorems.

Theorem 1. Let $f(z) \in S^*$. Then

$$|a_2 a_4 - a_3^2| \le 1$$

Equality is attained for functions

$$f(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + 4z^4 + \cdots$$

and

$$f(z) = \frac{z}{1-z^2} = z + z^3 + z^5 + z^7 + \cdots$$

Theorem 2. Let $f(z) \in \mathcal{K}$. Then

$$|a_2 a_4 - a_3^2| \le \frac{1}{8}$$

The present paper is motivated by these results and the purpose of this investigation is to find the upper bounds of the generalized functional $|a_{p+2} - \mu a_{p+1}^2|$, defined by the second Hankel determinant, for functions f(z)in the class $\mathcal{S}_p^*(\alpha)$ and $\mathcal{K}_p(\alpha)$, respectively.

2 Preliminary results

In order to discuss our problems, we need some lemmas. The following lemma can be found in [1] or [8].

Lemma 1. If a function $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k \in \mathcal{P}$, then $|c_k| \leq 2 \quad (k = 1, 2, 3, \cdots).$

32

The result is sharp for

$$p(z) = \frac{1+z}{1-z} = 1 + \sum_{k=1}^{\infty} 2z^k.$$

Using the above, we derive

Lemma 2. If a function $p(z) = p + \sum_{k=1}^{\infty} c_k z^k$ satisfies the following inequality

Re
$$p(z) > \alpha$$
 $(z \in \mathbb{U})$

for some α $(0 \leq \alpha < p)$, then

(1)
$$|c_k| \leq 2(p-\alpha) \quad (k=1,2,3,\cdots).$$

The result is sharp for

$$p(z) = \frac{p + (p - 2\alpha)z}{1 - z} = p + \sum_{k=1}^{\infty} 2(p - \alpha)z^k.$$

Proof. Let $q(z) = \frac{p(z) - \alpha}{p - \alpha} = 1 + \sum_{k=1}^{\infty} \frac{c_k}{p - \alpha} z^k$. Noting that $q(z) \in \mathcal{P}$ and using Lemma 1, we see that

$$\left|\frac{c_k}{p-\alpha}\right| \leq 2 \quad (k=1,2,3,\cdots)$$

which implies

$$|c_k| \le 2(p-\alpha)$$
 $(k = 1, 2, 3, \cdots).$

Lemma 3. The power series for $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$ converges in \mathbb{U} to a function in \mathcal{P} if and only if the Toeplitz determinants

$$D_{n} = \begin{vmatrix} 2 & c_{1} & c_{2} & \cdots & c_{n} \\ c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\ c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix} \quad (n = 1, 2, 3, \cdots),$$

where $c_{-k} = \overline{c_k}$, are all non-negative. They are strictly positive except for $p(z) = \sum_{k=1}^{m} \rho_k p_0(e^{it_k} z), \ \rho_k > 0, \ t_k \text{ real and } t_k \neq t_j \text{ for } k \neq j, \text{ where } p_0(z) = \frac{1+z}{1-z}$; in this case $D_n > 0$ for n < m-1 and $D_n = 0$ for $n \ge m$.

This necessary and sufficient condition is due to Carathéodory and Toeplitz, and it can be found in [3]. And then, Libera and Z/otkiewicz [5] (see, also [6]) have given the following result by using this lemma with n = 2, 3.

Lemma 4. If a function $p(z) \in \mathcal{P}$, then the representations

$$\begin{cases} 2c_2 = c_1^2 + (4 - c_1^2)\zeta \\ 4c_3 = c_1^3 + 2(4 - c_1^2)c_1\zeta - (4 - c_1^2)c_1\zeta^2 + 2(4 - c_1^2)(1 - |\zeta|^2)\eta \end{cases}$$

for some complex numbers ζ and η ($|\zeta| \leq 1, |\eta| \leq 1$), are obtained.

By virtue of Lemma 4, we have

Lemma 5. If a function $p(z) = p + \sum_{k=1}^{\infty} c_k z^k$ satisfies $\operatorname{Re} p(z) > \alpha$ $(z \in \mathbb{U})$ for some α $(0 \leq \alpha < p)$, then

(2)
$$2(p-\alpha)c_{2} = c_{1}^{2} + \{4(p-\alpha)^{2} - c_{1}^{2}\}\zeta$$
$$4(p-\alpha)^{2}c_{3} = c_{1}^{3} + 2\{4(p-\alpha)^{2} - c_{1}^{2}\}c_{1}\zeta - \{4(p-\alpha)^{2} - c_{1}^{2}\}c_{1}\zeta^{2}$$
$$+ 2(p-\alpha)\{4(p-\alpha)^{2} - c_{1}^{2}\}(1-|\zeta|^{2})\eta$$

for some complex numbers ζ and η ($|\zeta| \leq 1, |\eta| \leq 1$).

Proof. Since $q(z) = \frac{p(z) - \alpha}{p - \alpha} = 1 + \sum_{k=1}^{\infty} \frac{c_k}{p - \alpha} z^k \in \mathcal{P}$, replacing c_2 and c_3 by $\frac{c_2}{p - \alpha}$ and $\frac{c_3}{p - \alpha}$ in Lemma 4, respectively, we immediately have the relations of the lemma.

We also need the next remark.

Remark 2. If $f(z) \in \mathcal{S}_p^*(\alpha)$, then there exists a function $p(z) = p + \sum_{k=1}^{\infty} c_k z^k$ such that Re $p(z) > \alpha$ ($z \in \mathbb{U}$) and

$$zf'(z) = f(z)p(z)$$

which implies that

$$p + \sum_{n=p+1}^{\infty} n a_n z^{n-p} = p + \sum_{n=p+1}^{\infty} \left(\sum_{l=p}^n a_l c_{n-l} \right) z^{n-p}$$

where $a_p = 1$ and $c_0 = p$. Therefore, we have the following relation

(3)
$$(n-p)a_n = \sum_{l=p}^{n-1} a_l c_{n-l} \quad (n \ge p+1).$$

3 Main results

In this section, we begin with the upper bound of $|a_{p+2} - \mu a_{p+1}^2|$ for *p*-valently starlike functions of order α below.

Theorem 3. If a function $f(z) \in \mathcal{S}_p^*(\alpha)$ $(0 \leq \alpha < p)$, then

$$|a_{p+2} - \mu a_{p+1}^2| \leq \begin{cases} (p-\alpha) \left\{ (2(p-\alpha) + 1) - 4(p-\alpha)\mu \right\} & \left(\mu \leq \frac{1}{2}\right) \\ p-\alpha & \left(\frac{1}{2} \leq \mu \leq \frac{p+1-\alpha}{2(p-\alpha)}\right) \\ (p-\alpha) \left\{ 4(p-\alpha)\mu - (2(p-\alpha) + 1) \right\} & \left(\mu \geq \frac{p+1-\alpha}{2(p-\alpha)}\right) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z^p}{(1-z)^{2(p-\alpha)}} & \left(\mu \leq \frac{1}{2} \text{ or } \mu \geq \frac{p+1-\alpha}{2(p-\alpha)}\right) \\ \\ \frac{z^p}{(1-z^2)^{p-\alpha}} & \left(\frac{1}{2} \leq \mu \leq \frac{p+1-\alpha}{2(p-\alpha)}\right). \end{cases}$$

Proof. If $f(z) \in \mathcal{S}_p^*(\alpha)$, then we have the equation (3) which means that $a_{p+1} = c_1$ and $a_{p+2} = \frac{c_2 + c_1^2}{2}$. Thus, by the inequality (1) and the representation (2), we can suppose that $c_1 = c$ ($0 \leq c \leq 2(p - \alpha)$) without loss of generality and we derive

$$\begin{aligned} |a_{p+2} - \mu a_{p+1}^2| &= \left| \frac{c_2 + c^2}{2} - \mu c^2 \right| \\ &= \frac{1}{2} \left| (1 - 2\mu)c^2 + \frac{c^2 + \{4(p - \alpha)^2 - c^2\}\zeta}{2(p - \alpha)} \right| \\ &= \frac{1}{4(p - \alpha)} |\{2(p - \alpha) - 4(p - \alpha)\mu + 1\}c^2 + \{4(p - \alpha)^2 - c^2\}\zeta| \\ &\equiv A(\zeta). \end{aligned}$$

Applying the triangle inequality, we deduce

$$\begin{split} A(\zeta) &\leq \frac{1}{4(p-\alpha)} \left[|(2(p-\alpha)+1) - 4(p-\alpha)\mu| \, c^2 + \left\{ 4(p-\alpha)^2 - c^2 \right\} \right] \\ &= \begin{cases} \frac{1}{4(p-\alpha)} \left[2(p-\alpha)(1-2\mu)c^2 + 4(p-\alpha)^2 \right] & \left(\mu \leq \frac{2(p-\alpha)+1}{4(p-\alpha)}\right) \\ \frac{1}{4(p-\alpha)} \left[2\{2(p-\alpha)\mu - (p+1-\alpha)\}c^2 + 4(p-\alpha)^2 \right] & \left(\mu \geq \frac{2(p-\alpha)+1}{4(p-\alpha)}\right) \\ \end{cases} \\ &= \begin{cases} (p-\alpha)\left\{ (2(p-\alpha)+1) - 4(p-\alpha)\mu \right\} & \left(\mu \leq \frac{1}{2}, c = 2(p-\alpha)\right) \\ p-\alpha & \left(\frac{1}{2} \leq \mu \leq \frac{2(p-\alpha)+1}{4(p-\alpha)}, c = 0\right) \\ p-\alpha & \left(\frac{2(p-\alpha)+1}{4(p-\alpha)} \leq \mu \leq \frac{p+1-\alpha}{2(p-\alpha)}, c = 0\right) \\ (p-\alpha)\left\{ 4(p-\alpha)\mu - (2(p-\alpha)+1) \right\} & \left(\mu \geq \frac{p+1-\alpha}{2(p-\alpha)}, c = 2(p-\alpha)\right) \\ \end{cases} \end{split}$$

Equality is attained for functions $f(z) \in \mathcal{S}_p^*(\alpha)$ defined by

$$\frac{zf'(z)}{f(z)} = p(z) = \frac{p + (p - 2\alpha)z}{1 - z}$$

for the case $c_1 = c = 2(p - \alpha)$, $\zeta = 1$ and $c_2 = 2(p - \alpha)$, or

$$\frac{zf'(z)}{f(z)} = p(z) = \frac{p + (p - 2\alpha)z^2}{1 - z^2}$$

for the case $c_1 = c = 0$, $\zeta = 1$ and $c_2 = 2(p - \alpha)$.

Taking $\alpha = 0$ or p = 1 in Theorem 3, we obtain the following corollaries, respectively.

Corollary 1. If a function $f(z) \in S_p^*$, then

$$|a_{p+2} - \mu a_{p+1}^2| \leq \begin{cases} p \{(2p+1) - 4p\mu\} & \left(\mu \leq \frac{1}{2}\right) \\ p & \left(\frac{1}{2} \leq \mu \leq \frac{p+1}{2p}\right) \\ p \{4p\mu - (2p+1)\} & \left(\mu \geq \frac{p+1}{2p}\right) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z^p}{(1-z)^{2p}} & \left(\mu \leq \frac{1}{2} \text{ or } \mu \geq \frac{p+1}{2p}\right) \\ \\ \frac{z^p}{(1-z^2)^p} & \left(\frac{1}{2} \leq \mu \leq \frac{p+1}{2p}\right). \end{cases}$$

Corollary 2. If a function $f(z) \in S^*(\alpha)$, then $|a_3 - \mu a_2^2| \leq \begin{cases} (1 - \alpha) \{(3 - 2\alpha) - 4(1 - \alpha)\mu\} & \left(\mu \leq \frac{1}{2}\right) \\ 1 - \alpha & \left(\frac{1}{2} \leq \mu \leq \frac{2 - \alpha}{2(1 - \alpha)}\right) \\ (1 - \alpha) \{4(1 - \alpha)\mu - (3 - 2\alpha)\} & \left(\mu \geq \frac{2 - \alpha}{2(1 - \alpha)}\right) \end{cases}$ with equality for

$$f(z) = \begin{cases} \frac{z}{(1-z)^{2(1-\alpha)}} & \left(\mu \leq \frac{1}{2} \text{ or } \mu \geq \frac{2-\alpha}{2(1-\alpha)}\right) \\ \\ \frac{z}{(1-z^2)^{1-\alpha}} & \left(\frac{1}{2} \leq \mu \leq \frac{2-\alpha}{2(1-\alpha)}\right). \end{cases}$$

Also, by Corollary 1 and Corollary 2, we readily know

Corollary 3. If a function $f(z) \in S^*$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} 3 - 4\mu & \left(\mu \leq \frac{1}{2}\right) \\ 1 & \left(\frac{1}{2} \leq \mu \leq 1\right) \\ 4\mu - 3 & (\mu \geq 1) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z}{(1-z)^2} & \left(\mu \leq \frac{1}{2} \text{ or } \mu \geq 1\right) \\ \\ \frac{z}{1-z^2} & \left(\frac{1}{2} \leq \mu \leq 1\right). \end{cases}$$

Next, in consideration of Remark 1, we derive the upper bounds of $|a_{p+2} - \mu a_{p+1}^2|$ for *p*-valently convex functions.

Theorem 4. If a function $f(z) \in \mathcal{K}_p(\alpha)$ $(0 \leq \alpha < p)$, then $|a_{p+2} - \mu a_{p+1}^2| \leq$

$$\begin{cases} \frac{p(p-\alpha)\left\{(2(p-\alpha)+1)(p+1)^2-4(p-\alpha)p(p+2)\mu\right\}}{(p+1)^2(p+2)} & \left(\mu \leq \frac{(p+1)^2}{2p(p+2)}\right) \\ \frac{p(p-\alpha)}{p+2} & \left(\frac{(p+1)^2}{2p(p+2)} \leq \mu \leq \frac{(p+1)^2(p+1-\alpha)}{2p(p+2)(p-\alpha)}\right) \\ \frac{p(p-\alpha)\left\{4(p-\alpha)p(p+2)\mu - (2(p-\alpha)+1)(p+1)^2\right\}}{(p+1)^2(p+2)} \\ \frac{p(p-\alpha)\left\{4(p-\alpha)p(p+2)\mu - (2(p-\alpha)+1)(p+1)^2\right\}}{(p+1)^2(p+2)} \\ \end{pmatrix} \end{cases}$$

with equality for

$$f(z) = \begin{cases} z^{p}{}_{2}F_{1}(2(p-\alpha), p; p+1; z) \left(\mu \leq \frac{(p+1)^{2}}{2p(p+2)} \text{ or } \mu \geq \frac{(p+1)^{2}(p+1-\alpha)}{2p(p+2)(p-\alpha)}\right) \\ \\ z^{p}{}_{2}F_{1}\left(\frac{p}{2}, p-\alpha; 1+\frac{p}{2}; z^{2}\right) \left(\frac{(p+1)^{2}}{2p(p+2)} \leq \mu \leq \frac{(p+1)^{2}(p+1-\alpha)}{2p(p+2)(p-\alpha)}\right). \end{cases}$$

Proof. Noting that $f(z) \in \mathcal{K}_p(\alpha)$ if and only if

Hankel determinant for p-valently starlike and convex functions ... 41

$$\frac{zf'(z)}{p} = z^p + \sum_{n=p+1}^{\infty} \frac{n}{p} a_n z^n \in \mathcal{S}_p^*(\alpha) \text{ and using Theorem 3, we see that}$$

$$\left|\frac{p+2}{p}a_{p+2} - \nu \frac{(p+1)^2}{p^2}a_{p+1}^2\right| \leq \begin{cases} (p-\alpha)\left\{(2(p-\alpha)+1) - 4(p-\alpha)\nu\right\}\\\\ p-\alpha\\\\ (p-\alpha)\left\{4(p-\alpha)\nu - (2(p-\alpha)+1)\right\}, \end{cases}$$

that is, that $\left|a_{p+2} - \frac{(p+1)^2}{p(p+2)}\nu a_{p+1}^2\right| \leq$

$$\begin{cases} \frac{p(p-\alpha)\left\{(2(p-\alpha)+1\right)-4(p-\alpha)\nu\right\}}{p+2} & \left(\nu \leq \frac{1}{2}\right)\\ \\ \frac{p(p-\alpha)}{p+2} & \left(\frac{1}{2} \leq \nu \leq \frac{p+1-\alpha}{2(p-\alpha)}\right)\\ \\ \frac{p(p-\alpha)\left\{4(p-\alpha)\nu-(2(p-\alpha)+1)\right\}}{p+2} & \left(\nu \geq \frac{p+1-\alpha}{2(p-\alpha)}\right). \end{cases}$$

Now, putting $\frac{(p+1)^2}{p(p+2)}\nu = \mu$, the proof of the theorem is completed.

When $\alpha = 0$ or p = 1 in Theorem 4, the following three corollaries are obtained.

Corollary 4. If a function
$$f(z) \in \mathcal{K}_p$$
, then

$$|a_{p+2}-\mu a_{p+1}^2| \leq \begin{cases} \frac{p^2 \left\{ (2p+1)(p+1)^2 - 4p^2(p+2)\mu \right\}}{(p+1)^2(p+2)} & \left(\mu \leq \frac{(p+1)^2}{2p(p+2)}\right) \\ \frac{p^2}{p+2} & \left(\frac{(p+1)^2}{2p(p+2)} \leq \mu \leq \frac{(p+1)^3}{2p^2(p+2)}\right) \\ \frac{p^2 \left\{ 4p^2(p+2)\mu - (2p+1)(p+1)^2 \right\}}{(p+1)^2(p+2)} & \left(\mu \geq \frac{(p+1)^3}{2p^2(p+2)}\right) \end{cases}$$

with equality for $% \left(f_{i} \right) = \int_{\partial \Omega} \left(f_{i} \right) \left(f_{i} \right$

$$f(z) = \begin{cases} z^{p} {}_{2}F_{1}(2p, p; p+1; z) & \left(\mu \leq \frac{(p+1)^{2}}{2p(p+2)} \text{ or } \mu \geq \frac{(p+1)^{3}}{2p^{2}(p+2)}\right) \\ z^{p} {}_{2}F_{1}\left(\frac{p}{2}, p; 1+\frac{p}{2}; z^{2}\right) & \left(\frac{(p+1)^{2}}{2p(p+2)} \leq \mu \leq \frac{(p+1)^{3}}{2p^{2}(p+2)}\right). \end{cases}$$

Corollary 5. If a function $f(z) \in \mathcal{K}(\alpha)$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{(1-\alpha)}{3} \{(3-2\alpha) - 3(1-\alpha)\mu\} & \left(\mu \leq \frac{2}{3}\right) \\ \frac{1-\alpha}{3} & \left(\frac{2}{3} \leq \mu \leq \frac{2(2-\alpha)}{3(1-\alpha)}\right) \\ \frac{(1-\alpha)}{3} \{3(1-\alpha)\mu - (3-2\alpha)\} & \left(\mu \geq \frac{2(2-\alpha)}{3(1-\alpha)}\right) \end{cases}$$

with equality for $% \left(f_{i} \right) = \int_{\partial \Omega} \left(f_{i} \right) \left(f_{i} \right$

$$f(z) = \begin{cases} \frac{1 - (1 - z)^{2\alpha - 1}}{2\alpha - 1} & and \quad \log\left(\frac{1}{1 - z}\right) & \left(\mu \le \frac{2}{3} \text{ or } \mu \ge \frac{2(2 - \alpha)}{3(1 - \alpha)}\right) \\ \\ z_2 F_1\left(\frac{1}{2}, 1 - \alpha; \frac{3}{2}; z^2\right) & \left(\frac{2}{3} \le \mu \le \frac{2(2 - \alpha)}{3(1 - \alpha)}\right). \end{cases}$$

Corollary 6. If a function $f(z) \in \mathcal{K}$, then

$$|a_3 - \mu a_2^2| \leq \begin{cases} 1 - \mu & \left(\mu \leq \frac{2}{3}\right) \\ \frac{1}{3} & \left(\frac{2}{3} \leq \mu \leq \frac{4}{3}\right) \\ \mu - 1 & \left(\mu \geq \frac{4}{3}\right) \end{cases}$$

with equality for

$$f(z) = \begin{cases} \frac{z}{1-z} & \left(\mu \leq \frac{2}{3} \text{ or } \mu \geq \frac{4}{3}\right) \\ \frac{1}{2}\log\left(\frac{1+z}{1-z}\right) & \left(\frac{2}{3} \leq \mu \leq \frac{4}{3}\right). \end{cases}$$

References

- P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [2] M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8(1933), 85-89.
- [3] U. Grenander and G. Szegö, *Toeplitz Forms and their Applications*, Univ. of California Press, Berkeley and Los Angeles, (1958).
- [4] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. Journal of Math. Anal. 1(2007), 619-625.

- [5] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(1982), 225-230.
- [6] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87(1983), 251-257.
- [7] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223(2) (1976), 337-346.
- [8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, (1975).

Toshio Hayami

Kinki University

Department of Mathematics

Higashi-Osaka, Osaka 577-8502, Japan

e-mail: ha_ya_to112@hotmail.com

Shigeyoshi Owa Kinki University Department of Mathematics Higashi-Osaka, Osaka 577-8502, Japan e-mail: owa@math.kindai.ac.jp