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Approximation of the attractor of a

countable iterated function system 1

Nicolae-Adrian Secelean

Abstract

In this paper we will describe a construction of a sequence of

sets which is converging, with respect to the Hausdorff metric, to

the attractor of a countable iterated function system on a compact

metric space. The importance of that method consists in the fact

that the approximation sequence can be constructed of finite sets,

hence it is very useful for computer graphic representation.
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1 Introduction

In the famous paper [4], J.E. Hutchinson proves that, given a set of con-

tractions (IFS) (ωn)k
n=1 in a complete metric space X, there exists a unique

nonempty compact set A ⊂ X, named the attractor of IFS. This attrac-

tor is, generally, a fractal set. These ideas has been extended to infinitely

many contractions, a such generalization can be founded in [5] for countable

iterated function systems (CIFS) on a compact metric space.

The approximation of the attractor of a IFS has been studied by S.

Dubuc, A. Elqortobi, P.M. Centore, E.R. Vrscay, E. de Ámo, I. Chiţescu,

C. Dı́az, N.A. Secelean (see [1]) and many others.

If we consider a CIFS (ωn)n≥1 whose attractor is A, then A can by

approximated (see [5]) by the attractors Ak of the partial IFS (ωn)k
n=1,

k = 1, 2, · · · . However, these attractors are, generally, infinite sets so it

cannot be represented by using the computer.

Here, we will construct a sequence of finite sets (which can be subsets

of A, hence we use not one point ”outward” of A) converging with respect

to the Hausdorff metric to A.

As a particular case, we will approximate, by finite subsets, the graph

of the countable interpolation function associated of a countable system of

data and a corresponding CIFS.

Finally, an example in R2 which use this method is given.
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2 Preliminary Facts

2.1 Iterated Function Systems, Countable Iterated Func-

tion Systems

In this subsection we give some well known aspects on Fractal Theory used

in the sequel (more complete and rigorous treatments may be found in [4],

[3], [5], [7]).

Let (X, d) be a complete metric space and K(X) be the class of all

compact non-empty subsets of X.

The function δ : K(X)×K(X) −→ R+, δ(A, B) = max{d(A,B), d(B, A)},
where d(A,B) = sup

x∈A

(
inf
y∈B

d(x, y)
)
, for all A,B ∈ K(X), is a metric, namely

the Hausdorff metric. The set K(X) is a complete metric space with respect

to this metric δ.

Theorem 1. [5, Th. 1.1] Let (An)n be an increasing sequence of compact sets

in a complete metric space such that the set A =
∞⋃

n=1

An is relatively compact.

Then A = lim
n

An, the limit being taken with respect to the Hausdorff metric,

the bar means the closure.

A set of contractions (ωn)k
n=1, k ≥ 1, is called an iterated function system

(IFS). Such a system of maps induces a set function Sk : K(X) −→ K(X),

Sk(E) =
k⋃

n=1

ωn(E) which is a contraction on K(X) with contraction ratio

r ≤ max
1≤n≤k

rn, rn being the contraction ratio of ωn, n = 1, . . . , k. According

to the Banach contraction principle, there is a unique set Ak ∈ K(X) which

is invariant with respect to Sk, that is Ak = Sk(Ak) =
k⋃

n=1

ωn(Ak). We say
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that the set Ak ∈ K(X) is the attractor of IFS (ωn)k
n=1 .

Now, we suppose further that (X, d) is a compact metric space. The

(K(X), δ) is also a compact metric space.

A sequence of contractions (ωn)n≥1 on X whose contraction ratios are,

respectively, rn > 0, such that sup
n

rn < 1 is called a countable iterated func-

tion system (CIFS).

If we consider the CIFS (ωn)n≥1 , then the set function S : K(X) −→
K(X), given by

(1) S(E) =
⋃
n≥1

ωn(E)

(the bar means the closure of the respective set) is a contraction map on

(K(X), h) with contraction ratio r ≤ sup
n

rn. Thus, there exists a unique

non-empty compact set A ⊂ X invariant for the family (ωn)n≥1 , that is

A = S(A) =
⋃
n≥1

ωn(A). Further, if B ∈ K(X), then, by a successive ap-

proximation process,

(2) Sp(B) −→
p

A

(with respect to the Hausdorff metric) where Sp := S ◦ · · · ◦ S︸ ︷︷ ︸
p times

. The set A

invariant under the set function S is called the attractor of CIFS (ωn)n≥1 and

it can be obtained as limit, with respect to the Hausdorff metric, of sequence

of attractors (Ak)k≥1 of partial IFS (ωn)k
n=1, k = 1, 2, . . . (see [5]).

2.2 Countable fractal interpolation

Now we will describe an extension of the fractal interpolation to the case of

the countable system of data (more details can be found in [7]).
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Let (Y, dY ) be a compact metric space. A countable system of data is

a set of points having the form ∆ := {(xn, Fn) ∈ R × Y : n = 0, 1, . . . }
where the sequence (xn)n≥0 is strictly increasing and bounded and (Fn)n≥0

is convergent. Denote a = x0, b = lim
n

xn and X = [a, b]× Y .

An interpolation function corresponding to this system of data is a con-

tinuous map f : [a, b] → Y such that f(xn) = Fn for n = 0, 1, . . . . The

points (xn, Fn) ∈ R2, n ≥ 0, are called the interpolation points. It can

construct a CIFS on X which is associated with ∆.

Theorem 2. [7, Th.2] There exists an interpolation function f correspond-

ing to the considered countable system of data such that the graph of f is

the attractor A of the associated CIFS. That is

A =
{
(x, f(x)) : x ∈ [a, b]

}
.

3 Approximation of the attractor of a count-

able iterated function system

Lemma 1. Let us consider two families (Ai)i∈=, (Bi)i∈= of compact sub-

sets of the metric space (X, d) such that the both sets
⋃
i∈=

Ai and
⋃
i∈=

Bi are

compact. Then

δ(
⋃

i∈=
Ai,

⋃

i∈=
Bi) ≤ sup

i
δ(Ai, Bi).

Proof. To establish the inequality from statement, it is enough, because of

symmetry, to prove

d(
⋃

i∈=
Ai,

⋃

i∈=
Bi) ≤ sup

i
d(Ai, Bi).
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Let be x ∈ ⋃
i∈=

Ai. There is ix ∈ = such that x ∈ Aix . Therefore

inf
y∈S

i
Ai

d(x, y) ≤ inf
y∈Bix

d(x, y) ≤ d(Aix , Bix) ≤ sup
i

d(Ai, Bi)

and hence

d(
⋃

i∈=
Ai,

⋃

i∈=
Bi) = sup

x∈S
i

Ai

(
inf

y∈S
i
Bi

d(x, y)
) ≤ sup

i
d(Ai, Bi).

The following lemma describes a standard topological fact:

Lemma 2. If (Ei)i∈= is a family of subsets of a topological space, then
⋃
i∈=

Ei =
⋃
i∈=

Ei.

Let (Bk)k be a sequence of compact nonempty sets on the compact

metric space (X, d) converging (with respect to the Hausdorff metric δ) to

the compact set B ⊂ X, B 6= ∅.
We also consider a CIFS (ωn)n on X and denote by A its attractor.

Theorem 3. Under the above context, A can be approximated by the se-

quence of compact nonempty sets (Sp
k(Bk))p,k. More precisely, we have

lim
p

lim
k
Sp

k(Bk) = A,

the limiting process being taken with respect to the Hausdorff metric and

Sp
k := Sk ◦ · · · ◦ Sk︸ ︷︷ ︸

p times

.

Proof. For each p = 1, 2, . . . , we denote ωi1i2...ip := ωi1 ◦ · · · ◦ ωip , where

i1, . . . , ip are positive integers. Obviously, ωi1i2...ip is a contraction with

contraction ratio ri1· ... · rip , rn assigning the contraction ratio of ωn.
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Let be p ≥ 1 and, for each k ≥ 1, Nk := {1, 2, . . . , k}.
First, we prove that

(3) δ
(Sp

k(Bk),Sp(B)
) −→

k
0.

One has

(4)

δ
(Sp

k(Bk),Sp(B)
) ≤ δ

(Sp
k(Bk),Sp

k(B)
)

+ δ
(Sp

k(B),Sp(B)
)
, k = 1, 2, · · · .

It is simple to verify that Sp
k(E) =

⋃
i1,...,ip∈Nk

ωi1...ip(E) for any arbitrary

set E ⊂ X.

Now, in view of Lemma 1,

(5) δ
(Sp

k(Bk),Sp
k(B)

)
= δ

( ⋃
i1,...,ip∈Nk

ωi1...ip(Bk),
⋃

i1,...,ip∈Nk

ωi1...ip(B)
) ≤

≤ sup
i1,...,ip∈Nk

δ
(
ωi1...ip(Bk), ωi1...ip(B)

)
.

Since, for all k = 1, 2, . . . ,

d
(
ωi1...ip(Bk), ωi1...ip(B)

)
= sup

x∈ωi1...ip (Bk)

inf
y∈ωi1...ip (B)

d(x, y) =

= sup
a∈Bk

inf
b∈B

d
(
ωi1...ip(a), ωi1...ip(b)

) ≤ rn sup
a∈Bk

inf
b∈B

d(a, b) = ri1ri2 . . . ripd(Bk, B)

and, analogously,

d
(
ωi1...ip(B), ωi1...ip(Bk)

) ≤ ri1ri2 . . . ripd(Bk, B),

one obtain

δ
(
ωi1...ip(B), ωi1...ip(Bk)

) ≤ ri1ri2 . . . ripδ(Bk, B) ≤ δ(Bk, B), ∀ i1, . . . , ip ∈ Nk,



228 N.A. Secelean

so, from (5),

δ
(Sp

k(Bk),Sp
k(B)

) ≤ δ(Bk, B), ∀ k, p ≥ 1.

Thus, taking into account the hypothesis,

(6) δ
(Sp

k(Bk),Sp
k(B)

) −→
k

0, ∀ p = 1, 2, · · · .

Afterwards, we observe that

(7) Sp(B) =
⋃

i1,...,ip≥1

ωi1...ip(B).

Indeed, we can proceed by induction. Thus, if we suppose that (7) is true

for p ≥ 1. In view of Lemma 2 and by using the continuity of the functions

ωn, we have

Sp+1(B) = S
( ⋃

i1,...,ip≥1

ωi1...ip(B)
)

=
∞⋃
i=1

ωi

( ⋃
i1,...,ip≥1

ωi1...ip(B)
)
⊂

⊂
∞⋃
i=1

ωi

( ⋃
i1,...,ip≥1

ωi1...ip(B)
)

=
∞⋃
i=1

ωi(
⋃

i1,...,ip≥1

ωi1...ip(B)) = Sp+1(B).

Since the sequence of sets
( ⋃

i1,...,ip∈Nk

ωi1...ip(B)
)

k≥1
is clearly increasing,

we can apply Theorem 1 and obtain, by using (7),

(8) lim
k
Sp

k = lim
k

⋃
i1,...,ip∈Nk

ωi1...ip(B) =
∞⋃

k=1

( ⋃
i1,...,ip∈Nk

ωi1...ip(B)
)

=

=
⋃

i1,...,ip≥1

ωi1...ip(E) = Sp(B).

Now, from (6) and (8) becomes (3), so lim
k
Sp

k(Bk) = Sp(B).
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Finally, from (7) and (2), it follows

lim
p

lim
k
Sp

k(Bk) = lim
p
Sp(B) = A,

completing the proof.

Remark 1. By taking in the preceding theorem Bk := {e1, e2, . . . , ek}, k =

1, 2, . . . , en being the fixed point of ωn for every n ≥ 1, one obtain an

increasing sequence of subsets of A converging, with respect to the Hausdorff

metric, to B :=
⋃

k≥1

Bk = {e1, e2, . . . }. Thus, the attractor A of CIFS (ωn)n

can be approximated ”from inside”, because Sp
k(Bk) ⊂ A, from all k, p ≥ 1.

Remark 2. If (Bk)k are finite sets, then
(Sp

k(Bk)
)

p,k
are finite sets too. As

follows, the attractor A can be approximated by using a sequence of finite

sets. This fact is very useful for the computer graphic representation of the

CIFS’s attractor in R2.

Remark 3. Let us consider a countable system of data ∆ = (xn, Fn)n≥1 ⊂
R × Y (see section 2.2) and let be Bk := {(xn, Fn); n = 1, 2, . . . , k}. Then

Bk ⊂ A for any k and lim
k

Bk = ∆, the convergence being considered with

respect to the Hausdorff metric. It follows that the graph of the countable

interpolation function is approximated ”from inside” by a sequence of finite

sets.

Finally, we give an example which shows some progressive steps to ap-

proximate an attractor of Sierpinski-infinite type (see [5]), from inside, by

some finite sets.
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Example On the space X = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}
we consider the sequence of contractions ωij(x, y) =

( 1

2i
x+(j− 1)

1

2i
,

1

2i
y +

(2i− j−1)
1

2i

)
for any i = 1, 2, . . . , j = 1, 2, . . . ,

2i − 1

2− 1
. Three steps on the

attractor’s approximation process are represented as follows.
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