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On quadrature formulas of Gauss-Turán and

Gauss-Turán-Stancu type 1
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Abstract

In this paper we study the quadrature formulas of Gauss-Turán

and Gauss-Turán-Stancu type, the determination of the nodes and

the coefficients using the s-orthogonal and σ-orthogonal polynomials.
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1 Introduction

Let Pm be the set of all algebraic polynomials of degree at most m. In 1950

P.Turán [17] was studied numerical quadratures of the form :

(1)

∫ 1

−1

f(x)dx =
n∑

k=1

s−1∑
ν=0

Ak,νf
(ν)(xk) + Rn,s(f),
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where the nodes−1 ≤ x1 < · · · < xn ≤ 1 are arbitrary, Ak,ν =
∫ 1

−1
lk,ν(x)dx,

(k = 1, n ; ν = 0, s− 1) and lk,ν(x) are the fundamental polynomials of

Hermite interpolation. The formula (1) is exact for any f ∈ Psn−1.

One raise the problem to determine, if it is possible the nodes {xi, i =

1, n} so that the quadrature formula is exact for all f ∈ P(s+1)n−1. Turán

showed that the nodes must have odd multiplicities to obtain an increase

of degree of exactness and these nodes must be the zeros of the monic

polynomial π∗n(x) = xn + an−1x
n−1 + · · · + a1x + a0, which minimizes the

value of the integral
∫ 1

−1
[πn(x)]s+1dx.

If one consider the odd orders of multiplicity of the nodes to be 2s + 1

then one obtain the Gauss-Turán type quadrature formula :

(2)

∫ b

a

f(x)dλ(x) =
n∑

k=1

2s∑
ν=0

Ak,νf
(ν)(xk) + Rn,2s(f),

where dλ(x) is a nonnegative measure on the interval (a, b) which can be

the real axis R , with compact or infinite support for which all moments:

µk =
∫ b

a
xkdλ(x), k = 0, 1, . . . , exists, are finite, and µ0 > 0.

If the nodes {xk, k = 1, n} in (2) are chosen the zeros of the monic

polynomial πn,s = πn,s(x) which minimizes the integral.

(3) F (a0, a1, . . . , an−1) =

∫ b

a

[πn(x)]2s+2dλ(x),

then the formula (2) is exact for all polynomials of degree at most

2(s + 1)n − 1 , that is, Rn,2s(f) = 0, ∀f ∈ P2(s+1)n−1. The condition (3) is

equivalent with the following conditions:

(4)

∫ b

a

[πn(x)]2s+1xkdλ(x) = 0, (k = 0, n− 1).
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Let denote, πn,s(x) by Pn,s(x) . The case dλ(x) = w(x)dx on [a, b] has been

studied by Osscini and Ghizzetti.

2 The construction of GAUSS-TURÁN Quadra-

ture Formulas by using s-Orthogonal and

σ-Orthogonal Polynomials

In order to numerically construct the s-orthogonal polynomials with respect

to the measure dλ(x), one can use the orthogonality conditions (4). Let n

and s be given, and the measure : dµ(x) = dµn,s(x) = (πn(x))2sdλ(x). Then

the orthogonality conditions can be written as:
∫ b

a
πn,s

k (x)tνdµ(x) = 0, (ν =

0, k − 1), where {πn,s
k }k∈N is a sequence of monic orthogonal polynomials

with respect to the new measure dµ(x).

So, the polynomials πn,s
k , which we will denote by πk = πk(x) satisfies a

three-term recurrence relation of the form :

(5) πk+1(x) = (x− αk)πk(x)− βkπk−1(x),

where π−1(x) = 0, π0(x) = 1, and we have from the orthogonality property:

β0 =
∫ b

a
dµ(x),

(6)

αk =
< xπk, πk >

< πk, πk >
=

∫ b

a
xπ2

k(x)dµ(x)∫ b

a
π2

k(x)dµ(x)
, βk =

< πk, πk >

< πk−1, πk−1 >
=

∫ b

a
π2

k(x)dµ(x)∫ b

a
π2

k−1(x)dµ(x)
.

One can calculate the coefficients αk, βk, (k = 0, n− 1), and are ob-

tained the first n + 1 orthogonal polynomials π0, π1, . . . , πn, and let denote
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them by Pn,s = πs
n.

Let define the function on the Euclidian space Rn

(7) Φ(x1, . . . , xn) =

∫ b

a

(x− x1)
2s+2 . . . (x− xn)2s+2dλ(x).

If dλ(x) is a positive measure, it was proven that this function is continuous

and positive. Then the function Φ(x1, . . . , xn) has an lower bound µ0 and

this value is attained for a < x1 < · · · < xn < b (see [8] T.Popoviciu).

Let consider the polynomial P 2s+2
n,s (x) =

∏n
k=1(x−xk)

2s+2 with the zeros

a < x1 < · · · < xn < b.

Then the function Φ(x1, . . . , xn) have a relative minimum point and we

have: − 1
2s+2

∂Φ
∂xk

= I(Pk) = 0, where Pk(x) =
P 2s+2

n,s (x)

x−xk
. Then one must have:

∫ b

a

P 2s+1
n,s lk(x)dλ(x) = 0, k = 1, n , where lk(x), k = 1, n

are the Lagrange’s fundamental interpolation polynomials corresponding to

the nodes : x1, . . . , xn, which are linearly independent. Thus, one obtain

that the polynomial P 2s+1
n,s satisfies the orthogonality conditions :

∫ b

a

[
Pn,s(x)

]2s+1
xkdλ(x) = 0, k = 0, n− 1.

From the condition to have a relative minimum we obtain:

∂Φ

∂xk

= 0,
∂2Φ

∂xk∂xj

= 0,
∂2Φ

∂x2
k

> 0, k, j = 1, n , k 6= j.

It was showed that the remainder in (2) can be expressed as

(8) R(f) =
f (N)(ξ)

N !

∫ b

a

P 2s+2
n,s dλ(x), N = 2(s + 1)n.
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Now, we consider the following expression of the remainder in the quadra-

ture formula (2) R(f ; dλ) =
∫ b

a
U(x)D(f ; x)dλ(x), where

u(x) =
n∏

k=1

(x− xk)
2s+1, U(x) = u(x)(x− x1) . . . (x− xn) =

n∏

k=1

(x− xk)
2s+2

and D(f ; x) =


x, x1, x2, . . . xn; f

1 2s + 1 2s + 1 . . . 2s + 1


 .

If f ∈ CN(a, b), by using the Peano’s Theorem, then the remainder can

be expressed as R[f ] =
∫ b

a
KN(t)f (N)(t)dλ(t), with N = 2(s + 1)n,

where the Peano’s Kernel have the expression :

KN(t) = Rx[
(x−t)N−1

+

(N−1)!
], which is a spline function of degree N − 1 with the

interpolation points in the nodes of the quadrature formula and the compact

support [a, b]. Then we have:

(9) KN(t) =

∫ b

a

(x− t)N−1
+

(N − 1)!
dλ(t)−

n∑

k=1

2s∑
ν=0

(N − 1)[ν] (xk − t)N−ν−1
+

(N − 1)!
.

Let n ∈ N, σ = (s1, . . . , sn) be a sequence of nonnegative integers, and the

nodes xk ordered, say a ≤ x1 < x2 < · · · < xn ≤ b , with odd multiplicities

2s1 + 1, . . . , 2sn + 1 , respectively.

A generalization of the quadrature formula of Gauss-Turán type was

given independently by Chakalov [2] and T.Popoviciu, [8], for the nodes xk

with different multiplicities 2sk + 1, k = 1, n of the following form

(10)

∫ b

a

f(x)dλ(x) =
n∑

k=1

2sk∑
ν=0

Ak,νf
(ν)(xk) + R(f),

which have dmax = 2
n∑

k=1

sk + 2n− 1, if and only if

(11)

∫ b

a

n∏
ν=1

(x− xν)
2sν+1xkdλ(x) = 0, k = 0, n− 1.
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The conditions (11) defines a sequence of polynomials {πn,σ}n∈N0 , πn,σ(x) =
n∏

k=1

(x− xk), such that
∫ b

a
πk,σ(x)

n∏
ν=1

(x− xν)
2sν+1dλ(x) = 0, k = 0, n− 1.

These polynomials are called σ-orthogonal polynomials and they corre-

sponds to the sequence σ = (s1, s2, . . . , sn) of nonnegative integers.

Definition 1 The polynomials Pn,σ(x) =
n∏

ν=1

(x−xn,σ
ν ) are called σ−orthogonal,

if they satisfies the orthogonality conditions
∫ b

a
Pn,σ(x) xj wn,σ(x)dx = 0, j =

0, n− 1, with respect to the weight wn,σ(x) = w(x)
n∏

ν=1

(x− xn,σ
ν )2sν .

It can be proved that the σ−orthogonal polynomial Pn,σ can be obtained

by the minimization of the integral
∫ b

a
w(x)

n∏
ν=1

(x− xν)
2sν+2dx.

If we consider the vector of multiplicity orders σ = (2s+1, 2s+1, . . . , 2s+

1), then the above polynomials reduces to the s-orthogonal polynomials.

Let consider the Lagrange-Hermite interpolation polynomial

(12) (LHf)(x) = L


 xk, γj, x; f

2sk + 1 1 1




on the nodes xk with the multiplicities 2sk + 1, k = 1, n and we apply the

parameters method of D.D. Stancu.

Then LHf can be expressed in the following form

(13)

(LHf)(x) = v(x)LH


 xk, x; f1

2sk + 1 1


 + u(x)LH


γj, x; f2

1 1


 , where

u(x) = (x−x1)
2s1+1(x−x2)

2s2+1 . . . (x−xn)2sn+1, v(x) = (x−γ1)(x−γ2) . . . (x−γn),
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f1(x) = f(x)/v(x), f2(x) = f(x)/u(x).

Note that v(x) is the polynomial of undetermined nodes. Then we have the

following interpolation formula

(14) f(x) = (LHf)(x) + (rf)(x), where

(15)

(rf)(x) = u(x)v(x)


 x1, . . . , xn, γ1, . . . , γn x; f

2s1 + 1, . . . , 2sn + 1 1, . . . , 1 1


 .

By multiplying the Lagrange-Hermite formula (13) with the weight func-

tion w = w(x) and by integrating on (a, b) with respect to the measure

dλ(x) = w(x)dx, we obtain the quadrature formula

(16) I(w; f) = Q(f) + G(f) + R(f),

where R(f) = I(w, rf) , and

(17) G(f) =
n∑

j=1

Bjf(γj).

One can observe that in (15) , the divided difference which appears have

the order N + 1 = 2
n∑

k=1

sk + 2n = 2S + 2n, where S =
n∑

k=1

sk.

Thus, the degree of exactness of (16) is N = 2S + 2n− 1.

Remark 1 One must determine the nodes xk, k = 1, n with the multiplic-

ities 2sk + 1, (k = 1, n), so that B1 = · · · = Bn = 0, for any values of the
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parameters γj, j = 1, n, and it is necessary and sufficient that

(18)∫ b

a

n∏
ν=1

(x− xν)
2sν+1xkdλ(x) = 0, k = 0, n− 1 , where dλ(x) = w(x)dx.

One can prove that the system (18) with the unknowns x1, x2, . . . , xn

has at least a solution with distinct values. If f ∈ CN+1(a, b), then the

expression for the remainder will be R(f) = f (2S+2n)(ξ)K2S+2n, where

K2S+2n =
1

(2S + 2n)!
I(w; U2S+2n), U2S+2n =

n∏

k=1

(x− xk)
2sk+2.

a) The determination of the Gaussian nodes

Let denote τk := xk the nodes of the quadrature (10), and {pj}j∈N0, let be

a sequence of orthonormal polynomials with respect to the measure, dλ(t)

on R. Then, these polynomials satisfy the three-term recurrence relation

(19)
√

βj+1 pj+1(t) + αj pj(t) +
√

βj pj−1(t) = tpj(t), j = 0, 1, . . . ,

where p−1(t) = 0, p0(t) = 1/
√

β0, β0 = µ0 =
∫ b

a
dλ(t).

For a given sequence σ = (s1, s2, . . . , sn) , the orthogonality conditions (18)

can be written as

(20) Fj(t) =

∫

R
pj−1(t)

[ n∏
ν=1

(t− τν)
2sν+1

]
dλ(t) = 0, j = 1, n,

where t = (τ1, . . . , τn)T , F(t) = [F1(t), F2(t), . . . , Fn(t)]T , which is a non

linear system of equations.

To solve the system (20) can be used the Newton-Kantorovic method (see

[7]). One can construct the iterative formula

t(k+1) = t(k) −W−1(t(k))F(t(k)), k = 0, 1, 2, . . .
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where t(k) = (τ
(k)
1 , τ

(k)
2 , . . . , τ

(k)
n )T , and W = W (t) = [wj,k]n×n = [

∂Fj

∂τk
]n×n, is

the Jacobian of F(t) , whose elements can be calculated by

wj,k =
∂Fj

∂τk

= −(2sk + 1)

∫

R

pj−1(t)

t− τk

[ n∏
ν=1

(t− τν)
2sν+1

]
dλ(t), j, k = 1, n.

But, w0,k = 0 and

(21) w1,k = −2sk + 1√
β0

∫

R
(t− τk)

2sk
[ n∏

ν=1,ν 6=k

(t− τν)
2sν+1

]
dλ(t),

then, by integrating (19) one obtain

(22)
√

βj+1 wj+2,k = (τk−αj) wj+1,k−
√

βj wj,k− (2sk +1)Fj+1, j = 0, n− 2.

Thus, knowing only Fj and w1,j, (j = 1, n), one can calculate the elements

of the Jacobian matrix by the nonhomogenous recurrence relation (22).

The integrals (20), (21), can be calculated by using a Gauss-Christoffel

quadrature formula, (w.r.t. the measure dλ(t) ) of the following form

∫ b

a

g(t)dλ(t) =
L∑

k=1

A
(L)
k g(τ

(L)
k ) + RL(g),

with L =
∑n

k=1 sk + n, which is exact for ∀f ∈ P2L−1, where 2L − 1 =

2
∑n

k=1 sk + 2n− 1.

For a sufficiently good approximation t(0), the convergence of the method

for the calculation of t(k+1) is quadratic (see [7]).

If one consider σ = (s, s, . . . , s), and the quadrature formula (2) then,

in order to determine the coefficients αν , βν from the recurrence relation

(5), can be used the discretized Stieltjes procedure for infinite intervals of
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orthogonality. From (5) one obtain the following nonlinear system

f0 ≡ β0−
∫

R
π2s

n (t)dλ(t) = 0, f2ν+1 ≡
∫

R
(αν−t)π2

ν(t)π
2s
n (t)dλ(t) = 0, (ν = 0, n− 1),

f2ν ≡
∫

R

[
βνπ

2
ν−1(t)− π2

ν(t)
]
π2s

n (t)dλ(t) = 0, (ν = 0, n− 1).

The polynomials π0, π1, . . . , πn can be expressed in terms of αν , βν , ν =

0, n, by the recurrence relation (5).

By using the Newton-Kantorovic’s method, one obtain the following

relations for the determination of the coefficients in (5), namely x(k+1) =

x(k)−W−1(x(k))f(x(k)), k = 0, 1, . . . , where the zeros τ = τ(s, n), (ν = 1, n)

of πs,n
n are the nodes of Gauss-Turan’s type quadrature formula.

Note that these zeros can be obtained by using the QR algotithm, which

determines the eigenvalues of a symmetric tridiagonal Jacobi matrix Jn

Jn =




α0

√
β1 0 0 . . . 0 0

√
β1 α1

√
β2

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . .
√

βn−2 αn−2

√
βn−1

0 0 0 . . . 0
√

βn−1 αn−1




.

This algorithm can be used to determine the s− or σ−orthogonal poly-

nomials by constructing MATLAB routines for some Gauss-Christoffel quadra-

ture formulas and routines to solve some systems of equations.

b) The determination of the coefficients

Let denote U(t) =
∏n

k=1(t− τk)
2sk+1, and let consider the Hermite interpo-
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lation formula

(23) f(t) = (Hf)(t)+(Rf)(t) =
n∑

ν=1

2sν∑
i=0

hν,i(t)f
(i)(τν)+(Rf)(t), where

hν,i(t)=
(t−τν)

i

i!

[2sν−i∑

k=0

(t−τν)
k

k!

( 1

Uν(t)

)(k)

t=τν

]
Uν(t), Uν(t)=

n∏

k=1

(t−τk)
2sk+1/(t−τν)

2sν+1.

By integrating (23), one obtain

Aν,i =

∫ b

a

hν,i(t)dλ(t)=
1

i!

2sν−i∑

k=0

1

k!

[
(t−τν)

2sν+1

U(t)

](k)

t=τν

∫ b

a

(t−τν)
i+k U(t)dλ(t)

(t−τν)2sν+1
=

=
1

i!

2sν−i∑

k=0

1

k!

[
(t− τν)

2sν+1

U(t)

](k)

t=τν

∫ b

a

U(t)

(t− τν)2sν−i−k+1
dλ(t).

Let denote Uν;i+k(t) = U(t)
(t−τν)2sν−i−k+1 =

= (t−τν)
i+k×(t−τ1)

2s1+1 . . . (t−τν−1)
2sν−1+1(t−τν+1)

2sν+1+1 . . . (t−τn)2sn+1, where

deg(Uν;i+k) ≤ 2sν +(2s1+1)+· · ·+(2sν−1+1)+(2sν+1+1)+· · ·+(2sn+1) =

= 2
n∑

ν=1

sν + n− 1 ≤ 2(
n∑

ν=1

sν + n)− 1 = 2N − 1 = dmax, N = 2(S + n)

So, one obtain

(24) Aν,i =
1

i!

2sν−i∑

k=0

1

k!

[
(t− τν)

2sν+1

U(t)

](k)

t=τν

∫ b

a

Uν;i+k(t)dλ(t),

for ν = 1, n; i = 0, 1, . . . , 2sν and deg(Uν;i+k) ≤ 2N − 1.

The integrals
∫ b

a
Uν,i+k(t)dλ(t), ν = 1, n; i = 0, 2sν , k = 0, 2sν − i, can

be calculated by applying the quadrature formula

∫ b

a

g(t)dλ(t) =
N∑

k=1

A
(N)
k g(τ

(N)
k ) + RN(g),

with N =
∑n

ν=1 sν + n nodes.
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3 A generalization given by D.D.Stancu to

the Gauss-Turán type quadrature formula

A generalization of the Turán quadrature formula (2) to quadratures having

nodes with arbitrary multiplicities was derived independently by Chakalov

[2] and T. Popoviciu [8].

D.D. Stancu in [14], [16], was bring very important contributions in this

domain, by investigating and constructing so-called Gauss-Stancu quadra-

ture formulas having multiple fixed nodes and simple or multiple free (Gaus-

sian) nodes.

Let ai, i = 1, n fixed (or prescribed) nodes, with the given multiplicities

mi, i = 1, n , and x1 < x2 < · · · < xm be the free nodes with given

multiplicities n1, . . . , nm . Then, we have the general quadrature of Gauss-

Stancu type for the integral

I[f ] =
∫ b

a
f(x)dλ(x), (dλ(x) = w(x)dx) of the form

(25) Q[f ] =
n∑

i=1

mi−1∑
ν=0

Bi,νf
(ν)(ai) +

m∑

k=1

nk−1∑
ν=0

Ak,νf
(ν)(xk).

We denote

(26)

ω(x) = α

n∏
i=1

(x− ai)
mi , u(x) =

m∏

k=1

(x− xk)
nk , M =

n∑
i=1

mi, N =
m∑

k=1

nk.

The quadrature formula (25) have interpolatory type with the algebraic

degree of exactness at least d∗ = M +N−1 , if I(f) = Q(f), ∀f ∈ PM+N−1.

The free nodes xk, k = 1,m can be chosen to increase the degree of
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exactness, and so one can obtain I[f ] = Q[f ], ∀ f ∈ PM+N+n−1.

D.D. Stancu gave the following characterizations

Theorem 1 The nodes x1, . . . , xm are the Gaussian nodes if and only if

(27)

∫ b

a

xkω(x)u(x)dλ(x) = 0, ∀k = 0,m− 1.

Theorem 2 If the multiplicities of the Gaussian nodes are all odd , nk =

2sk + 1, (k = 1,m) and if the multiplicities of the fixed nodes are even,

mi = 2ri , i = 1, n , then there exist the real distinct nodes: xk, k = 1,m ,

which are the Gaussian nodes for the quadrature formula of Gauss-Turán-

Stancu type (25).

In this case, the orthogonality conditions (27) can be written as

∫ b

a

xkπm(x)dµ(x), k = 0,m− 1, where πm(x) =
m∏

k=1

(x− xk),

dµ(x) = (
m∏

k=1

(x− xk)
2sk)(

n∏
i=1

(x− ai)
2ri)dλ(x).

This fact means that the polynomial πm(x) is orthogonal with respect to

the new nonnegative measure dµ(x), and therefore , all zeros x1, . . . , xm are

simple, real and belongs to supp(dµ) = supp(dλ).

One can observe that the measure dµ(x) , contains the nodes x1, . . . , xm

, i.e. the unknown polynomial πm(t) is implicitly defined.

Let now consider the sets of fixed and Gaussian nodes Fn = {a1, . . . , an},
Gm = {x1, . . . , xm} and let Fn

⋂
Gm = ∅, and denote Xp = {ξ1, . . . , ξp} :=

Fn

⋃
Gm, (p = n + m) with the multiplicity of the node ξk be rk, k = 1, p.
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Then can be determined the coefficients Ci,ν (i.e. Ai,ν and Bi,ν ) by using

an interpolatory formula of the form

(28)

∫ b

a

f(t)dλ(t) =

p∑
i=1

rν−1∑
ν=0

Ci,νf
(ν)(ξi) + Rp(f).

Note that the multiplicity of the Gaussian nodes are odd numbers.

Example 3.1

If (a, b) = (−1, 1), w(x) = (1 − x)α(1 + x)β, α, β > −1, and a0 =

−1, a1 = 1 are simple fixed nodes, x0 is a simple free node, then the highest

degree of exactness will be D = (1 + 1) + 1 = 3 which will be obtained for

x0 = β−α
α+β+4

. The corresponding quadrature formula of Gauss-Christoffel-

Stancu type will be
∫ 1

−1

(1−x)α(1+x)βf(x)dx=2α+β+1 Γ(α+1)Γ(β+1)

(α+2)(β+2)Γ(α+β+4)

[
(α+1)(α+2)2f(−1)+

+(α+1)(β+1)(α+β+4)2f(
β−α

α+β+4
+(β + 1)(β + 2)2f(1)

]−

−2α+β+2 Γ(α + 3)Γ(β + 3)

3(α + β + 4)Γ(α + β + 6)
f IV (ξ).

Example 3.2 Let u(x) =
∏m+1

i=0 (x− xi)
ri , be the polynomial of nodes

with the following multiplicities x0 = a, r0 = p+1, xm+1 = b, rm+1 = q+1,

the fixed nodes and the Gaussian nodes xi, ri = 2s + 1, (i = 1,m).

Then we can construct the quadrature formula of Gauss-Stancu type

with fixes nodes x0 = a, xm+1 = b, with the above given multiplicity

orders.

(29)∫ b

a

f(x)w(x)dx=

p∑
i=0

A0,if
(i)(a)+

q∑
j=0

Am+1,jf
(j)(b)+

m∑

k=1

2s∑
ν=0

Ak,νf
(ν)(xk)+R(f),
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with the polynomial of fixed nodes ω(x) = (x− a)p+1(b−x)q+1. For a given

s ∈ N, the polynomial Pm,s is orthogonal on [a, b] with respect to the weight

function w(x), if this polynomial is chosen as the solution of the extremal

problem
∫ b

a
P 2s+2

m,s w(x)dx = min, which is equivalent with the condition that
∫ b

a
P 2s+1

m,s (x)xkw(x)dx = 0, k = 0,m− 1.

Then the last one condition can be interpreted as a orthogonality condition

with respect to the weight function p(x) = ω(x)P 2s
m,s(x).

We use a method given by D.D Stancu in [12]. Let consider the auxiliary

function

(30) ϕi(x) =
1

ui(x)

∫ b

a

u(x)− u(t)

x− t
w(t)dt, where ui(x) = u(x)/(x− xi)

ri .

We have

m∑

k=1

2s∑
ν=0

Ak,νf
(ν)(xk) =

m∑
i=1

ri−1∑

k=0

[ ∫ b

a

hi,k(x)w(x)dx

]
f (k)(xi), where

hi,k(x) =
(x− xi)

k

k!

ri−1−k∑
j=0

[(x− xi)
j

j!

( 1

ui(x)

)(j)

xi

]
ui(x).

Let ni = ri−k−1, and calculate the expression using the Leibniz’s formula

ϕ
(ni)
i (x) =

ni∑
j=0

(
ni

j

)( 1

ui(x)

)(j)
[ ∫ b

a

u(x)− u(t)

x− t
w(t)dt

](ni−j)

, where

[ ∫ b

a

u(x)− u(t)

x− t
w(t)dt

](k)
=

k∑
ν=0

(
k

ν

) ∫ b

a

( 1

x− t

)(ν)
[u(x)−u(t)](k−ν)w(t)dt.

If x = α is a zero of order r, r > k for the polynomial u(x), then one obtain

[ ∫ b

a

u(x)− u(t)

x− t
w(t)dt

](k)

x=α
= −

∫ b

a

( 1

x− t

)(k)

x=α
u(t)w(t)dt = . . .
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= k!

∫ b

a

u(t)

(x− α)k+1
w(t)dt.

Then one obtain the expression

ϕ
(ri−k−1)
i (xi) = (ri − k − 1)!

ri−k−1∑
j=0

1

j!

( 1

ui(x)

)(j)

xi

∫ b

a

u(x)

(x− xi)ri−k−j
w(x)dx =

= (ri − k − 1)!

∫ b

a

u(x)

(x− xi)ri−k

[ ri−k−1∑
j=0

(x− xi)
j

j!

( 1

ui(x)

)(j)

xi

]
w(x)dx.

By integrating the Lagrange-Hermite interpolation formula and using the

expression of hi,k(x), finally one obtain the following expression for the

coefficients of the quadrature formula

Ai,k =
1

k!(ri − k − 1)!
ϕ

(ri−k−1)
i (xi).

Note that the quadrature formula (29) is called the Turan-Ionescu formula.
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