On quadrature formulas of Gauss-Turán and Gauss-Turán-Stancu type ${ }^{1}$

Emil D. Danciu

Abstract

In this paper we study the quadrature formulas of Gauss-Turán and Gauss-Turán-Stancu type, the determination of the nodes and the coefficients using the s-orthogonal and σ-orthogonal polynomials.

2000 Mathematical Subject Classification: 65D30, 65D32
Key words and phrases: Gauss-Turán, Gauss-Turán-Stancu quadrature formulas, s-orthogonality, σ-orthogonality

1 Introduction

Let \mathbb{P}_{m} be the set of all algebraic polynomials of degree at most m. In 1950 P.Turán [17] was studied numerical quadratures of the form :

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{k=1}^{n} \sum_{\nu=0}^{s-1} A_{k, \nu} f^{(\nu)}\left(x_{k}\right)+R_{n, s}(f), \tag{1}
\end{equation*}
$$

[^0]where the nodes $-1 \leq x_{1}<\cdots<x_{n} \leq 1$ are arbitrary, $A_{k, \nu}=\int_{-1}^{1} l_{k, \nu}(x) d x$, $(k=\overline{1, n} ; \nu=\overline{0, s-1})$ and $l_{k, \nu}(x)$ are the fundamental polynomials of Hermite interpolation. The formula (1) is exact for any $f \in \mathbb{P}_{s n-1}$.

One raise the problem to determine, if it is possible the nodes $\left\{x_{i}, i=\right.$ $\overline{1, n}\}$ so that the quadrature formula is exact for all $f \in \mathbb{P}_{(s+1) n-1}$. Turán showed that the nodes must have odd multiplicities to obtain an increase of degree of exactness and these nodes must be the zeros of the monic polynomial $\pi_{n}^{*}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, which minimizes the value of the integral $\int_{-1}^{1}\left[\pi_{n}(x)\right]^{s+1} d x$.

If one consider the odd orders of multiplicity of the nodes to be $2 s+1$ then one obtain the Gauss-Turán type quadrature formula :

$$
\begin{equation*}
\int_{a}^{b} f(x) d \lambda(x)=\sum_{k=1}^{n} \sum_{\nu=0}^{2 s} A_{k, \nu} f^{(\nu)}\left(x_{k}\right)+R_{n, 2 s}(f) \tag{2}
\end{equation*}
$$

where $d \lambda(x)$ is a nonnegative measure on the interval (a, b) which can be the real axis \mathbb{R}, with compact or infinite support for which all moments: $\mu_{k}=\int_{a}^{b} x^{k} d \lambda(x), k=0,1, \ldots$, exists, are finite, and $\mu_{0}>0$.

If the nodes $\left\{x_{k}, k=\overline{1, n}\right\}$ in (2) are chosen the zeros of the monic polynomial $\pi_{n, s}=\pi_{n, s}(x)$ which minimizes the integral.

$$
\begin{equation*}
F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\int_{a}^{b}\left[\pi_{n}(x)\right]^{2 s+2} d \lambda(x), \tag{3}
\end{equation*}
$$

then the formula (2) is exact for all polynomials of degree at most $2(s+1) n-1$, that is, $R_{n, 2 s}(f)=0, \forall f \in \mathbb{P}_{2(s+1) n-1}$. The condition (3) is equivalent with the following conditions:

$$
\begin{equation*}
\int_{a}^{b}\left[\pi_{n}(x)\right]^{2 s+1} x^{k} d \lambda(x)=0, \quad(k=\overline{0, n-1}) \tag{4}
\end{equation*}
$$

Let denote, $\pi_{n, s}(x)$ by $P_{n, s}(x)$. The case $d \lambda(x)=w(x) d x$ on $[a, b]$ has been studied by Osscini and Ghizzetti.

2 The construction of GAUSS-TURÁN Quadrature Formulas by using s-Orthogonal and σ-Orthogonal Polynomials

In order to numerically construct the s-orthogonal polynomials with respect to the measure $d \lambda(x)$, one can use the orthogonality conditions (4). Let n and s be given, and the measure : $d \mu(x)=d \mu_{n, s}(x)=\left(\pi_{n}(x)\right)^{2 s} d \lambda(x)$. Then the orthogonality conditions can be written as: $\int_{a}^{b} \pi_{k}^{n, s}(x) t^{\nu} d \mu(x)=0, \quad(\nu=$ $\overline{0, k-1})$, where $\left\{\pi_{k}^{n, s}\right\}_{k \in \mathbb{N}}$ is a sequence of monic orthogonal polynomials with respect to the new measure $d \mu(x)$.

So, the polynomials $\pi_{k}^{n, s}$, which we will denote by $\pi_{k}=\pi_{k}(x)$ satisfies a three-term recurrence relation of the form :

$$
\begin{equation*}
\pi_{k+1}(x)=\left(x-\alpha_{k}\right) \pi_{k}(x)-\beta_{k} \pi_{k-1}(x), \tag{5}
\end{equation*}
$$

where $\pi_{-1}(x)=0, \pi_{0}(x)=1$, and we have from the orthogonality property: $\beta_{0}=\int_{a}^{b} d \mu(x)$,

$$
\begin{equation*}
\alpha_{k}=\frac{<x \pi_{k}, \pi_{k}>}{<\pi_{k}, \pi_{k}>}=\frac{\int_{a}^{b} x \pi_{k}^{2}(x) d \mu(x)}{\int_{a}^{b} \pi_{k}^{2}(x) d \mu(x)}, \beta_{k}=\frac{<\pi_{k}, \pi_{k}>}{<\pi_{k-1}, \pi_{k-1}>}=\frac{\int_{a}^{b} \pi_{k}^{2}(x) d \mu(x)}{\int_{a}^{b} \pi_{k-1}^{2}(x) d \mu(x)} . \tag{6}
\end{equation*}
$$

One can calculate the coefficients $\alpha_{k}, \beta_{k}, \quad(k=\overline{0, n-1})$, and are obtained the first $n+1$ orthogonal polynomials $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$, and let denote
them by $P_{n, s}=\pi_{n}^{s}$.
Let define the function on the Euclidian space \mathbf{R}^{n}

$$
\begin{equation*}
\Phi\left(x_{1}, \ldots, x_{n}\right)=\int_{a}^{b}\left(x-x_{1}\right)^{2 s+2} \ldots\left(x-x_{n}\right)^{2 s+2} d \lambda(x) . \tag{7}
\end{equation*}
$$

If $d \lambda(x)$ is a positive measure, it was proven that this function is continuous and positive. Then the function $\Phi\left(x_{1}, \ldots, x_{n}\right)$ has an lower bound μ_{0} and this value is attained for $a<x_{1}<\cdots<x_{n}<b \quad$ (see [8] T.Popoviciu).

Let consider the polynomial $P_{n, s}^{2 s+2}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)^{2 s+2}$ with the zeros $a<x_{1}<\cdots<x_{n}<b$.

Then the function $\Phi\left(x_{1}, \ldots, x_{n}\right)$ have a relative minimum point and we have: $-\frac{1}{2 s+2} \frac{\partial \Phi}{\partial x_{k}}=I\left(P_{k}\right)=0$, where $P_{k}(x)=\frac{P_{n, s}^{2 s+2}(x)}{x-x_{k}}$. Then one must have:

$$
\int_{a}^{b} P_{n, s}^{2 s+1} l_{k}(x) d \lambda(x)=0, k=\overline{1, n}, \text { where } l_{k}(x), k=\overline{1, n}
$$

are the Lagrange's fundamental interpolation polynomials corresponding to the nodes : x_{1}, \ldots, x_{n}, which are linearly independent. Thus, one obtain that the polynomial $P_{n, s}^{2 s+1}$ satisfies the orthogonality conditions :

$$
\int_{a}^{b}\left[P_{n, s}(x)\right]^{2 s+1} x^{k} d \lambda(x)=0, k=\overline{0, n-1}
$$

From the condition to have a relative minimum we obtain:

$$
\frac{\partial \Phi}{\partial x_{k}}=0, \quad \frac{\partial^{2} \Phi}{\partial x_{k} \partial x_{j}}=0, \quad \frac{\partial^{2} \Phi}{\partial x_{k}^{2}}>0, \quad k, j=\overline{1, n}, k \neq j .
$$

It was showed that the remainder in (2) can be expressed as

$$
\begin{equation*}
R(f)=\frac{f^{(N)}(\xi)}{N!} \int_{a}^{b} P_{n, s}^{2 s+2} d \lambda(x), \quad N=2(s+1) n \tag{8}
\end{equation*}
$$

Now, we consider the following expression of the remainder in the quadrature formula (2) $R(f ; d \lambda)=\int_{a}^{b} U(x) D(f ; x) d \lambda(x)$, where
$u(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)^{2 s+1}, U(x)=u(x)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)=\prod_{k=1}^{n}\left(x-x_{k}\right)^{2 s+2}$
and $D(f ; x)=\left[\begin{array}{cccccc}x, & x_{1}, & x_{2}, & \ldots & x_{n} ; & f \\ 1 & 2 s+1 & 2 s+1 & \ldots & 2 s+1 & \end{array}\right]$.
If $f \in C^{N}(a, b)$, by using the Peano's Theorem, then the remainder can be expressed as $R[f]=\int_{a}^{b} K_{N}(t) f^{(N)}(t) d \lambda(t)$, with $N=2(s+1) n$, where the Peano's Kernel have the expression : $K_{N}(t)=R_{x}\left[\frac{(x-t)+{ }_{+}^{N-1}}{(N-1)!}\right]$, which is a spline function of degree $N-1$ with the interpolation points in the nodes of the quadrature formula and the compact support $[a, b]$. Then we have:

$$
\begin{equation*}
K_{N}(t)=\int_{a}^{b} \frac{(x-t)_{+}^{N-1}}{(N-1)!} d \lambda(t)-\sum_{k=1}^{n} \sum_{\nu=0}^{2 s}(N-1)^{[\nu]} \frac{\left(x_{k}-t\right)_{+}^{N-\nu-1}}{(N-1)!} . \tag{9}
\end{equation*}
$$

Let $n \in \mathbf{N}, \sigma=\left(s_{1}, \ldots, s_{n}\right)$ be a sequence of nonnegative integers, and the nodes x_{k} ordered, say $a \leq x_{1}<x_{2}<\cdots<x_{n} \leq b$, with odd multiplicities $2 s_{1}+1, \ldots, 2 s_{n}+1$, respectively.

A generalization of the quadrature formula of Gauss-Turán type was given independently by Chakalov [2] and T.Popoviciu, [8], for the nodes x_{k} with different multiplicities $2 s_{k}+1, k=\overline{1, n}$ of the following form

$$
\begin{equation*}
\int_{a}^{b} f(x) d \lambda(x)=\sum_{k=1}^{n} \sum_{\nu=0}^{2 s_{k}} A_{k, \nu} f^{(\nu)}\left(x_{k}\right)+R(f) \tag{10}
\end{equation*}
$$

which have $d_{\text {max }}=2 \sum_{k=1}^{n} s_{k}+2 n-1$, if and only if

$$
\begin{equation*}
\int_{a}^{b} \prod_{\nu=1}^{n}\left(x-x_{\nu}\right)^{2 s_{\nu}+1} x^{k} d \lambda(x)=0, k=\overline{0, n-1} \tag{11}
\end{equation*}
$$

The conditions (11) defines a sequence of polynomials $\left\{\pi_{n, \sigma}\right\}_{n \in \mathbf{N}_{0}}, \pi_{n, \sigma}(x)=$ $\prod_{k=1}^{n}\left(x-x_{k}\right)$, such that $\int_{a}^{b} \pi_{k, \sigma}(x) \prod_{\nu=1}^{n}\left(x-x_{\nu}\right)^{2 s_{\nu}+1} d \lambda(x)=0, k=\overline{0, n-1}$.

These polynomials are called σ-orthogonal polynomials and they corresponds to the sequence $\sigma=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of nonnegative integers.

Definition 1 The polynomials $P_{n, \sigma}(x)=\prod_{\nu=1}^{n}\left(x-x_{\nu}^{n, \sigma}\right)$ are called σ-orthogonal, if they satisfies the orthogonality conditions $\int_{a}^{b} P_{n, \sigma}(x) x^{j} w_{n, \sigma}(x) d x=0, j=$ $\overline{0, n-1}$, with respect to the weight $w_{n, \sigma}(x)=w(x) \prod_{\nu=1}^{n}\left(x-x_{\nu}^{n, \sigma}\right)^{2 s_{\nu}}$.

It can be proved that the σ-orthogonal polynomial $P_{n, \sigma}$ can be obtained by the minimization of the integral $\int_{a}^{b} w(x) \prod_{\nu=1}^{n}\left(x-x_{\nu}\right)^{2 s_{\nu}+2} d x$.

If we consider the vector of multiplicity orders $\sigma=(2 s+1,2 s+1, \ldots, 2 s+$ 1), then the above polynomials reduces to the s-orthogonal polynomials.

Let consider the Lagrange-Hermite interpolation polynomial

$$
\left(L_{H} f\right)(x)=L\left(\begin{array}{cccc}
x_{k}, & \gamma_{j}, & x ; & f \tag{12}\\
2 s_{k}+1 & 1 & 1
\end{array}\right)
$$

on the nodes x_{k} with the multiplicities $2 s_{k}+1, k=\overline{1, n}$ and we apply the parameters method of D.D. Stancu.

Then $L_{H} f$ can be expressed in the following form

$$
\begin{gather*}
\left(L_{H} f\right)(x)=v(x) L_{H}\left(\begin{array}{ccc}
x_{k}, & x ; & f_{1} \\
2 s_{k}+1 & 1
\end{array}\right)+u(x) L_{H}\left(\begin{array}{ccc}
\gamma_{j}, & x ; & f_{2} \\
1 & 1
\end{array}\right), \text { where } \tag{13}\\
u(x)=\left(x-x_{1}\right)^{2 s_{1}+1}\left(x-x_{2}\right)^{2 s_{2}+1} \ldots\left(x-x_{n}\right)^{2 s_{n}+1}, v(x)=\left(x-\gamma_{1}\right)\left(x-\gamma_{2}\right) \ldots\left(x-\gamma_{n}\right),
\end{gather*}
$$

$$
f_{1}(x)=f(x) / v(x), \quad f_{2}(x)=f(x) / u(x)
$$

Note that $v(x)$ is the polynomial of undetermined nodes. Then we have the following interpolation formula

$$
(r f)(x)=u(x) v(x)\left[\begin{array}{cccccccc}
x_{1}, & \ldots, & x_{n}, & \gamma_{1}, & \ldots, & \gamma_{n} & x ; & f \tag{15}\\
2 s_{1}+1, & \ldots, & 2 s_{n}+1 & 1, & \ldots, & 1 & 1
\end{array}\right]
$$

By multiplying the Lagrange-Hermite formula (13) with the weight function $w=w(x)$ and by integrating on (a, b) with respect to the measure $d \lambda(x)=w(x) d x$, we obtain the quadrature formula

$$
\begin{equation*}
I(w ; f)=Q(f)+G(f)+R(f), \tag{16}
\end{equation*}
$$

where $R(f)=I(w, r f)$, and

$$
\begin{equation*}
G(f)=\sum_{j=1}^{n} B_{j} f\left(\gamma_{j}\right) \tag{17}
\end{equation*}
$$

One can observe that in (15), the divided difference which appears have the order $N+1=2 \sum_{k=1}^{n} s_{k}+2 n=2 S+2 n$, where $S=\sum_{k=1}^{n} s_{k}$.

Thus, the degree of exactness of (16) is $N=2 S+2 n-1$.

Remark 1 One must determine the nodes $x_{k}, k=\overline{1, n}$ with the multiplicities $2 s_{k}+1, \quad(k=\overline{1, n})$, so that $B_{1}=\cdots=B_{n}=0$, for any values of the
parameters $\gamma_{j}, j=\overline{1, n}$, and it is necessary and sufficient that (18)

$$
\int_{a}^{b} \prod_{\nu=1}^{n}\left(x-x_{\nu}\right)^{2 s_{\nu}+1} x^{k} d \lambda(x)=0, k=\overline{0, n-1}, \text { where } d \lambda(x)=w(x) d x
$$

One can prove that the system (18) with the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ has at least a solution with distinct values. If $f \in C^{N+1}(a, b)$, then the expression for the remainder will be $R(f)=f^{(2 S+2 n)}(\xi) K_{2 S+2 n}$, where

$$
K_{2 S+2 n}=\frac{1}{(2 S+2 n)!} I\left(w ; U_{2 S+2 n}\right), U_{2 S+2 n}=\prod_{k=1}^{n}\left(x-x_{k}\right)^{2 s_{k}+2}
$$

a) The determination of the Gaussian nodes

Let denote $\tau_{k}:=x_{k}$ the nodes of the quadrature (10), and $\left\{p_{j}\right\}_{j \in \mathbb{N}_{0}}$, let be a sequence of orthonormal polynomials with respect to the measure, $d \lambda(t)$ on \mathbb{R}. Then, these polynomials satisfy the three-term recurrence relation

$$
\begin{equation*}
\sqrt{\beta_{j+1}} p_{j+1}(t)+\alpha_{j} p_{j}(t)+\sqrt{\beta_{j}} p_{j-1}(t)=t p_{j}(t), j=0,1, \ldots, \tag{19}
\end{equation*}
$$

where $p_{-1}(t)=0, p_{0}(t)=1 / \sqrt{\beta_{0}}, \beta_{0}=\mu_{0}=\int_{a}^{b} d \lambda(t)$.
For a given sequence $\sigma=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, the orthogonality conditions (18) can be written as

$$
\begin{equation*}
F_{j}(t)=\int_{\mathbb{R}} p_{j-1}(t)\left[\prod_{\nu=1}^{n}\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}\right] d \lambda(t)=0, j=\overline{1, n} \tag{20}
\end{equation*}
$$

where $\mathbf{t}=\left(\tau_{1}, \ldots, \tau_{n}\right)^{T}, \mathbf{F}(t)=\left[F_{1}(t), F_{2}(t), \ldots, F_{n}(t)\right]^{T}$, which is a non linear system of equations.

To solve the system (20) can be used the Newton-Kantorovic method (see [7]). One can construct the iterative formula

$$
\mathbf{t}^{(k+1)}=\mathbf{t}^{(k)}-W^{-1}\left(\mathbf{t}^{(k)}\right) \mathbf{F}\left(\mathbf{t}^{(k)}\right), k=0,1,2, \ldots
$$

where $\mathbf{t}^{(k)}=\left(\tau_{1}^{(k)}, \tau_{2}^{(k)}, \ldots, \tau_{n}^{(k)}\right)^{T}$, and $W=W(\mathbf{t})=\left[w_{j, k}\right]_{n \times n}=\left[\frac{\partial F_{j}}{\partial \tau_{k}}\right]_{n \times n}$, is the Jacobian of $\mathbf{F}(\mathbf{t})$, whose elements can be calculated by

$$
w_{j, k}=\frac{\partial F_{j}}{\partial \tau_{k}}=-\left(2 s_{k}+1\right) \int_{\mathbb{R}} \frac{p_{j-1}(t)}{t-\tau_{k}}\left[\prod_{\nu=1}^{n}\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}\right] d \lambda(t), j, k=\overline{1, n}
$$

But, $w_{0, k}=0$ and

$$
\begin{equation*}
w_{1, k}=-\frac{2 s_{k}+1}{\sqrt{\beta_{0}}} \int_{\mathbb{R}}\left(t-\tau_{k}\right)^{2 s_{k}}\left[\prod_{\nu=1, \nu \neq k}^{n}\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}\right] d \lambda(t) \tag{21}
\end{equation*}
$$

then, by integrating (19) one obtain

$$
\begin{equation*}
\sqrt{\beta_{j+1}} w_{j+2, k}=\left(\tau_{k}-\alpha_{j}\right) w_{j+1, k}-\sqrt{\beta_{j}} w_{j, k}-\left(2 s_{k}+1\right) F_{j+1}, j=\overline{0, n-2} . \tag{22}
\end{equation*}
$$

Thus, knowing only F_{j} and $w_{1, j},(j=\overline{1, n})$, one can calculate the elements of the Jacobian matrix by the nonhomogenous recurrence relation (22).

The integrals (20), (21), can be calculated by using a Gauss-Christoffel quadrature formula, (w.r.t. the measure $d \lambda(t)$) of the following form

$$
\int_{a}^{b} g(t) d \lambda(t)=\sum_{k=1}^{L} A_{k}^{(L)} g\left(\tau_{k}^{(L)}\right)+R_{L}(g)
$$

with $L=\sum_{k=1}^{n} s_{k}+n$, which is exact for $\forall f \in \mathbb{P}_{2 L-1}$, where $2 L-1=$ $2 \sum_{k=1}^{n} s_{k}+2 n-1$.

For a sufficiently good approximation $t^{(0)}$, the convergence of the method for the calculation of $t^{(k+1)}$ is quadratic (see [7]).

If one consider $\sigma=(s, s, \ldots, s)$, and the quadrature formula (2) then, in order to determine the coefficients $\alpha_{\nu}, \beta_{\nu}$ from the recurrence relation (5), can be used the discretized Stieltjes procedure for infinite intervals of
orthogonality. From (5) one obtain the following nonlinear system

$$
\begin{gathered}
f_{0} \equiv \beta_{0}-\int_{\mathbb{R}} \pi_{n}^{2 s}(t) d \lambda(t)=0, f_{2 \nu+1} \equiv \int_{\mathbb{R}}\left(\alpha_{\nu}-t\right) \pi_{\nu}^{2}(t) \pi_{n}^{2 s}(t) d \lambda(t)=0,(\nu=\overline{0, n-1}), \\
f_{2 \nu} \equiv \int_{\mathbb{R}}\left[\beta_{\nu} \pi_{\nu-1}^{2}(t)-\pi_{\nu}^{2}(t)\right] \pi_{n}^{2 s}(t) d \lambda(t)=0,(\nu=\overline{0, n-1})
\end{gathered}
$$

The polynomials $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ can be expressed in terms of $\alpha_{\nu}, \beta_{\nu}, \nu=$ $\overline{0, n}$, by the recurrence relation (5).

By using the Newton-Kantorovic's method, one obtain the following relations for the determination of the coefficients in (5), namely $x^{(k+1)}=$ $x^{(k)}-W^{-1}\left(x^{(k)}\right) f\left(x^{(k)}\right), k=0,1, \ldots$, where the zeros $\tau=\tau(s, n),(\nu=\overline{1, n})$ of $\pi_{n}^{s, n}$ are the nodes of Gauss-Turan's type quadrature formula.

Note that these zeros can be obtained by using the QR algotithm, which determines the eigenvalues of a symmetric tridiagonal Jacobi matrix J_{n}

$$
J_{n}=\left(\begin{array}{ccccccc}
\alpha_{0} & \sqrt{\beta_{1}} & 0 & 0 & \ldots & 0 & 0 \\
\sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & & & \\
\cdots & \cdots & \cdots & \ldots & \ldots & \ldots & \cdots \\
0 & 0 & 0 & \ldots & \sqrt{\beta_{n-2}} & \alpha_{n-2} & \sqrt{\beta_{n-1}} \\
0 & 0 & 0 & \ldots & 0 & \sqrt{\beta_{n-1}} & \alpha_{n-1}
\end{array}\right)
$$

This algorithm can be used to determine the $s-$ or σ-orthogonal polynomials by constructing MATLAB routines for some Gauss-Christoffel quadrature formulas and routines to solve some systems of equations.

b) The determination of the coefficients

Let denote $U(t)=\prod_{k=1}^{n}\left(t-\tau_{k}\right)^{2 s_{k}+1}$, and let consider the Hermite interpo-
lation formula

$$
\begin{align*}
& \text { (23) } f(t)=(H f)(t)+(R f)(t)=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s_{\nu}} h_{\nu, i}(t) f^{(i)}\left(\tau_{\nu}\right)+(R f)(t) \text {, where } \tag{23}\\
& h_{\nu, i}(t)=\frac{\left(t-\tau_{\nu}\right)^{i}}{i!}\left[\sum_{k=0}^{2 s_{\nu}-i} \frac{\left(t-\tau_{\nu}\right)^{k}}{k!}\left(\frac{1}{U_{\nu}(t)}\right)_{t=\tau_{\nu}}^{(k)} U_{\nu}(t), U_{\nu}(t)=\prod_{k=1}^{n}\left(t-\tau_{k}\right)^{2 s_{k}+1} /\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1} .\right.
\end{align*}
$$

By integrating (23), one obtain

$$
\begin{gathered}
A_{\nu, i}=\int_{a}^{b} h_{\nu, i}(t) d \lambda(t)=\frac{1}{i!} \sum_{k=0}^{2 s_{\nu}-i} \frac{1}{k!}\left[\frac{\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}}{U(t)}\right]_{t=\tau_{\nu}}^{(k)} \int_{a}^{b}\left(t-\tau_{\nu}\right)^{i+k} \frac{U(t) d \lambda(t)}{\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}}= \\
=\frac{1}{i!} \sum_{k=0}^{2 s_{\nu}-i} \frac{1}{k!}\left[\frac{\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}}{U(t)}\right]_{t=\tau_{\nu}}^{(k)} \int_{a}^{b} \frac{U(t)}{\left(t-\tau_{\nu}\right)^{2 s_{\nu}-i-k+1}} d \lambda(t) .
\end{gathered}
$$

Let denote $U_{\nu ; i+k}(t)=\frac{U(t)}{\left(t-\tau_{\nu}\right)^{2 s_{\nu}-i-k+1}}=$

$$
\begin{aligned}
& =\left(t-\tau_{\nu}\right)^{i+k} \times\left(t-\tau_{1}\right)^{2 s_{1}+1} \ldots\left(t-\tau_{\nu-1}\right)^{2 s_{\nu-1}+1}\left(t-\tau_{\nu+1}\right)^{2 s_{\nu+1}+1} \cdots\left(t-\tau_{n}\right)^{2 s_{n}+1}, \text { where } \\
& \operatorname{deg}\left(U_{\nu ; i+k}\right) \leq 2 s_{\nu}+\left(2 s_{1}+1\right)+\cdots+\left(2 s_{\nu-1}+1\right)+\left(2 s_{\nu+1}+1\right)+\cdots+\left(2 s_{n}+1\right)= \\
& \quad=2 \sum_{\nu=1}^{n} s_{\nu}+n-1 \leq 2\left(\sum_{\nu=1}^{n} s_{\nu}+n\right)-1=2 N-1=d_{\text {max }}, N=2(S+n)
\end{aligned}
$$

So, one obtain

$$
\begin{equation*}
A_{\nu, i}=\frac{1}{i!} \sum_{k=0}^{2 s_{\nu}-i} \frac{1}{k!}\left[\frac{\left(t-\tau_{\nu}\right)^{2 s_{\nu}+1}}{U(t)}\right]_{t=\tau_{\nu}}^{(k)} \int_{a}^{b} U_{\nu ; i+k}(t) d \lambda(t), \tag{24}
\end{equation*}
$$

for $\nu=\overline{1, n} ; i=0,1, \ldots, 2 s_{\nu}$ and $\operatorname{deg}\left(U_{\nu ; i+k}\right) \leq 2 N-1$.
The integrals $\int_{a}^{b} U_{\nu, i+k}(t) d \lambda(t), \nu=\overline{1, n} ; i=\overline{0,2 s_{\nu}}, k=\overline{0,2 s_{\nu}-i}$, can be calculated by applying the quadrature formula

$$
\int_{a}^{b} g(t) d \lambda(t)=\sum_{k=1}^{N} A_{k}^{(N)} g\left(\tau_{k}^{(N)}\right)+R_{N}(g)
$$

with $N=\sum_{\nu=1}^{n} s_{\nu}+n$ nodes.

3 A generalization given by D.D.Stancu to the Gauss-Turán type quadrature formula

A generalization of the Turán quadrature formula (2) to quadratures having nodes with arbitrary multiplicities was derived independently by Chakalov [2] and T. Popoviciu [8].
D.D. Stancu in [14], [16], was bring very important contributions in this domain, by investigating and constructing so-called Gauss-Stancu quadrature formulas having multiple fixed nodes and simple or multiple free (Gaussian) nodes.

Let $a_{i}, i=\overline{1, n}$ fixed (or prescribed) nodes, with the given multiplicities $m_{i}, i=\overline{1, n}$, and $x_{1}<x_{2}<\cdots<x_{m}$ be the free nodes with given multiplicities n_{1}, \ldots, n_{m}. Then, we have the general quadrature of GaussStancu type for the integral
$I[f]=\int_{a}^{b} f(x) d \lambda(x),(d \lambda(x)=w(x) d x)$ of the form

$$
\begin{equation*}
Q[f]=\sum_{i=1}^{n} \sum_{\nu=0}^{m_{i}-1} B_{i, \nu} f^{(\nu)}\left(a_{i}\right)+\sum_{k=1}^{m} \sum_{\nu=0}^{n_{k}-1} A_{k, \nu} f^{(\nu)}\left(x_{k}\right) . \tag{25}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\omega(x)=\alpha \prod_{i=1}^{n}\left(x-a_{i}\right)^{m_{i}}, u(x)=\prod_{k=1}^{m}\left(x-x_{k}\right)^{n_{k}}, M=\sum_{i=1}^{n} m_{i}, N=\sum_{k=1}^{m} n_{k} \tag{26}
\end{equation*}
$$

The quadrature formula (25) have interpolatory type with the algebraic degree of exactness at least $d^{*}=M+N-1$, if $I(f)=Q(f), \forall f \in \mathbb{P}_{M+N-1}$.

The free nodes $x_{k}, k=\overline{1, m}$ can be chosen to increase the degree of
exactness, and so one can obtain $I[f]=Q[f], \forall f \in \mathbb{P}_{M+N+n-1}$.
D.D. Stancu gave the following characterizations

Theorem 1 The nodes x_{1}, \ldots, x_{m} are the Gaussian nodes if and only if

$$
\begin{equation*}
\int_{a}^{b} x^{k} \omega(x) u(x) d \lambda(x)=0, \quad \forall k=\overline{0, m-1} \tag{27}
\end{equation*}
$$

Theorem 2 If the multiplicities of the Gaussian nodes are all odd, $n_{k}=$ $2 s_{k}+1,(k=\overline{1, m})$ and if the multiplicities of the fixed nodes are even, $m_{i}=2 r_{i}, i=\overline{1, n}$, then there exist the real distinct nodes: $x_{k}, k=\overline{1, m}$, which are the Gaussian nodes for the quadrature formula of Gauss-TuránStancu type (25).

In this case, the orthogonality conditions (27) can be written as

$$
\begin{gathered}
\int_{a}^{b} x^{k} \pi_{m}(x) d \mu(x), k=\overline{0, m-1}, \text { where } \pi_{m}(x)=\prod_{k=1}^{m}\left(x-x_{k}\right), \\
d \mu(x)=\left(\prod_{k=1}^{m}\left(x-x_{k}\right)^{2 s_{k}}\right)\left(\prod_{i=1}^{n}\left(x-a_{i}\right)^{2 r_{i}}\right) d \lambda(x) .
\end{gathered}
$$

This fact means that the polynomial $\pi_{m}(x)$ is orthogonal with respect to the new nonnegative measure $d \mu(x)$, and therefore, all zeros x_{1}, \ldots, x_{m} are simple, real and belongs to $\operatorname{supp}(d \mu)=\operatorname{supp}(d \lambda)$.

One can observe that the measure $d \mu(x)$, contains the nodes x_{1}, \ldots, x_{m} , i.e. the unknown polynomial $\pi_{m}(t)$ is implicitly defined.

Let now consider the sets of fixed and Gaussian nodes $F_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$, $G_{m}=\left\{x_{1}, \ldots, x_{m}\right\}$ and let $F_{n} \bigcap G_{m}=\emptyset$, and denote $X_{p}=\left\{\xi_{1}, \ldots, \xi_{p}\right\}:=$ $F_{n} \bigcup G_{m},(p=n+m)$ with the multiplicity of the node ξ_{k} be $r_{k}, k=\overline{1, p}$.

Then can be determined the coefficients $C_{i, \nu}$ (i.e. $A_{i, \nu}$ and $B_{i, \nu}$) by using an interpolatory formula of the form

$$
\begin{equation*}
\int_{a}^{b} f(t) d \lambda(t)=\sum_{i=1}^{p} \sum_{\nu=0}^{r_{\nu}-1} C_{i, \nu} f^{(\nu)}\left(\xi_{i}\right)+R_{p}(f) \tag{28}
\end{equation*}
$$

Note that the multiplicity of the Gaussian nodes are odd numbers.

Example 3.1

If $(a, b)=(-1,1), w(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1, \quad$ and $a_{0}=$ $-1, a_{1}=1$ are simple fixed nodes, x_{0} is a simple free node, then the highest degree of exactness will be $D=(1+1)+1=3$ which will be obtained for $x_{0}=\frac{\beta-\alpha}{\alpha+\beta+4}$. The corresponding quadrature formula of Gauss-ChristoffelStancu type will be

$$
\begin{gathered}
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} f(x) d x=2^{\alpha+\beta+1} \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{(\alpha+2)(\beta+2) \Gamma(\alpha+\beta+4)}\left[(\alpha+1)(\alpha+2)^{2} f(-1)+\right. \\
+(\alpha+1)(\beta+1)(\alpha+\beta+4)^{2} f\left(\frac{\beta-\alpha}{\alpha+\beta+4}+(\beta+1)(\beta+2)^{2} f(1)\right]- \\
-2^{\alpha+\beta+2} \frac{\Gamma(\alpha+3) \Gamma(\beta+3)}{3(\alpha+\beta+4) \Gamma(\alpha+\beta+6)} f^{I V}(\xi) .
\end{gathered}
$$

Example 3.2 Let $u(x)=\prod_{i=0}^{m+1}\left(x-x_{i}\right)^{r_{i}}$, be the polynomial of nodes with the following multiplicities $x_{0}=a, r_{0}=p+1, x_{m+1}=b, r_{m+1}=q+1$, the fixed nodes and the Gaussian nodes $x_{i}, r_{i}=2 s+1,(i=\overline{1, m})$.

Then we can construct the quadrature formula of Gauss-Stancu type with fixes nodes $x_{0}=a, x_{m+1}=b$, with the above given multiplicity orders.

$$
\begin{equation*}
\int_{a}^{b} f(x) w(x) d x=\sum_{i=0}^{p} A_{0, i} f^{(i)}(a)+\sum_{j=0}^{q} A_{m+1, j} f^{(j)}(b)+\sum_{k=1}^{m} \sum_{\nu=0}^{2 s} A_{k, \nu} f^{(\nu)}\left(x_{k}\right)+R(f), \tag{29}
\end{equation*}
$$

with the polynomial of fixed nodes $\omega(x)=(x-a)^{p+1}(b-x)^{q+1}$. For a given $s \in \mathbb{N}$, the polynomial $P_{m, s}$ is orthogonal on $[a, b]$ with respect to the weight function $w(x)$, if this polynomial is chosen as the solution of the extremal problem $\int_{a}^{b} P_{m, s}^{2 s+2} w(x) d x=\min$, which is equivalent with the condition that $\int_{a}^{b} P_{m, s}^{2 s+1}(x) x^{k} w(x) d x=0, k=\overline{0, m-1}$.
Then the last one condition can be interpreted as a orthogonality condition with respect to the weight function $p(x)=\omega(x) P_{m, s}^{2 s}(x)$.

We use a method given by D.D Stancu in [12]. Let consider the auxiliary function

$$
\begin{equation*}
\varphi_{i}(x)=\frac{1}{u_{i}(x)} \int_{a}^{b} \frac{u(x)-u(t)}{x-t} w(t) d t, \text { where } u_{i}(x)=u(x) /\left(x-x_{i}\right)^{r_{i}} . \tag{30}
\end{equation*}
$$

We have

$$
\begin{gathered}
\sum_{k=1}^{m} \sum_{\nu=0}^{2 s} A_{k, \nu} f^{(\nu)}\left(x_{k}\right)=\sum_{i=1}^{m} \sum_{k=0}^{r_{i}-1}\left[\int_{a}^{b} h_{i, k}(x) w(x) d x\right] f^{(k)}\left(x_{i}\right), \text { where } \\
h_{i, k}(x)=\frac{\left(x-x_{i}\right)^{k}}{k!} \sum_{j=0}^{r_{i}-1-k}\left[\frac{\left(x-x_{i}\right)^{j}}{j!}\left(\frac{1}{u_{i}(x)}\right)_{x_{i}}^{(j)}\right] u_{i}(x) .
\end{gathered}
$$

Let $n_{i}=r_{i}-k-1$, and calculate the expression using the Leibniz's formula

$$
\begin{gathered}
\varphi_{i}^{\left(n_{i}\right)}(x)=\sum_{j=0}^{n_{i}}\binom{n_{i}}{j}\left(\frac{1}{u_{i}(x)}\right)^{(j)}\left[\int_{a}^{b} \frac{u(x)-u(t)}{x-t} w(t) d t\right]^{\left(n_{i}-j\right)}, \text { where } \\
{\left[\int_{a}^{b} \frac{u(x)-u(t)}{x-t} w(t) d t\right]^{(k)}=\sum_{\nu=0}^{k}\binom{k}{\nu} \int_{a}^{b}\left(\frac{1}{x-t}\right)^{(\nu)}[u(x)-u(t)]^{(k-\nu)} w(t) d t .}
\end{gathered}
$$

If $x=\alpha$ is a zero of order $r, r>k$ for the polynomial $u(x)$, then one obtain

$$
\left[\int_{a}^{b} \frac{u(x)-u(t)}{x-t} w(t) d t\right]_{x=\alpha}^{(k)}=-\int_{a}^{b}\left(\frac{1}{x-t}\right)_{x=\alpha}^{(k)} u(t) w(t) d t=\ldots
$$

$$
=k!\int_{a}^{b} \frac{u(t)}{(x-\alpha)^{k+1}} w(t) d t
$$

Then one obtain the expression

$$
\begin{gathered}
\varphi_{i}^{\left(r_{i}-k-1\right)}\left(x_{i}\right)=\left(r_{i}-k-1\right)!\sum_{j=0}^{r_{i}-k-1} \frac{1}{j!}\left(\frac{1}{u_{i}(x)}\right)_{x_{i}}^{(j)} \int_{a}^{b} \frac{u(x)}{\left(x-x_{i}\right)^{r_{i}-k-j}} w(x) d x= \\
=\left(r_{i}-k-1\right)!\int_{a}^{b} \frac{u(x)}{\left(x-x_{i}\right)^{r_{i}-k}}\left[\sum_{j=0}^{r_{i}-k-1} \frac{\left(x-x_{i}\right)^{j}}{j!}\left(\frac{1}{u_{i}(x)}\right)_{x_{i}}^{(j)}\right] w(x) d x .
\end{gathered}
$$

By integrating the Lagrange-Hermite interpolation formula and using the expression of $h_{i, k}(x)$, finally one obtain the following expression for the coefficients of the quadrature formula

$$
A_{i, k}=\frac{1}{k!\left(r_{i}-k-1\right)!} \varphi_{i}^{\left(r_{i}-k-1\right)}\left(x_{i}\right) .
$$

Note that the quadrature formula (29) is called the Turan-Ionescu formula.

References

[1] Acu D., On the D.D.Stancu method of parameters, Studia Univ. BabeşBolyai, Mathematica, 47(1997), 1-7.
[2] Chakalov L., General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk. Izv. Mat. Inst., Vol. 1 (1954), 67-84 (Bulgarian) (English transl. East J.Approx., vol.1, (1995), 261-276).
[3] Gautschi W., Milovanovic G., S-orthogonality and construction of Gauss-Turan-type quadrature formulae, J.Comp.and Appl., Math., 86(1997), 205-218.
[4] Gori L., Stancu D.D., Mean value formulae for integrals involving generalized orthogonal polynomials, Rev.Anal.Numer.Theorie de l'Approximation, 27(1998), 107-115.
[5] Milovanovic G.V., S-orthogonality and generalized Turan quadrature, Construction and application, ICAOR, Cluj-Napoca, Romania, (Stancu D.D.ed.) Transilvania Press, (1997), 91-106.
[6] Milovanovic G.V., Spalevic M.M., Construction of ChakalovPopoviciu's type quadrature formulae, Rend. Circ.Mat. Palermo, 2 II,Suppl. 52(1998), 625-636.
[7] Milovanović G.V., M.M. Spalević Quadratures of Gauss-Stancu Type: Construction and Error Analysis, Numerical Analysis and Approximation Theory, Edt. R.Trambitas, Procc. of International Symposium on Numerical Analysis and Approximation Theory, Cluj-Napoca 9-11 may 2002, pg. 314.
[8] Popoviciu T., Asupra unei generalizări a formulei de integrare numerică a lui Gauss, Stud.Cerc.Ştiinţif. Acad.Iaşi, 6(1955), 29-57.
[9] Stancu D.D., Sur quelques formules generales de quadrature du type Gauss-Christoffel, Mathematica, Cluj, 1(24)(1958), 167-182.
[10] Stancu D.D., Asupra formulelor de cuadratură de tip Gauss, Studia Unv.Babeş-Bolyai, Mathematica, 3(1958), 71-84.
[11] Stancu D.D., O metodă pentru construirea de formule de cuadratură de grad innalt de exactitate, Comunic.Acad.R.P.R., 8(1958), 349-358.
[12] Stancu D.D., Asupra unor formule generale de integrare numerică , Acad.R.P.Romane, Studii, Cerc. Matem., 9(1958), 209-216.
[13] Stancu D.D., Numerical integration of functions by Gauss-TuranIonescu type quadratures (I.A. Rus ed.), volum dedicat lui D.V. Ionescu la a 80-a aniversare a zilei de nastere
[14] Stancu D.D., Stroud A.H., Quadrature formulas with simple Gaussian nodes and multiple fixed nodes, Mathematics of computation, 1(1963), 384-394.
[15] Stancu D.D., Gh. Coman, P.Blaga, Analiză Numerică şi Teoria Aproximării, Vol. II, Presa Universitară Clujană, Cluj-Napoca (2002).
[16] Stroud A.H., Stancu D.D., Quadrature formulas with multiple Gaussian nodes, SIAM J.Numer.Anal., 2(1965), 129-143.
[17] Turan P., On the theory of the mechanical quadrature, Acta.Sc.Math., Szeged, 12(1950), 30-37.

SEmil D. Danciu
Str. V. Goldiş, no. 51 A, 510018 - Alba-Iulia, Romania
e-mail: nemil_danciu@yahoo.com

[^0]: ${ }^{1}$ Received 25 March, 2009
 Accepted for publication (in revised form) 7 April, 2009

