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A note on the Bernstein’s cubature

formula 1
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Abstract

The Bernstein’s cubature formula is revisited and the evaluation

of it’s remainder term is corrected.
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1 Preliminaries

Let us to denote N = {1, 2, . . . } and N0 = N ∪ {0}. The Bernstein’s bivari-

ate operator Bm,n : C([0, 1] × [0, 1]) → C([0, 1] × [0, 1]) is defined for any

f ∈ C([0, 1]× [0, 1]), any (x, y) ∈ [0, 1]× [0, 1] and any m, n ∈ N by:

(1) (Bm,nf)(x, y) =
m∑

k=0

n∑
j=0

pm,k(x)pn,j(y)f

(
k

m
,
j

n

)
,
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where

(2) pm,k(x) =

(
m

k

)
xk(1− x)m−k

and

(3) pn,j(y) =

(
n

j

)
yj(1− y)n−j

are the fundamental Bernstein’s polynomials.

Many approximation properties of the operator (1) are well known [1].

Let f ∈ C([0, 1]× [0, 1]) be given. The following

(4) f = Bm,nf + Rm,nf

is known as the ”Bernstein bivariate approximation formula”, Rm,nf denot-

ing the remainder term.

In [14], pp. 325, is mentioned the following:

”If f ∈ C(2,2)([0, 1] × [0, 1]) the remainder term of (4) can be expressed

under the form

(Rm,nf)(x, y) = −x(1− x)

2m
f (2,0)(x, η)− y(1− y)

2n
f (0,2)(ξ, y)(5)

+
xy(1− x)(1− y)

4mn
f (2,2)(ξ, η).”

Next, using (4) with the expression of remainder term from (5), the Bern-

stein’s cubature formula is constructed.

In our recent paper [4], was obtained the correct form for the remainder

term of (4) when the approximated function f belong to C([0, 1]×[0, 1]) and

an upper bound estimation for Rm,nf for the case when f is ”sufficiently”

differentiable on [0, 1]× [0, 1].
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Let X be a linear space, L1, L2 : X → X be projectors, I : X → X

be the identity operator and R1, R2 : X → X be the remainder operators

associated to L1 and respectively L2. If L1 and L2 commute on X, the

following decomposition of the identity operator

(6) I = L1L2 + R1 ⊕R2

with

(7) R1 ⊕R2 = R1 + R2 −R1R2

is well known [6], [7].

Suppose now that X := C([0, 1] × [0, 1]), L1 := Bx
m, L2 := By

n, where

Bx
m, By

n denote the parametrical extensions [1] of the Bernstein’s univariate

operator, i.e.

(8) (Bx
mf) (x, y) =

m∑

k=0

n∑
j=0

pm,k(x)pn,j(y)f

(
k

m
, y

)
,

(9) (By
nf) (x, y) =

m∑

k=0

n∑
j=0

pm,k(x)pn,j(y)f

(
x,

j

n

)
.

It is well known [1] that (8) and (9) are not projectors. Is also well known

[1] that for f ∈ C2,2([0, 1]× [0, 1]) the remainder operators associated to (8)

and (9) are defined respectively by

(10)
(
Rx

m,nf
)
(x, y) = −x(1− x)

2m
f (2,0)(x, η)

(11)
(
Ry

m,nf
)
(x, y) = −y(1− y)

2n
f (0,2)(ξ, y)
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for any (x, y) ∈ [0, 1] × [0, 1] and any m,n ∈ N, where (ξ, η) ∈]0, 1[×]0, 1[.

It is immediately that the operator (1) is the ”tensorial product” [6], [7] of

operators (10) and (11), i.e

(12) Bm,n = Bx
mBy

n.

Computing the boolean sum of operators (10) and (11) one arrives to the

expression (5) which is false, because Bx
m, By

n are not projectors and the

decomposition formula (6) doesn’t holds.

By the above motives, we corrected (5) as follows.

Theorem 1 [4] For any f ∈ C([0, 1]× [0, 1]) and any (x, y) ∈ [0, 1]× [0, 1]

the remainder term of (4) can be expressed under the form:

(Rm,nf)(x, y) = −x(1−x)

m

m−1∑

k=0

n∑
j=0

pm−1,k(x)pn,j(y)


 x, k

m
, k+1

m

j
k

; f




(13)

− y(1− y)

n

m∑

k=0

n−1∑
j=0

pm,k(x)pn−1,j(y)




k
m

y, j
n

, j+1
n

; f




+
xy(1−x)(1−y)

mn

m−1∑

k=0

n−1∑
j=0

pm−1,k(x)pn−1,j(y)


 x, k

m
, k+1

m

y, j
k
, j+1

n

; f


.

Note that in (13) the brackets denote bivariate divided differences [2], [4].

In the Section 2, we use the following mean-value theorem for divided

differences (see [8]).

Theorem 2 Let m ∈ N, a ≤ x0 < x1 < · · · < xm ≤ b distinct knots and

f : [a, b] → R be a given function. If f is continuous on [a, b] and has a mth
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derivatives on (a, b), then there exists ξ ∈ (a, b) such that

(14) [x0, x1, . . . , xm; f ] =
1

m!
f (m)(ξ).

2 Main results

Theorem 3 Let p, q ∈ N0, p + q ≥ 1, x0, x1, . . . , xp ∈ [a, b] and

y0, y1, . . . , yq ∈ [c, d] be a distinct knots and f : [a, b] × [c, d] → R be a

function. If f(·, y) ∈ C([a, b]) for any y ∈ [c, d],
∂pf

∂xp
(·, y) exists on ]a, b[

for any y ∈ [c, d],
∂pf

∂xp
(x, ∗) ∈ C([c, d]) for any x ∈]a, b[ and

∂p+q

∂xp∂yq
(x, ∗)

exists on ]c, d[ for any x ∈]a, b[, then there exists (ξ, η) ∈]a, b[×]c, d[ such

that

(15)


 x0, x1, . . . , xp

y0, y1, . . . , yq

; f


 =

1

p!q!

∂p+qf

∂xp∂yq
(ξ, η),

where ”·” and ”∗” stand for the first and second variable.

Proof. Applying the method of parametric extension (see [3]) and the

mean-value theorem for one dimensional divided differences, there exist ξ ∈
]a, b[ and respectively η ∈]c, d[, such that


 x0, x1, . . . , xp

y0, y1, . . . , yq

; f


 = [y0, y1, . . . , yq; [x0, x1, . . . , xp; f ]x]y

=

[
y0, y1, . . . , yq;

1

p!

∂pf

∂xp
(ξ, ∗))

]

y

=
1

p!

[
y0, y1, . . . , yq;

∂pf

∂xp
(ξ, ∗)

]

y

=
1

p!q!

∂p+qf

∂xp∂yq
(ξ, η),

so the equality (15) holds.
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Remark 1 In the conditions of Theorem 3, if p = 0 then q ∈ N, and we

consider that f has the properties that f(x0, ∗) ∈ C([c, d]) and
∂qf

∂yq
(x0, ∗)

exists on ]c, d[. If q = 0, then we consider similarly above conditions about

function f .

Theorem 4 Let p, q ∈ N0, p + q ≥ 1, x0, x1, . . . , xp ∈ [a, b] and

y0, y1, . . . , yq ∈ [c, d] be a distinct knots. If f : [a, b]× [c, d] → R is a function

with the property that f ∈ C(p,q)([a, b]× [c, d]), then exists (ξ, η) ∈]a, b[×]c, d[

such that

(16)


 x0, x1, . . . , xp

y0, y1, . . . , yq

; f


 =

1

p!q!

∂p+qf

∂xp∂yq
(ξ, η).

Proof. It results from Theorem 3.

Theorem 5 Let f : [0, 1]× [0, 1] → R be a function.

If f(·, y) ∈ C1([0, 1] for any y ∈ [0, 1], exists
∂2f

∂x2
(·, y) on ]0, 1[ for any

y ∈ [0, 1],
∂2f

∂x2
(x, ∗) ∈ C1([0, 1]) for any x ∈]0, 1[, exists

∂4f

∂x2∂y2
(x, ∗) on

]0, 1[ for any x ∈]0, 1[, then for any (x, y) ∈ [0, 1] × [0, 1], any m,n ∈ N,

there exist (ξi(k, j), ηi(k, j)) ∈ [0, 1]× [0, 1], i ∈ {1, 2, 3}, such that

(Rm,nf)(x, y) = −x(1− x)

2m

m−1∑

k=0

n∑
j=0

∂2f

∂x2
(ξ1(k, j), η1(k, j))(17)

− y(1− y)

2n

m∑

k=0

n−1∑
j=0

∂2f

∂y2
(ξ2(k, j), η2(k, j))

+
xy(1− x)(1− y)

4mn

m−1∑

k=0

n−1∑
j=0

∂4f

∂x2∂y2
(ξ3(k, j), η3(k, j)).
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If
∂2f

∂x2
,

∂2f

∂y2
and

∂4f

∂x2∂y2
are bounded on ]0, 1[×]0, 1[, the following ine-

qualities

|(Rm,nf)(x, y)| ≤ x(1−x)

2m
M1(f) +

y(1−y)

2n
M2(f) +

xy(1−x)(1−y)

4mn
M3(f)

(18)

≤ 1

8m
M1(f) +

1

8n
M2(f) +

1

64mn
M3(f)

and

(19) |(Rm,nf)(x, y)| ≤
(

1

8m
+

1

8n
+

1

64mn

)
M(f)

hold, for any (x, y) ∈ [0, 1]× [0, 1] and any m,n ∈ N, where

(20) M1(f) = sup
(x,y)∈]0,1[×]0,1[

∣∣∣∣
∂2f

∂x2
(x, y)

∣∣∣∣ ,

(21) M2(f) = sup
(x,y)∈]0,1[×]0,1[

∣∣∣∣
∂2f

∂y2
(x, y)

∣∣∣∣ ,

(22) M3(f) = sup
(x,y)∈]0,1[×]0,1[

∣∣∣∣
∂4f

∂x2∂y2
(x, y)

∣∣∣∣
and

(23) M(f) = max{M1(f),M2(f),M3(f)}.

Proof. In the relation (13) we apply Theorem 3 and the relation (17)

results. Because x(1− x) ≤
1

4
, y(1− y) ≤

1

4
,

m−1∑

k=0

n∑
j=0

pm−1,k(x)pn,j(y) =
m∑

k=0

n−1∑
j=0

pm,k(x)pn−1,j(y)

=
m−1∑

k=0

n−1∑
j=0

pm−1,k(x)pn−1,j(y) = 1
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and transforming into modulus in the relation above and taking into account

that the partial derivatives of f are bounded on ]0, 1[×]0, 1[, the inequalities

from (18) are obtained.

Integrating the Bernstein’s bivariate approximation formula (4) one ar-

rives to the following Bernstein’s cubature formula

(24)

∫ 1

0

∫ 1

0

f(x, y)dx dy =
m∑

i=0

n∑
j=0

Ai,jf

(
i

m
,
j

n

)
+ Rm,n[f ].

Theorem 6 [14] The coefficients of the cubature formula (24) are given by

the equalities:

(25) Aij =
1

(m + 1)(n + 1)
, i = 0,m, j = 0, n.

Regarding the remainder term of (23), we have the following:

Theorem 7 In the conditions of Theorem 5, the following upper-bound es-

timation for the remainder term of Bernstein’s cubature formula (24) is

(26) |Rm,n[f ]| ≤ 1

12m
M1(f) +

1

12n
M2(f) +

1

144mn
M3(f),

where M1(f), M2(f) and M3(f) were defined at (20), (21) and (22).

Proof. The inequality (26) follows by integrating the Bernstein’s bivariate

approximation formula (4) and taking the first inequality (18) into account.

Theorem 8 Let f : [0, 1] × [0, 1] → R be a function. If f ∈ C(2,2)([0, 1] ×
[0, 1]), the relations (17) and (26) hold, where

M1(f) = sup
(x,y)∈[0,1]×[0,1]

∣∣∣∣
∂2f

∂x2
(x, y)

∣∣∣∣ ,
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M2(f) = sup
(x,y)∈[0,1]×[0,1]

∣∣∣∣
∂2f

∂y2
(x, y)

∣∣∣∣ , and

M3(f) = sup
(x,y)∈[0,1]×[0,1]

∣∣∣∣
∂4f

∂x2∂y2
(x, y)

∣∣∣∣ .

Proof. It results from Theorem 7

Remark 2 In Theorem 7 we give a new proof for the known inequality

(26)(see [14], pp.325). The inequality from (26) is demonstrate in [14] in

the conditions of Theorem 8.

Theorem 9 In the conditions of Theorem 7 or Theorem 8, it follows that

(27) lim
m,n→∞

m∑
i=0

n∑
j=0

1

(m + 1)(n + 1)
f

(
i

m
,
j

n

)
=

1∫

0

1∫

0

f(x, y)dx dy

and the convergence from (27) is uniform.

Proof. It results from inequality (26).

Remark 3 Because the Bernstein’s bivariate operator Bm,n conserve only

the lineares functions in x and respectively y, it follows that the degree of

exactness for the cubature formula (24) is (1, 1). In the case when the

approximated function f satisfies the hypotheses of Theorem 6, the above

affirmation follows directly from the mentioned theorem.
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