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Characterizations of best approximations in

linear 2-normed spaces 1
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Abstract

In this paper some characterizations of best approximation have

been established in terms of 2-semi inner products and normalised

duality mapping associated with a linear 2-normed space (X, ‖., ‖).
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1 Introduction

The concepts of linear 2-normed space was first introduced by S.Gahler

in 1965 [6]. Since 1965, Y.J.Cho, C.R.Diminnie, R.W.Freese, S.Gahler,
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A.White, S.S.Dragomir and many other mathematicians have developed

extensively the geometric structure of linear 2-normed space. A.White in

his Doctoral dissertation entitled “2-Banach spaces” augments the concepts

of a linear 2-normed space by defining Cauchy sequence and convergent

sequence for such spaces. Section 2 provides some preliminary definitions

and results that are used in the sequel. Some main results of the set of

best approximation in the context of bounded linear 2-functionals on real

linear 2-normed spaces are established in Section 3. Section 4 deleneates

variational characterization of the best approximation elements. Two new

characterizations are established in Section 5.

2 Preliminaries

Definition 1 [6] Let X be a real linear space of dimension greater than

one and let ‖., .‖ be a real-valued function defined on X ×X satisfying the

following for all x, y, z ∈ X.

(i) ‖x, y‖ > 0 and ‖x, y‖ = 0 if and only if x and y are linearly dependent,

(ii) ‖x, y‖ = ‖y, x‖,

(iii) ‖αx, y‖ = |α|‖x, y‖ α ∈ R, and

(iv) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖.

Then ‖., .‖ is called a 2-norm on X and (X, ‖., .‖) is called a linear 2-normed

space.
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A concept which is related to a 2-normed space is 2-inner product space

as follows:

Definition 2 [1] Let X be a linear space of dimension greater than one

and let (., .|.) be a real-valued function on X ×X ×X which satisfying the

following conditions:

(i) (x, x|y) > 0 and (x, x|y) = 0 if and only if x and y are linearly

dependent,

(ii) (x, x|y) = (y, y|x),

(iii) (x, y|z) = (y, x|z),

(iv) (αx, y|z) = |α|(x, y|z) for every real α, and

(v) (x + y, z|b) = (x, z|b) + (y, z|b) for every x, y, z ∈ X and b is indepen-

dent of x, y and z.

Then (., .|.) is called a 2-inner product on X and (X, (., .|.)) is called a

2-inner product space.

The concept of 2-inner product space was introduced by Diminnie,et.al [1].

The concepts of 2-norm and 2-inner product are 2-dimensional analogue

of the concepts of norm and inner product in [1] it was shown that ‖x, y‖ =

(x, x|y)
1
2 is a 2-norm on (X, (., .|.)), ‖x, y‖ may be visualized as the area of

the parallelogram with vertices at 0, x, y and x + y.

Example 1 Let X = R × R × R. Then, for x = (a1, b1, c1) and y =

(a2, b2, c2) in X,

‖x, y‖ = {(a1b2 − a2b1)
2 + (b1c2 − b2c1)

2 + (a1c2 − a2c1)
2} 1

2 and
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‖x, y‖ = |a1b2 − a2b1|+ |b1c2 − b2c1|+ |a1c2 − a2c1| are 2-norm on X.

Example 2 Let X = Rn. Then, for a = (α1, α2, . . . , αn), b = (β1, β2, . . . , βn)

and c = (c1, c2, . . . , cn),

(a, b|c) =
∑
i<j

(αirj − αjri) (βirj − βjri) is a 2-inner product and (Rn, (., .|.))

is a 2-inner product space.

Definition 3 [8] Let X be a linear space of dimension greater than one.

Then a mapping

[., .|.] : X ×X ×X → K (K = R or C) is a 2-semi inner product if the

following conditions are satisfied.

(i) [x, x|z] > 0 and [x, x|z] = 0 if and only if x and z are linearly depen-

dent,

(ii) [λx, y|z] = λ[x, y|z] for all λ ∈ K, x, y ∈ X, z ∈ X\V (x, y), where

V (x, y) is the subspace of X generated by x and y,

(iii) [x + y, z|b] = [x, z|b] + [y, z|b] for all x, y, z ∈ X and b ∈ X\V (x, y, z),

(iv) |[x, y|z]|2 ≤ [x, x|z][y, y|z] for all x, y, z ∈ X and z /∈ V (x, y, z).

Then (X, [x, y|z]) is a 2-semi inner product space.

Example 3 Let X = R2 and let a = (a1, a2, a3), b = (b1, b2, b3) and c =

(c1, c2, c3) in X. Then

[a, b|c] = (a1c2 − a2c1)(b1c2 − b2c1)(c
2
1 + c2

2) is a 2-semi inner product.
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Definition 4 Let (X, ‖., .‖) be a linear 2-normed space, G be a linear sub-

space of X (G a non-empty subset of X), x ∈ X\Ḡ and g0 ∈ G. Then g0

is said to be a best approximation element of x in G if

‖x− g0, z‖ = inf
g∈G

‖x− g, z‖, for all z ∈ X\V (x,G).

We shall denote P z
G(x) by

P z
G(x) = {g0 ∈ G : ‖x− g0, z‖ = inf

g∈G
‖x− g, z‖}

Lemma 1 [4, 5] Let (X, ‖., .‖) be a linear 2-normed space, G be a linear

subspace of X, x0 ∈ X\Ḡ and g0 ∈ G. Then g0 ∈ P z
G(x0) if and only if

x0 − g0⊥zG for every g ∈ G.

Let (X, ‖., .‖) be a linear 2-normed space. Then, we define

(x, y|z)s(i) = lim
t→0+

‖y + tx, z‖2 − ‖y, z‖2

2t
, x, y ∈ X and Z ∈ X\V (x, y).

The mapping (., .|.)s(i) will be called supremum (infimum) of 2-semi inner

product associated with the norm ‖., .‖.
For the sake of completeness we list some of the fundamental properties

of (., .|.)s(i):

(i) (x, x|y)p = ‖x, y‖2 for all x, y ∈ X.

(ii) (αx, βy|z)p = αβ(x, y|z)p if αβ ≥ 0 and x, y, z ∈ X.

(iii) (−x, y|z)p = −(x, y|z)p = (x,−y|z)p for all x, y, z ∈ X.

(iv) For all x, y, z ∈ X (z is independent of x and y),

‖x + ty, z‖2 − ‖x, z‖2

2t
≥ (y, x|z)s ≥ (y, x|z)i

≥ ‖x + t∗y, z‖2 − ‖x, z‖2

2t∗
, t∗ < 0 < t.
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(v) The following Schwarz’s inequality holds

|(x, y|z)p| ≤ ‖x, z‖ ‖y, z‖ for all x, y, z ∈ X.

(vi) (αx + y, x|z)p = α‖x, z‖2 + (y, x|z)p for all α ∈ R and x, y, z ∈ X.

(vii) For all x, y, z, b ∈ X, |(y + z, x|b)p − (z, x|b)p| ≤ ‖y, b‖ ‖x, b‖.

(viii) For all x, y, z ∈ X, x⊥z(αx + y)(B) if and only if

(y, x|z)i ≤ α‖x, z‖2 ≤ (y, x|z)s α ∈ R,

and x⊥zy(B) if and only if (y, x|z)i ≤ 0 ≤ (y, x|z)s.

(ix) The norm ‖., .‖ is Gâteaux differentiable in the space (X, ‖., .‖) is

smooth if and only if (x, y|z)i = (x, y|z)S for all x, y, z ∈ X.

3 Main results

The following theorem gives the characterization of the best approximation

element which also gives a possibility of interpolation (estimation) for the

bounded linear 2-functionals on real linear 2-normed spaces.

Theorem 1 Let (X, ‖., .‖) be a real linear 2-normed space X and G be its

closed linear subspace of X, x0 ∈ X\G and g0 ∈ G. Then the following

statements are equivalent:

(i) g0 ∈ P z
G(x0) z ∈ X\V (x0, G).
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(ii) For every f ∈ (Gx0 × [b])∗, [b] is the subspace of Gx0 = G ⊕ sp(x0)

generated by b with Ker(f) = G, we have

‖f‖Gx0

(
x,

λ0(x0 − g0)

‖x0 − g0, z‖ | z

)

i

≤ f(x, z)(1)

≤ ‖f‖Gx0

(
x,

λ0(x0 − g0)

‖x0 − g0, z‖ | z

)

s

,

for all x ∈ Gx0, where

‖f‖Gx0
= sup

{ |f(x, z)|
‖x, z‖ : ‖x, z‖ 6= 0, x ∈ Gx0andz ∈ [b]

}

and λ0 = sgnf(x0, z).

To prove this theorem we need the following interesting Lemma.

Lemma 2 Let (X, ‖., .‖) be a linear 2-normed space f ∈ (X×K)∗\{0}, x0 ∈
X\Ker(f) and g0 ∈ Ker(f), where K is a linear subspace of X. Then the

following statements are equivalent:

(i) g0 ∈ P z
Ker(f)(x0) z ∈ X\V (x0, Ker(f)).

(ii) One has the estimation:

‖f‖
(

x,
λ0(x0 − g0)

‖x0 − g0, z‖ | z

)

i

≤ f(x, z)(2)

≤ ‖f‖
(

x,
λ0(x0 − g0)

‖x0 − g0, z‖ | z

)

s

,

for all x ∈ X, z ∈ X\V (x0, Ker(f)) and λ0 = sgnf(x0, z).
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Proof. (i) ⇒ (ii). We shall assume that (i) holds and put w0 = x0 − g0.

Then w0 6= 0. Since g0 ∈ P z
Ker(f)(x0) by Lemma 1, w0⊥zKer(f)(B). Then

by property (viii),we have

(3)

(y, w0|z)i ≤ 0 ≤ (y, w0|z)S for all y ∈ Ker(f) and z ∈ X\V (x0, Ker(f)).

Let x be an arbitrary element of X. Then the element y = f(x, z)w0 −
f(w0, z)x ∈ Ker(f), for all x ∈ X. Then by (3), we deduce that

(f(x, z)w0 − f(w0, z)x,w0|z)i ≤ 0(4)

≤ (f(x, z)w0 − f(w0, z)x,w0|z)s,

for all x ∈ X.

By the properties of the mappings (., .|.)i and (., .|.)S we have

(f(x, z)w0 − f(w0, z)x,w0|z)P = f(x, z)‖w0, z‖2 + (−f(w0, z)x,w0|z)P , (x ∈ X)

and p = s or p = i.

On the other hand, since w0⊥zKer(f)(B) and w0 6= 0, hence f(w0, z) 6=
0. Then we have two cases f(w0, z) > 0 and f(w0, z) < 0.

Case (a): If f(w0, z) > 0, then by (4)

0 ≤ f(x, z)‖w0, z‖2 + (−f(w0, z)x,w0|z)s

= f(x, z)‖w0, z‖2 + f(w0, z)(−x,w0|z)s

= f(x, z)‖w0, z‖2 + (−x, f(w0, z)w0|z)s

= f(x, z)‖w0, z‖2 − (x, f(w0, z)w0|z)i
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whence

(5)

f(x, z) ≥
(

x,
f(w0, z)w0

‖w0, z‖2
| z

)

i

for all x ∈ X and z ∈ X\V (x0, Ker(f)).

Similarly, by (4) we have

0 ≥ f(x, z)‖w0, z‖2 + (−f(w0, z)x,w0|z)i

= f(x, z)‖w0, z‖2 − (x, f(w0, z)w0|z)s

(6)

⇒ f(x, z) ≤
(

x,
f(w0, z)w0

‖w0, z‖2
| z

)

s

for allx ∈ Xand z ∈ X\V (x0, Ker(f)).

Case (b): Let us first remark that for every x, y, z ∈ X, we have

−(x, y|z)i = (−x, y|z)s = (−x,−(−y)|z)s

= (x,−y|z)s.

If f(w0, z) < 0, then

0 ≤ f(x, z)‖w0, z‖2 + (−f(w0, z)x,w0|z)s

= f(x, z)‖w0, z‖2 + (−f(w0, z))(x,w0|z)s

= f(x, z)‖w0, z‖2 + (x, (−f(w0, z))w0|z)s

= f(x, z)‖w0, z‖2 − (x, f(w0, z)w0|z)i

⇒ f(x, z) ≥
(

x,
f(w0, z)w0

‖w0, z‖2
| z

)

i

.

Similarly for f(w0, z) < 0, we obtain (6).

Hence in both cases we obtain

(7)

(
x,

f(w0, z)w0

‖w0, z‖2
| z

)

i

≤ f(x, z) ≤
(

x,
f(w0, z)w0

‖w0, z‖2
| z

)

s
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for all x ∈ Xandz ∈ X\V (x0, Ker(f))

Now, let u =
f(w0, z)w0

‖w0, z‖2
.Then, by (7), we have

f(x, z) ≥ (x, u|z)i = −(x, u|z)s

≥ −‖x, z‖ ‖u, z‖ for all x, z ∈ X

and f(x, z) ≤ (x, u|z)s ≤ ‖x, z‖ ‖u, z‖ for all x, z ∈ X.

Thus

−‖u, z‖ ≤ f(x, z)

‖x, z‖ ≤ ‖u, z‖ for all x, z ∈ X

That is , ‖f‖ ≤ ‖u, z‖. On the other hand, we obtain:

‖f‖ ≥ f(u, z)

‖u, z‖ ≥ (u, u|z)i

‖u, z‖ = ‖u, z‖

whence ‖f‖ = ‖u, z‖ =
|f(w0, z)|
‖w0, z‖ . But f(w0, z) = f(x0, z).

Hence

‖f‖ =
|f(x0, z)|
‖x0 − g0, z‖ =

f(x0, z)|λ
‖x0 − g0, z‖

⇒ f(x0, z) = λ‖f‖ ‖x0 − g0, z‖.
This implies that, by (7), the estimation (ii) holds.

(ii)⇒ (i). Suppose that (ii) holds for all x ∈ X and z ∈ X\V (x0, Ker (f)).

Then we have

(
x,

λ(x0 − g0)

‖x0 − g0, z‖ | z

)

i

≤ 0 ≤
(

x,
λ(x0 − g0)

‖x0 − g0, z‖ | z

)

s

for all x ∈ Ker(f). Then by property (viii), that

(8)
λ(x0 − g0)

‖x0 − g0, z‖⊥zker (f)(B).

If λ > 0, obviously x0 − g0⊥zker(f)(B)
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⇒ g0 ∈ P z
ker(f)(x0).

If λ < 0, then also−(x0−g0)⊥zker (f)(B) (or) (x0−g0)⊥z(−ker (f))(B).

Since −ker(f) = ker(f), we have g0 ∈ P z
ker(f)(x0)

Hence the proof.

Proof of the Theorem 1 Proof of the theorem follows by the Lemma 2

applied to the linear 2-normed space Gx0 = G⊕ sp(x0), (x0 /∈ G).

4 Variational characterization

The following theorem gives the variational characterization of the best

approximation element.

Theorem 2 Let (X, ‖., .‖) be a linear 2-normed space and G be a closed

linear subspace in X with G 6= X, x0 ∈ X\G and g0 ∈ G. Then the

following statements are equivalent:

(i) g0 ∈ P z
G(x).

(ii) For every f ∈ (Gx0 ×K)∗, where K is a linear subspace of Gx0 with

ker(f) = G.

i.e., Gx0 = G⊕ sp(x0), the element

u0 =
f(x0, z)(x0 − g0)

‖x0 − g0, z‖2
, z ∈ X\V (x0, ker(f)),

minimizes the quadratic functional

Ff : Gxo ×K → R

Ff (x, z) = ‖x, z‖2 − 2f(x, z).
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To prove this theorem we need the following lemma.

Lemma 3 Let (X, ‖., .‖) be a real linear 2-normed space, f ∈ (X×K)∗\{0}
and w ∈ X\{0}, where K is a linear subspace of X. Then the following

statements are equivalent:

(i)

(9) (x, w|z)i ≤ f(x, z) ≤ (x,w|z)s for all x, z ∈ X

and z is independent of x and w.

(ii) The element w minimizes the quadratic functional

Ff = X ×K → R K ∈ X,

Ff (u, z) = ‖u, z‖2 − 2f(u, z).

Proof. (i) ⇒ (ii). Let w satisfy the relation (9).

Then, for x = w, we obtain f(w, z) = ‖w, z‖2.

Let u ∈ X. Then for z is independent of u and w,

Ff (u, z)− Ff (w, z) = ‖u, z‖2 − 2f(u, z)− ‖w, z‖2 + 2f(w, z)

= ‖u, z‖2 − 2f(u, z) + ‖w, z‖2

≥ ‖u, z‖2 − 2(u,w|z)s + ‖w, z‖2

≥ ‖u, z‖2 − 2‖u, z‖ ‖w, z‖+ ‖w, z‖2

= (‖u, z‖ − ‖w, z‖)2

≥ 0.

Which proves that w minimizes the functional Ff .
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(ii) ⇒ (i). If w minimizes the functional Ff , then for all u ∈ X and

λ ∈ R, we have

Ff (w + λu, z)− Ff (w, z) > 0, for u ∈ X, λ ∈ R and z is independent of

u and w.

i.e., Ff (w + λu, z)− Ff (w, z) = ‖w + λu, z‖2 − ‖w, z‖2

−2f(w + λu, z) + 2f(w, z)

= ‖w + λu, z‖2 − ‖w, z‖2 − 2λf(u, z).

Therefore

(10) 2λf(u, z) ≤ ‖w + λu, z‖2 − ‖w, z‖2 for all u, z ∈ X, and λ ∈ R.

Now, Let λ > 0. Then by (10), we have

f(u, z) ≤ ‖w + λu, z‖2 − ‖w, z‖2

2λ
, u, z ∈ X.

Taking limit as λ → 0+, we obtain

f(u, z) ≤ (u,w|z)s for all u, z ∈ X.

Replacing u by −u in the above relation we obtain

f(u, z) ≥ −(−u,w|z)s = (u,w|z)i for all u, z ∈ X

Thus the lemma is proved.

Corollary 1 Let (X, ‖., .‖) be a real linear 2-normed space, f ∈ (X ×
[b])∗\{o} and w ∈ X\{o}. Then w is a point of smoothness of X and it

minimizes the functional Ff if and only if f(x, z) = (x,w|z)p for all x ∈ X,

where p = s or i.
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Proof of the Theorem 2.

(i) ⇒ (ii). Let g0 ∈ P z
G(x0).

Then by Theorem 1, for every f ∈ (Gx0 × K)∗, K is a subspace of

Gx0 , with ker(f) = G. We have the estimation (1). In this relation put

x =
λ0(x0 − g0)

‖x0 − g0, z‖ , we obtain

‖f‖Gx0
=

|f(x0, z)|
‖x0 − g0, z‖ .

Then (1) becomes

(11)

(
x,

f(x0, z)(x0 − g0)

‖x0 − g0, z‖2
| z

)

i

≤ x, z) ≤
(

x,
f(x0, z)(x0 − g0)

‖x0 − g0, z‖2
| z

)

s

for all x ∈ Gx0 .

Now applying Lemma 3 for u0 = f(x0, z)
(x0 − g0)

‖x0 − g0, z‖2
on the space Gx0 ,

u0 minimizes the functional Ff on the space Gx0 .

(ii) ⇒ (i). If u0 given above minimizes the functional Ff on Gx0 , by

Lemma 3, we derive that the estimation (11). Further (1) is valid, that is

by Theorem 1, we obtain g0 ∈ P z
G(x0). Hence the proof.

5 Two new characterization

Let (X, ‖., .‖) be a linear 2-normed space and let X∗
z be the space of all

bounded linear 2-functionals defined on X×V (z) for every non-zero z ∈ X.

Then the mapping J : X × V (z) → 2X∗
z defined by

J(x, y) = {f ∈ X∗
z : f(x, y) = ‖f‖ ‖x, y‖, ‖f‖ = ‖x, y‖, x ∈ X and y ∈ V (z)}

will be called the normalized duality mapping associated with 2-normed

space (X, ‖., .‖).
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Lemma 4 Let (X, ‖., .‖) be a real linear 2-normed space. Then for every

J̃ a section of the normalized duality mapping one has the representations

(12) (y, x|z)s = lim
t→0+

〈J̃(x + ty), y|z〉

and

(13) (y, x|z)i = lim
t→0−

〈J̃(x + ty), y|z〉

for all x, y, z ∈ X and z is independent of x and y.

Proof. Let J̃ be a section of the duality mapping J . Then, for all x, y, z ∈ X

and z is independent of x and y, t ∈ R and x 6= 0,

‖x + ty, z‖ − ‖x, z‖ =
‖x + ty, z‖ ‖x, z‖ − ‖x, z‖2

‖x, z‖

≥ 〈J̃x, x + ty|z〉 − ‖x, z‖2

‖x, z‖

=
〈J̃x, x|z〉+ t〈J̃x, y|z〉 − ‖x, z‖2

‖x, z‖

=
t〈J̃x, y|z〉
‖x, z‖ .

Whence

(14) ‖x, z‖(‖x + ty, z‖ − ‖x, z‖)
t

≥ 〈J̃x, y|z〉f

or all x, y ∈ X, z ∈ X\V (x, y) and t > 0.

On the other hand, for t 6= 0 and x + ty 6= 0, we have
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‖x + ty, z‖ − ‖x, z‖
t

=
‖x + ty, z‖2 − ‖x, z‖ ‖x + ty, z‖

‖x + ty, z‖t

=
〈J̃(x + ty), x + ty|z〉 − ‖x, z‖ ‖x + ty, z‖

t‖x + ty, z‖

=
〈J̃(x + ty), x|z〉+ t〈J̃(x + ty), y|z〉 − ‖x, z‖ ‖x + ty, z‖

t‖x + ty, z‖

≤ 〈J̃(x + ty), y|z〉
‖x + ty, z‖ .

Since 〈J̃(x+ ty), x|z〉 ≤ ‖x, z‖ ‖x+ ty, z‖ for all x, y ∈ X, z ∈ X\V (x, y)

and t ∈ R.

Consequently we have,

(15) 〈J̃(x + ty), y|z〉 ≥ ‖x + ty, z‖(‖x + ty, z‖ − ‖x, z‖)
t

for all x, y ∈ X, t > 0 and z ∈ X\V (x, y).

Replacing x by x + ty in the inequality (14) we have,

(16) ‖x + ty, z‖(‖x + 2ty, z‖ − ‖x + ty, z‖)
t

≥ 〈J̃(x + ty), y|z〉

for all x, y ∈ X, t > 0 and z ∈ X\V (x, y).

By (15) and (16),we obtain

‖x + ty, z‖‖x + ty, z‖ − ‖x, z‖
t

≤ 〈J̃(x + ty), y|z〉(17)

≤ ‖x + ty, z‖‖x + 2ty, z‖ − ‖x + ty, z‖
t

for all x, y ∈ X, t > 0 and z ∈ X\V (x, y).

Since (y, x|z)s = lim
t→0+

(
‖x + ty, z‖‖x + ty, z‖ − ‖x, z‖

t

)
, a simple calcu-

lation gives
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lim
t→0+

(
‖x + ty, z‖‖x + 2ty, z‖ − ‖x + ty, z‖

t

)

= ‖x, z‖
[
2 lim

t→0+

(
‖x + ty, z‖(‖x + 2ty, z‖ − ‖x, z‖)

2t

)

− lim
t→0+

(
‖x + ty, z‖(‖x + ty, z‖ − ‖x, z‖

t

)]

= ‖x, z‖ lim
t→0+

‖x + ty, z‖ − ‖x, z‖
t

= (y, x|z)s for all x, y, z ∈ X.

Then by taking limit as t → 0+ in the inequality (17) we observe that

lim
t→0+

〈J̃(x + ty), y|z〉 exists for all x, y, z ∈ X

and lim
t→0+

〈J̃(x + ty), y|z〉 = (y, x|z)s for all x, y, z ∈ X.

Then we have established (12).

On the other hand,

(y, x|z)i = −(−y, x|z)s

= − lim
t→0+

〈J̃(x + t(−y)),−y|z〉

= lim
t→0+

〈J̃(x + (−t)y), y|z〉

= lim
t→0−

〈J̃(x + ty), y|z〉 for all x, y, z ∈ X.

Thus (13) is obtained.

Theorem 3 Let (X, ‖., .‖) be a real linear 2-normed space, G be a linear

subspace of X, x0 ∈ X\G and g0 ∈ G. Then the following statements are

equivalent:

(i) g0 ∈ P z
G(x0).
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(ii) For every f ∈ (Gxo × [b])∗) with ker(f) = G we have

f(x0, z)

‖x0 − g0, z‖2
lim

t→0−

〈
J̃

(
λ0(x0−g0)
‖x0−g0,z‖+tx

)
−J̃

(
λ0(x0−g0),
‖x0−g0,z‖ x0−g0|z

)

t

〉
≤f(x, z)

≤ f(x0, z)

‖x0 − g0, z‖2
lim

t→0+

〈
J̃

(
λ0(x0−g0)
‖x0−g0,z‖ + tx

)
− J̃

(
λ0(x0−g0)
‖x0−g0,z‖ , x0 − g0|z

)

t

〉

for all x ∈ Gx0 and J̃ a section of the normalized duality mapping J .

To prove this theorem we need the following Lemma.

Lemma 5 Let (X, ‖., .‖) be a real linear 2-normed space. Then for any J̃

a section of duality mapping J , we have

(y, x|z)s = lim
t→0+

〈 J̃(x + ty)− J̃(x)

t
, x|z〉

(y, x|z)i = lim
t→0−

〈 J̃(x + ty)− J̃(x)

t
, x|z〉 for all x, y, z ∈ X and z ∈ X\V (x, y).

Proof. For every x, y ∈ X, t ∈ R with t 6= 0 and z ∈ X\V (x, y),

‖x + ty, z‖2 − ‖x, z‖2

t
=
〈J̃(x + ty), x + ty|z〉 − 〈J̃x, x|z〉

t

=
〈J̃(x + ty), x|z〉+ t〈J̃(x + ty, y|z)− J̃x, x|z〉

t

=

〈
J̃(x + ty)− J̃(x, x|z)

t

〉
+ 〈J̃(x + ty), y|z〉

Since lim
t→0+

‖x + ty, z‖2 − ‖x, z‖2

t

= lim
t→0+

‖x + ty, z‖ − ‖x, z‖
t

lim
t→0+

‖x + ty, z‖+ ‖x, z‖
t

= 2‖x, z‖ lim
t→0+

‖x + ty, z‖ − ‖x, z‖
t

= 2(y, x|z)s and
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limt→0+〈J̃(x + ty), y|z〉 = (y, x|z)s. Then by the above relation,

lim
t→0+

〈
J̃(x + ty)− J̃(x),

t
, x|z

〉
exists for all x, y ∈ X and z ∈ X\V (x, y).

Thus lim
t→0+

〈
J̃(x + ty)− J̃(x),

t
, x|z

〉
= (y, x|z)s

for all J̃ a section of normalized duality mapping.

Proof of the Theorem 3 follows from Theorem 1 and from Lemma 5.

References

[1] C.Diminnie, S.Gahler and A.White, 2-inner product spaces, Demon-

stratio Math. 6, 1973, 525-536.

[2] C.Diminnie,2-inner product spaces II, Demonstratio Math. 10, 1977,

169-188.

[3] S.S.Dragomir, A characterization of best approximation elements in

real normed spaces (Romanian),Stud.Mat.(Bucharest), 39, 1987, 497-

506.

[4] S.S.Dragomir , A characterization of the elements of best approximation

in real normed spaces, Studia Univ.Babes-Bolyai Math. 33, 1988,74-80.

[5] S.S.Dragomir , On best approximation in the sence of Lumer and ap-

plication, Riv.Mat.Univ.Parma 15 (1989), 253-263.

[6] S.Gahler, Linear 2-normierte Raume, Math. Nachr. 28 (1965), 1-43.

[7] A.L.Garkavi ,The theory of best approximation in normed linear spaces,

Progress in mathematics, New York 8, 1970, 83-151.



160 S.Elumalai, R.Vijayaragavan

[8] A.H.Siddique and S.M.Rizvi, 2-semi-inner product spaces,

I.Math.Japon. 21, 1976,391-397.

[9] I.Singer , Best approximation in normed linear spaces by elements of

linear subspaces (Romanian), Ed.Acad.Bucharest,1967.

S.Elumalai

Ramanujan Institute for Advanced Study in Mathematics

University of Madras

Chennai - 600005, Tamilnadu, India.

R.Vijayaragavan

Vellore Institute of Technology University

Vellore - 632014, Tamilnadu, India.


