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Characterizations of best approximations in
linear 2-normed spaces

S.Elumalai, R.Vijayaragavan

Abstract

In this paper some characterizations of best approximation have
been established in terms of 2-semi inner products and normalised

duality mapping associated with a linear 2-normed space (X, ||., ||).
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1 Introduction

The concepts of linear 2-normed space was first introduced by S.Gahler

in 1965 [6]. Since 1965, Y.J.Cho, C.R.Diminnie, R.W.Freese, S.Gahler,
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A.White, S.S.Dragomir and many other mathematicians have developed
extensively the geometric structure of linear 2-normed space. A.White in
his Doctoral dissertation entitled “2-Banach spaces” augments the concepts
of a linear 2-normed space by defining Cauchy sequence and convergent
sequence for such spaces. Section 2 provides some preliminary definitions
and results that are used in the sequel. Some main results of the set of
best approximation in the context of bounded linear 2-functionals on real
linear 2-normed spaces are established in Section 3. Section 4 deleneates
variational characterization of the best approximation elements. Two new

characterizations are established in Section 5.

2 Preliminaries

Definition 1 [6] Let X be a real linear space of dimension greater than
one and let ||.,.|| be a real-valued function defined on X x X satisfying the

following for all x,y,z € X.
(i) ||z,y|| > 0 and ||z,y|| = 0 if and only if x and y are linearly dependent,
(i) ||z, yll = lly, ],

(i) |lax, y|| = |elllz, yl| o € R, and

(w) |z +y,z|| < llz, 2] + [y, |-

Then ||., .|| is called a 2-norm on X and (X, ||.,.||) is called a linear 2-normed

space.



Characterizations of best approzimations... 143

A concept which is related to a 2-normed space is 2-inner product space

as follows:

Definition 2 [1] Let X be a linear space of dimension greater than one
and let (.,.|.) be a real-valued function on X x X x X which satisfying the

following conditions:

(i) (x,z|ly) > 0 and (z,z|y) = 0 if and only if v and y are linearly
dependent,

(1) (z,zly) = (y,y|z),

(i) (z,y]z) = (y, z[2),

(v) (ax,y|z) = |a|(x,y|2) for every real o, and

(v) (z+y,z|b) = (z,2|b) + (y, 2|b) for every x,y,z € X and b is indepen-
dent of x, y and z.

Then (.,.|.) is called a 2-inner product on X and (X, (.,.|.)) is called a

2-inner product space.

The concept of 2-inner product space was introduced by Diminnie,et.al [1].

The concepts of 2-norm and 2-inner product are 2-dimensional analogue
of the concepts of norm and inner product in [1] it was shown that ||z, y|| =
(z,z|y)? is a 2-norm on (X, (.,.|.)), ||z, y| may be visualized as the area of

the parallelogram with vertices at 0, z,y and x + y.
Example 1 Let X = R x R x R. Then, for x = (ay,b1,¢1) and y =

((12, bg, CQ) m X,
HQE, yH = {(albg — a2b1)2 + (b102 — b261)2 + (CL162 — &261)2}% and
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|, y|| = |a1bs — asbi| + |brca — boch| + |arco — aseq| are 2-norm on X.

Example 2 Let X = R". Then, fora = (a1, as,...,0,), b= (51, 02,-..,0n)
and ¢ = (c1,¢2,...,Cn),

(a,blc) = Z (ayrj — oyry) (Bir; — Byri) is a 2-inner product and (R™, (., .|.))
i<j
18 a 2-inner product space.

Definition 3 [8] Let X be a linear space of dimension greater than one.
Then a mapping
[]] : X x X xX —>K (K=R orC) is a 2-semi inner product if the

following conditions are satisfied.

(1) [z, z|z] >0 and [x,x|z] =0 if and only if x and z are linearly depen-

dent,

(i1) [Ax,y|lz] = Az, y|z] for all X € K, x,y € X, z € X\V(z,y), where
V(z,y) is the subspace of X generated by x and vy,

(iii) [z + vy, z|b] = [z, 2|b] + [y, 2|b] for all x,y,z € X and b € X\V(x,y, 2),
(iv) |lz,ylz]|* < [z, 2|2y, yl2] for allx,y,z € X and 2 ¢ V(z,y,2).

Then (X, [z,y|z]) is a 2-semi inner product space.

Example 3 Let X = R? and let a = (a1, a2,a3), b = (b1, bs,b3) and ¢ =
(c1,c9,¢3) in X. Then

[a,blc] = (arca — agey)(bica — bacy ) (3 + ¢3) is a 2-semi inner product.
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Definition 4 Let (X, |.,.||) be a linear 2-normed space, G be a linear sub-
space of X (G a non-empty subset of X ), v € X\G and gy € G. Then go
s said to be a best approximation element of x in G if
|z — go, 2| = ingHa: — g, 2|, for all z € X\V(z,G).
g€
We shall denote Pi(x) by
Pé(x) ={g90€ G |lx — go, 2| = inf ||z — g, 2| }
geG

Lemma 1 [4,5] Let (X, ||.,.||) be a linear 2-normed space, G be a linear
subspace of X, g € X\G and go € G. Then go € Pi(x0) if and only if
xo — goL.G for every g € G.

Let (X, ||.,.]|) be a linear 2-normed space. Then, we define

t 2 _ 2

0+ 2 , z,y € X and Z € X\V(z,y).

The mapping (.,.|.)sq) will be called supremum (infimum) of 2-semi inner
product associated with the norm ||., .|.

For the sake of completeness we list some of the fundamental properties
of (o, -])s()
(i) (z,z|y), = ||z, y||* for all z,y € X.
(i1) (ax,By|z), = af(x,y|z), if a8 >0 and x,y,z € X.
(Z”) (—ZL‘,y|Z)p = —(:L‘,y|Z)p = (l‘, _y|z)p fO’I“ all x, Y,z € X.

(iv) For all x,y,z € X (z is independent of x and y),

l + ty, 2I1* — ||, =||*
2t

> (y,z|2)s = (y, x[2)s

|l + t*y, 2)1* — ||, 2*

, t"<0<t.
- 2t*
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(v) The following Schwarz’s inequality holds

(@, yl2)p| < [l 2l ly, z[| for all z,y, 2 € X.

(vi) (ax +y,x|2), = a|z, 2| + (y, z|2), for alla €R and z,y,z € X.
(vit) For all x,y,2z,b € X, |(y + 2, 2[b), — (2, 2[b),| < [ly, bl ||z, b].
(viii) For all x,y,z € X, L, (ax +y)(B) if and only if

(. 2l2); < allz,2|* < (y,2]2), @ €R,
and zL,y(B) if and only if (y,z|2); <0 < (y,x|2)s.

(ix) The norm ||.,.| is Gateaux differentiable in the space (X,|.,.||) is
smooth if and only if (z,y|z); = (z,y|2)s for all z,y,z € X.

3 Main results

The following theorem gives the characterization of the best approximation
element which also gives a possibility of interpolation (estimation) for the

bounded linear 2-functionals on real linear 2-normed spaces.

Theorem 1 Let (X, |.,.||) be a real linear 2-normed space X and G be its
closed linear subspace of X, xo € X\G and g9 € G. Then the following

statements are equivalent:

(i) go € Pi(xg) z € X\V (20, G).
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(i1) For every f € (G, x [b])*, [b] is the subspace of G, = G @ sp(x)
generated by b with Ker(f) = G, we have

Ao(Zo — go)
W Wl (220002 < o)
Ao(Zo — go)
< 2040~ S0/
< Wl (= 7202557 12),

for all x € G, where

1£llc., = sup { [F(z,2)] |z, 2| # 0,2 € Gyandz € [b]}

2, 2|

and Ao = sgnf(xg, z).
To prove this theorem we need the following interesting Lemma.

Lemma 2 Let (X,].,.]|) be a linear 2-normed space f € (X xK)*\{0}, z¢ €
X\Ker(f) and gy € Ker(f), where K is a linear subspace of X. Then the

following statements are equivalent:

(i) g0 € P[ier(f)(IO) z € X\V (2o, Ker(f)).

(i) One has the estimation:

@ Il (o ) < f(z.2)

[0 = g0, 2|l

< I/ (u | ) ,

lzo = g0, 2|

forallz € X, z € X\V(zo,Ker(f)) and Ao = sgnf(xo, z).
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Proof. (i) = (ii). We shall assume that (i) holds and put wy = x¢ — go.
Then wy # 0. Since gy € Péa(p) (x9) by Lemma 1, woL Ker(f)(B). Then
by property (viii),we have

(3)
(y,wol2); <0 < (y,wplz)s for all y € Ker(f) and z € X\V (xq, Ker(f)).

Let x be an arbitrary element of X. Then the element y = f(x,2)wy —

f(wo, z)z € Ker(f), for all z € X. Then by (3), we deduce that

(4) (f (2, 2)wo — f(wo, z)x,wol2); <0

< (f (@, 2)wo — f(wo, 2)x, wolz)s,

for all z € X.

By the properties of the mappings (.,.|.); and (.,.|.)s we have
(f (2, 2)wo — f(wo, )z, wol2)p = f(x, 2)||wo, 2|* + (= f(wo, 2)x, wo|2)p, (v € X)

and p=sorp=ri.
On the other hand, since wy L, Ker(f)(B) and wy # 0, hence f(wp, z) #
0. Then we have two cases f(wg, z) > 0 and f(wp, z) < 0.

Case (a): If f(wo,z) > 0, then by (4)
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whence

(5)
flz,2z) > (:c Jlwo, 2)u | z) for all z € X and z € X\V (¢, Ker(f)).

" lwo, 212 i

Similarly, by (4) we have

0> f(x, 2)|lwo, 2||* + (= f (wo, 2)x, wo|2);

= f(z,2)|wo, 2[I* = (z, f(wo, 2)wo|2)s

(6)
(wo, 2)wy

= flz,2) < (:B, f‘ | z) for allz € Xand z € X\V(x¢, Ker(f)).

|wo, z]?

Case (b): Let us first remark that for every z,y, 2z € X, we have

_(:E7y|z)i = (—ZL‘,y|Z)S - (_CC7 _(_y>|z)s

- ((L’,—y|Z)s,
If f(wo,2) <0, then
0 < f(=,2)[lwo, 2II* + (= f (wo, 2)z, wo|2)s
= [z, 2)lwo, 2|1 + (= f (wo, 2)) (2, wo|2)
= f(x, 2)|lwo, 2|1 + (x, (= f (wo, 2))wo2)s
= f(z, 2)[|wo, 2[|” = (z, f(wo, 2)wo|2);
= flx,z) > (x7M | )
[[wo, || i

Similarly for f(wg, z) < 0, we obtain (6).

Hence in both cases we obtain

M (D ) < < (o ma )

" lwo, 212 i " lwo, 212
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for all z € Xandz € X\V (z, Ker(f))

Now, let u = M Then, by (7), we have
[[wo, ||
f(x,2) = (2, ul2)i = =(2,ul2)s

> —||lz, 2|| JJu,z|| forall z,zeX

and f(z,2) < (z,ulz)s < ||z, 2] ||u, 2| for all z,z € X.

—Ju, z|| < ( ><||u z|| forall z,zeX

That is , || f]| < ||u, z||. On the other hand, we obtain:

f(u, z) > (u,ul2);

w,zll T flu, 2]l

= |lu, =]l

LFIl = ||

whence || f]| = |lu, || = |“ﬂgf)0’zz|l)|.Butf(wo,z):f(xo,z).

__f(=0,2)| (o, 2) |\
1F1l = -
2o = go, 2~ Il70 — go. 2]
= [f(wo,2) = Al fII lzo — go, 2l
This implies that, by (7), the estimation (ii) holds.

(ii) = (i). Suppose that (ii) holds for all z € X and z € X\V (z, Ker (f)).

Hence

Then we have

Mo — Mz —
(x, (zo — 90) | z) <0< (m, (zo — g0) | z)
lzo = go. 2] * /; |zo — go, 2| s
for all x € Ker(f). Then by property (viii), that

Ao — go) or
(8) 2o — 0.2 L:ker (f)(B).

If A > 0, obviously zy — goL.ker(f)(B)
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= 90 € Bioy(p)(@o)-
If A <0, then also —(xg—go) L.ker (f)(B) (or) (zo—go)L.(—ker (f))(B).
Since —ker(f) = ker(f), we have gy € PZ, s (20)
Hence the proof.
Proof of the Theorem 1 Proof of the theorem follows by the Lemma 2

applied to the linear 2-normed space G, = G @ sp(zo), (zo ¢ G).

4 Variational characterization

The following theorem gives the variational characterization of the best

approximation element.

Theorem 2 Let (X, ||.,.||) be a linear 2-normed space and G be a closed
linear subspace in X with G # X, xog € X\G and gy € G. Then the

following statements are equivalent:
(i) g0 € Pé(x).
(i1) For every f € (G, x K)*, where K is a linear subspace of G, with
ker(f) =G.
i.e., Gy = G B sp(xo), the element

f(xOVZ)(xO - 90)
|20 — go, 2||?

Uy = , 2 € X\V(ngaker(f))v

minimizes the quadratic functional

Fr: Gy x K =R

Fy(z,2) = ||z, 2|* — 2f(z, ).
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To prove this theorem we need the following lemma.

Lemma 3 Let (X, |.,.||) be a real linear 2-normed space, f € (X x K)*\{0}
and w € X\{0}, where K is a linear subspace of X. Then the following

statements are equivalent:
(i)
9)  (zr,w|z); < f(z,2) < (z,w|z); for all z,z € X
and z is independent of x and w.
(ii) The element w minimizes the quadratic functional
Ff=XxK—-R KeclX,
Fy(u, 2) = |lu, 2]|* = 2f (u, 2).

Proof. (i) = (ii). Let w satisfy the relation (9).
Then, for x = w, we obtain f(w,z) = |lw, z||.
Let w € X. Then for z is independent of v and w,
Ff(U’ z) - Ff<w’ Z) = ”u’ Z”z - Qf(uv Z) - ||w> ZHQ + 2f(w, Z)

= ”U, Z||2 - 2f(U,Z) + ||w7Z”2

> lu, 2* = 2(u, wl2)s + [|w, 2|

>l 2l* = 2flu, 2] [lw, 2| + [|w, ||
= (llu, 2l = [lw, 2[)*

> 0.

Which proves that w minimizes the functional F}.
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(ii) = (i). If w minimizes the functional Fy, then for all v € X and
A € R, we have

Fr(w+ M, z) — Fp(w,z) > 0, for u € X, A € R and z is independent of

u and w.
e, Frw+u,z)—Fr(w,2) = [w+Au,z|? - ||Jw,z|?
—2f(w+ Au, 2) + 2f (w, 2)
= ”U} + )‘U?ZHQ o H’LU,ZH2 o 2>‘f(u7 Z)'
Therefore

(10)  2Xf(u, 2) < |lw 4 Au, 2||* — ||Jw, 2||* for all u, 2z € X, and A € R.

Now, Let A > 0. Then by (10), we have

lw + Au, 2% — flw, 2|

f(u,z)ﬁ 2\ ’

u,z € X.

Taking limit as A\ — 0%, we obtain
f(u,z) < (u,w|z)s forall u,z € X.
Replacing u by —u in the above relation we obtain
flu,z) > —(—u,wl|z)s = (u,w|z); for all u, z € X

Thus the lemma is proved.

Corollary 1 Let (X, ||.,.||) be a real linear 2-normed space, f € (X X
[b])*\{o} and w € X\{o}. Then w is a point of smoothness of X and it
minimizes the functional Fy if and only if f(x,z) = (z,w|2), for allz € X,

where p = s or 1.
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Proof of the Theorem 2.

(i) = (ii). Let go € P&(xo).

Then by Theorem 1, for every f € (G,, x K)*, K is a subspace of
Gy, with ker(f) = G. We have the estimation (1). In this relation put

A _
T = M, we obtain
P
Lo, %
||f||GxO = :
[0 — go, ||

Then (1) becomes

(1) (L [ (@0, 2)(x0 — go) | Z)@ <)< <x’ [ (o, 2) (w0 — go) | Z>S

lzo — go, 2]1? lz0 = go, 2>
for all z € Gy,.
(2o — 90)

120 = go, 2[?
uo minimizes the functional Fy on the space G, .

Now applying Lemma 3 for uy = f(xq, 2) on the space G,

(i) = (i). If wo given above minimizes the functional Fy on G, by
Lemma 3, we derive that the estimation (11). Further (1) is valid, that is

by Theorem 1, we obtain gy € PZ(x). Hence the proof.

5 Two new characterization

Let (X, ||.,.]]) be a linear 2-normed space and let X be the space of all
bounded linear 2-functionals defined on X x V(z) for every non-zero z € X.

Then the mapping J : X x V(z) — 2% defined by

J(,y) ={f € X2« f(z,y) = [IfIl |z yll, £l = =, yll,z € X and y € V(2)}

will be called the normalized duality mapping associated with 2-normed

space (X1 ).
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Lemma 4 Let (X, ||.,.||) be a real linear 2-normed space. Then for every

J a section of the normalized duality mapping one has the representations

(12) (y, l2)s = lim {J(z +ty), yl2)
and
(13) (y,]2); = lim (J(w +1y), yl2)

for all x,y,z € X and z is independent of x and y.

Proof. Let J be a section of the duality mapping J. Then, forall z,y,z € X
and z is independent of z and y, t € R and x # 0,

2
||x+ty,z” . ||ZL',Z|| _ ||$+ty,2||||||1',2’|| — ||$7Z||
z, z||
(Ja, 2 + ty|z) — |z, 2|
- [E2ed|
_ (Jaalz) + tJwylz) — ||z, 2]
[, 2]
_ t{Jz,ylz)
2, 2]

Whence

T4ty z|| — ||z, 2 ~
(1) o, o BN NEED g1y

orall z,y € X, z € X\V(z,y) and t > 0.
On the other hand, for t # 0 and x + ty # 0, we have
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= +ty, 2l — Nl 2l _ llo+ty, 2)1* — [z, 2] |lo + ty, 2|
t |z + ty, z||t
_ (J(w+ty),x +tylz) — ||z, 2| |2+ ty, 2|
tlz + ty, 2|
_ U@ +ty), zfz) + 1 (x + ty),ylz) — ||z, 2|| [z +ty, 2|
tlx + ty, 2|

(J(z +ty),y|z)
|z + ty, 2|

Since (J(z+1ty), z|z) < ||z, z|| [[z+ty, z|| for all z,y € X,z € X\V(x,y)
and t € R.

Consequently we have,

(= +ty, 2|l — [, =[)
t

(15) (J(z +ty),ylz) > v+ ty, 2|

forall z,y € X;t >0 and z € X\V(z,y).
Replacing = by x + ty in the inequality (14) we have,

(lz +2ty, 2|| = [« + ty, =)

(16) o +ty,2] :

> (J(x +ty),y|2)

for all z,y € X, ¢t >0 and z € X\V(x,y).
By (15) and (16),we obtain

o+t 2l = o2l _
| t < (Ja +ty),yl2)

| [ + 2ty, z|| — |lz + ty, 2|
t

(17) |z +ty, 2|

< |l +ty, 2|

for all z,y € X, t > 0and z € X\V(x,y).
|z +ty, 2| — ||z, 2]
t

Since (y, z|z)s = li%q+ (Hm + ty, z|| | ), a simple calcu-
t—

lation gives
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li t
e (T

| [z + 2ty, 2| — ||z + ty, ZH)
t

. (| +2ty, 2| — ||, 2[])
= 21 t
I, 2] [ Jim (Hw+ y: 2|l 57

. (||x —i—ty,zH — HZE,ZH
_ 1 t
t$(W+%ﬂ t
2|t 122 Dl 2]
’ t—0+ t

= (y,x|z)s forall z,y,z € X.

Then by taking limit as ¢ — 07 in the inequality (17) we observe that
11m+(<]~(m + ty),y|z) exists for all x,y,z € X
t—0

and lirri(J(.r +ty),y|z) = (y,z|2)s for all z,y,z € X.
t—0
Then we have established (12).
On the other hand,

(y7 $|Z)l = _(_y7 LElZ)S

= — lim (J(z + t(—y)), —y|?)

t—0t

= lim (J(z + (—t)y),y|2)

t—0t

= lim (J(z + ty),y|z) forall z,y,z € X.

t—0—

Thus (13) is obtained.

Theorem 3 Let (X, ||.,.||) be a real linear 2-normed space, G be a linear
subspace of X, xg € X\G and gy € G. Then the following statements are

equivalent:

(i) g0 € Pé(wo).
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(i1) For every f € (G, x [b])*) with ker(f) = G we have

Xo(zo—go) 7 ol 10—90) _
f (w0, 2) lim <J <”x°_g° i +t$> J ( leo—g0,2]1 90|Z> > < f(z,z2)

|0 — go, 2||? t—0- t

7 ( 2o(zo—g0) 7 (Qowo—go) . _
< —f(IO,Z) lim <J <“m0 - +t17> J (Hl"o —g0.2° * gOZ>>

= lzo — go, 2||? t—o0+ t
for all x € G, and J a section of the normalized duality mapping J.
To prove this theorem we need the following Lemma.

Lemma 5 Let (X,]|.,.||) be a real linear 2-normed space. Then for any J

a section of duality mapping J, we have

(y,x|z)s = lim (J(x +ty) — J<x>,x|z>

t—0+ t

(y,x|z); = lim ( z|z) for all z,y,z € X and z € X\V(z,vy).

Proof. For every z,y € X, t € R with ¢t # 0 and z € X\V(x,y),

t N t
 (J(z+ty),2)2) + I (x + ty, y|z) — Tz, 2]2)

t
_ <J(m—|—ty) t— J(:L‘,a:|z)> N (j(x+ty),y|z>

|l + ty, 2|* — ||z, 2|

Since lim
t—0t t
i Szt =leal] ety 2l + o2
= lim lim
t—0t t Jam t
_ 9|z, 2|| tim 1E A~ Nl 2
’ t—0+ t

=2(y,z|z)s and
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lim, o+ (J(x + ty),y|z) = (y,z|2)s. Then by the above relation,
liréq+ S+ t) J(x)’,x|z exists for all z,y € X and z € X\V(x,y).
t—
. o
Thus lirgl+ <J(a:—i— yt> J(x)’,x]z> = (y,|2)s
t—

for all J a section of normalized duality mapping.

Proof of the Theorem 3 follows from Theorem 1 and from Lemma 5.
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