Characterizations of best approximations in linear 2-normed spaces ${ }^{1}$

S.Elumalai, R.Vijayaragavan

Abstract

In this paper some characterizations of best approximation have been established in terms of 2 -semi inner products and normalised duality mapping associated with a linear 2 -normed space ($X,\|.\|$,$) .$

2000 Mathematics Subject Classification:46C50

Key words and phrases: inner products, 2-normed space, best approximation

1 Introduction

The concepts of linear 2-normed space was first introduced by S.Gahler in 1965 [6]. Since 1965, Y.J.Cho, C.R.Diminnie, R.W.Freese, S.Gahler,

[^0]A.White, S.S.Dragomir and many other mathematicians have developed extensively the geometric structure of linear 2-normed space. A.White in his Doctoral dissertation entitled "2-Banach spaces" augments the concepts of a linear 2 -normed space by defining Cauchy sequence and convergent sequence for such spaces. Section 2 provides some preliminary definitions and results that are used in the sequel. Some main results of the set of best approximation in the context of bounded linear 2-functionals on real linear 2-normed spaces are established in Section 3. Section 4 deleneates variational characterization of the best approximation elements. Two new characterizations are established in Section 5.

2 Preliminaries

Definition 1 [6] Let X be a real linear space of dimension greater than one and let $\|.,$.$\| be a real-valued function defined on X \times X$ satisfying the following for all $x, y, z \in X$.
(i) $\|x, y\|>0$ and $\|x, y\|=0$ if and only if x and y are linearly dependent,
(ii) $\|x, y\|=\|y, x\|$,
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\| \quad \alpha \in \mathbb{R}$, and
(iv) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$.

Then $\|.,$.$\| is called a 2-norm on X$ and ($X,\|.,\|$.$) is called a linear 2-normed$ space.

A concept which is related to a 2-normed space is 2-inner product space as follows:

Definition 2 [1] Let X be a linear space of dimension greater than one and let (., |.) be a real-valued function on $X \times X \times X$ which satisfying the following conditions:
(i) $(x, x \mid y)>0$ and $(x, x \mid y)=0$ if and only if x and y are linearly dependent,
(ii) $(x, x \mid y)=(y, y \mid x)$,
(iii) $(x, y \mid z)=(y, x \mid z)$,
(iv) $(\alpha x, y \mid z)=|\alpha|(x, y \mid z)$ for every real α, and
(v) $(x+y, z \mid b)=(x, z \mid b)+(y, z \mid b)$ for every $x, y, z \in X$ and b is independent of x, y and z.

Then (., |.) is called a 2-inner product on X and (X,(.,.|.)) is called a 2-inner product space.

The concept of 2-inner product space was introduced by Diminnie,et.al [1].
The concepts of 2-norm and 2-inner product are 2-dimensional analogue of the concepts of norm and inner product in [1] it was shown that $\|x, y\|=$ $(x, x \mid y)^{\frac{1}{2}}$ is a 2 -norm on $(X,(., \mid)),.\|x, y\|$ may be visualized as the area of the parallelogram with vertices at $0, x, y$ and $x+y$.

Example 1 Let $X=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Then, for $x=\left(a_{1}, b_{1}, c_{1}\right)$ and $y=$ $\left(a_{2}, b_{2}, c_{2}\right)$ in X,
$\|x, y\|=\left\{\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}\right\}^{\frac{1}{2}}$ and

$$
\|x, y\|=\left|a_{1} b_{2}-a_{2} b_{1}\right|+\left|b_{1} c_{2}-b_{2} c_{1}\right|+\left|a_{1} c_{2}-a_{2} c_{1}\right| \text { are 2-norm on } X .
$$

Example 2 Let $X=\mathbb{R}^{n}$. Then, for $a=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), b=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ and $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$,
$(a, b \mid c)=\sum_{i<j}\left(\alpha_{i} r_{j}-\alpha_{j} r_{i}\right)\left(\beta_{i} r_{j}-\beta_{j} r_{i}\right)$ is a 2-inner product and $\left(\mathbb{R}^{n},(., . \mid).\right)$ is a 2-inner product space.

Definition 3 [8] Let X be a linear space of dimension greater than one. Then a mapping
[.,.|.]: $X \times X \times X \rightarrow \mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ is a 2-semi inner product if the following conditions are satisfied.
(i) $[x, x \mid z]>0$ and $[x, x \mid z]=0$ if and only if x and z are linearly dependent,
(ii) $[\lambda x, y \mid z]=\lambda[x, y \mid z]$ for all $\lambda \in \mathbb{K}, x, y \in X, z \in X \backslash V(x, y)$, where $V(x, y)$ is the subspace of X generated by x and y,
(iii) $[x+y, z \mid b]=[x, z \mid b]+[y, z \mid b]$ for all $x, y, z \in X$ and $b \in X \backslash V(x, y, z)$,
(iv) $|[x, y \mid z]|^{2} \leq[x, x \mid z][y, y \mid z]$ for all $x, y, z \in X$ and $z \notin V(x, y, z)$.

Then $(X,[x, y \mid z])$ is a 2-semi inner product space.

Example 3 Let $X=\mathbb{R}^{2}$ and let $a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$ and $c=$ $\left(c_{1}, c_{2}, c_{3}\right)$ in X. Then
$[a, b \mid c]=\left(a_{1} c_{2}-a_{2} c_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(c_{1}^{2}+c_{2}^{2}\right)$ is a 2-semi inner product.

Definition 4 Let $(X,\|.,\|$.$) be a linear 2-normed space, G$ be a linear subspace of X (G a non-empty subset of $X), x \in X \backslash \bar{G}$ and $g_{0} \in G$. Then g_{0} is said to be a best approximation element of x in G if

$$
\left\|x-g_{0}, z\right\|=\inf _{g \in G}\|x-g, z\|, \text { for all } z \in X \backslash V(x, G)
$$

We shall denote $P_{G}^{z}(x)$ by

$$
P_{G}^{z}(x)=\left\{g_{0} \in G:\left\|x-g_{0}, z\right\|=\inf _{g \in G}\|x-g, z\|\right\}
$$

Lemma $1[4,5]$ Let $(X,\|.,\|$.$) be a linear 2-normed space, G$ be a linear subspace of $X, x_{0} \in X \backslash \bar{G}$ and $g_{0} \in G$. Then $g_{0} \in P_{G}^{z}\left(x_{0}\right)$ if and only if $x_{0}-g_{0} \perp_{z} G$ for every $g \in G$.

Let $(X,\|.\|$,$) be a linear 2-normed space. Then, we define$

$$
(x, y \mid z)_{s(i)}=\lim _{t \rightarrow 0^{+}} \frac{\|y+t x, z\|^{2}-\|y, z\|^{2}}{2 t}, x, y \in X \text { and } Z \in X \backslash V(x, y)
$$

The mapping $(., . \mid \cdot)_{s(i)}$ will be called supremum (infimum) of 2-semi inner product associated with the norm $\|.,$.$\| .$

For the sake of completeness we list some of the fundamental properties of $(., . \mid \cdot)_{s(i)}$:
(i) $(x, x \mid y)_{p}=\|x, y\|^{2}$ for all $x, y \in X$.
(ii) $(\alpha x, \beta y \mid z)_{p}=\alpha \beta(x, y \mid z)_{p}$ if $\alpha \beta \geq 0$ and $x, y, z \in X$.
(iii) $(-x, y \mid z)_{p}=-(x, y \mid z)_{p}=(x,-y \mid z)_{p}$ for all $x, y, z \in X$.
(iv) For all $x, y, z \in X$ (z is independent of x and y),

$$
\begin{aligned}
\frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{2 t} & \geq(y, x \mid z)_{s} \geq(y, x \mid z)_{i} \\
& \geq \frac{\left\|x+t^{*} y, z\right\|^{2}-\|x, z\|^{2}}{2 t^{*}}, \quad t^{*}<0<t
\end{aligned}
$$

(v) The following Schwarz's inequality holds

$$
\left|(x, y \mid z)_{p}\right| \leq\|x, z\|\|y, z\| \text { for all } x, y, z \in X
$$

(vi) $(\alpha x+y, x \mid z)_{p}=\alpha\|x, z\|^{2}+(y, x \mid z)_{p}$ for all $\alpha \in \mathbb{R}$ and $x, y, z \in X$.
(vii) For all $x, y, z, b \in X,\left|(y+z, x \mid b)_{p}-(z, x \mid b)_{p}\right| \leq\|y, b\|\|x, b\|$.
(viii) For all $x, y, z \in X, x \perp_{z}(\alpha x+y)(B)$ if and only if

$$
(y, x \mid z)_{i} \leq \alpha\|x, z\|^{2} \leq(y, x \mid z)_{s} \quad \alpha \in \mathbb{R}
$$

and $x \perp_{z} y(B)$ if and only if $(y, x \mid z)_{i} \leq 0 \leq(y, x \mid z)_{s}$.
(ix) The norm $\|.,$.$\| is Gâteaux differentiable in the space (X,\|.,\|$.$) is$ smooth if and only if $(x, y \mid z)_{i}=(x, y \mid z)_{S}$ for all $x, y, z \in X$.

3 Main results

The following theorem gives the characterization of the best approximation element which also gives a possibility of interpolation (estimation) for the bounded linear 2-functionals on real linear 2-normed spaces.

Theorem 1 Let $(X,\|.,\|$.$) be a real linear 2-normed space X$ and G be its closed linear subspace of $X, x_{0} \in X \backslash G$ and $g_{0} \in G$. Then the following statements are equivalent:
(i) $g_{0} \in P_{G}^{z}\left(x_{0}\right) z \in X \backslash V\left(x_{0}, G\right)$.
(ii) For every $f \in\left(G_{x_{0}} \times[b]\right)^{*}$, [b] is the subspace of $G_{x_{0}}=G \oplus \operatorname{sp}\left(x_{0}\right)$ generated by b with $\operatorname{Ker}(f)=G$, we have

$$
\begin{align*}
& \|f\|_{G_{x_{0}}}\left(x, \left.\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{i} \leq f(x, z) \tag{1}\\
& \leq\|f\|_{G_{x_{0}}}\left(x, \left.\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{s}
\end{align*}
$$

for all $x \in G_{x_{0}}$, where

$$
\|f\|_{G_{x_{0}}}=\sup \left\{\frac{|f(x, z)|}{\|x, z\|}:\|x, z\| \neq 0, x \in G_{x_{0}} \text { and } z \in[b]\right\}
$$

and $\lambda_{0}=\operatorname{sgn} f\left(x_{0}, z\right)$.

To prove this theorem we need the following interesting Lemma.

Lemma 2 Let $(X,\|.,\|$.$) be a linear 2-normed space f \in(X \times K)^{*} \backslash\{0\}, x_{0} \in$ $X \backslash \operatorname{Ker}(f)$ and $g_{0} \in \operatorname{Ker}(f)$, where K is a linear subspace of X. Then the following statements are equivalent:
(i) $g_{0} \in P_{\operatorname{Ker}(f)}^{z}\left(x_{0}\right) \quad z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right)$.
(ii) One has the estimation:
(2) $\quad\|f\|\left(x, \left.\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{i} \leq f(x, z)$
$\leq\|f\|\left(x, \left.\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{s}$,
for all $x \in X, z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right)$ and $\lambda_{0}=\operatorname{sgn} f\left(x_{0}, z\right)$.

Proof. (i) \Rightarrow (ii). We shall assume that (i) holds and put $w_{0}=x_{0}-g_{0}$. Then $w_{0} \neq 0$. Since $g_{0} \in P_{\operatorname{Ker}(f)}^{z}\left(x_{0}\right)$ by Lemma $1, w_{0} \perp_{z} \operatorname{Ker}(f)(B)$. Then by property (viii), we have

$$
\begin{equation*}
\left(y, w_{0} \mid z\right)_{i} \leq 0 \leq\left(y, w_{0} \mid z\right)_{S} \text { for all } y \in \operatorname{Ker}(f) \text { and } z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right) \tag{3}
\end{equation*}
$$

Let x be an arbitrary element of X. Then the element $y=f(x, z) w_{0}-$ $f\left(w_{0}, z\right) x \in \operatorname{Ker}(f)$, for all $x \in X$. Then by (3), we deduce that

$$
\begin{align*}
& \left(f(x, z) w_{0}-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{i} \leq 0 \tag{4}\\
& \leq\left(f(x, z) w_{0}-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{s}
\end{align*}
$$

for all $x \in X$.
By the properties of the mappings $(., . \mid .)_{i}$ and $(., . \mid .)_{S}$ we have

$$
\left(f(x, z) w_{0}-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{P}=f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{P}, \quad(x \in X)
$$

and $p=s$ or $p=i$.
On the other hand, since $w_{0} \perp_{z} \operatorname{Ker}(f)(B)$ and $w_{0} \neq 0$, hence $f\left(w_{0}, z\right) \neq$
0 . Then we have two cases $f\left(w_{0}, z\right)>0$ and $f\left(w_{0}, z\right)<0$.
Case (a): If $f\left(w_{0}, z\right)>0$, then by (4)

$$
\begin{aligned}
0 & \leq f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}+f\left(w_{0}, z\right)\left(-x, w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-x, f\left(w_{0}, z\right) w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}-\left(x, f\left(w_{0}, z\right) w_{0} \mid z\right)_{i}
\end{aligned}
$$

whence

$$
\begin{equation*}
f(x, z) \geq\left(x, \left.\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}} \right\rvert\, z\right)_{i} \text { for all } x \in X \text { and } z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right) \tag{5}
\end{equation*}
$$

Similarly, by (4) we have

$$
\begin{aligned}
0 & \geq f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{i} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}-\left(x, f\left(w_{0}, z\right) w_{0} \mid z\right)_{s}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad f(x, z) \leq\left(x, \left.\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}} \right\rvert\, z\right)_{s} \quad \text { for all } x \in X \text { and } z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right) \tag{6}
\end{equation*}
$$

Case (b): Let us first remark that for every $x, y, z \in X$, we have

$$
\begin{aligned}
-(x, y \mid z)_{i}=(-x, y \mid z)_{s} & =(-x,-(-y) \mid z)_{s} \\
& =(x,-y \mid z)_{s} .
\end{aligned}
$$

If $f\left(w_{0}, z\right)<0$, then

$$
\begin{aligned}
0 & \leq f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-f\left(w_{0}, z\right) x, w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}+\left(-f\left(w_{0}, z\right)\right)\left(x, w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}+\left(x,\left(-f\left(w_{0}, z\right)\right) w_{0} \mid z\right)_{s} \\
& =f(x, z)\left\|w_{0}, z\right\|^{2}-\left(x, f\left(w_{0}, z\right) w_{0} \mid z\right)_{i} \\
\Rightarrow & f(x, z) \geq\left(x, \left.\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}} \right\rvert\, z\right)_{i} .
\end{aligned}
$$

Similarly for $f\left(w_{0}, z\right)<0$, we obtain (6).
Hence in both cases we obtain

$$
\begin{equation*}
\left(x, \left.\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}} \right\rvert\, z\right)_{i} \leq f(x, z) \leq\left(x, \left.\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}} \right\rvert\, z\right)_{s} \tag{7}
\end{equation*}
$$

for all $x \in X$ and $z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right)$
Now, let $u=\frac{f\left(w_{0}, z\right) w_{0}}{\left\|w_{0}, z\right\|^{2}}$.Then, by (7), we have

$$
\begin{aligned}
f(x, z) \geq(x, u \mid z)_{i} & =-(x, u \mid z)_{s} \\
& \geq-\|x, z\|\|u, z\| \quad \text { for all } \quad x, z \in X
\end{aligned}
$$

and $f(x, z) \leq(x, u \mid z)_{s} \leq\|x, z\|\|u, z\|$ for all $x, z \in X$.
Thus

$$
-\|u, z\| \leq \frac{f(x, z)}{\|x, z\|} \leq\|u, z\| \quad \text { for all } \quad x, z \in X
$$

That is, $\|f\| \leq\|u, z\|$. On the other hand, we obtain:

$$
\|f\| \geq \frac{f(u, z)}{\|u, z\|} \geq \frac{(u, u \mid z)_{i}}{\|u, z\|}=\|u, z\|
$$

whence $\|f\|=\|u, z\|=\frac{\left|f\left(w_{0}, z\right)\right|}{\left\|w_{0}, z\right\|}$. But $f\left(w_{0}, z\right)=f\left(x_{0}, z\right)$.
Hence

$$
\|f\|=\frac{\left|f\left(x_{0}, z\right)\right|}{\left\|x_{0}-g_{0}, z\right\|}=\frac{f\left(x_{0}, z\right) \mid \lambda}{\left\|x_{0}-g_{0}, z\right\|}
$$

$\Rightarrow f\left(x_{0}, z\right)=\lambda\|f\|\left\|x_{0}-g_{0}, z\right\|$.
This implies that, by (7), the estimation (ii) holds.
(ii) \Rightarrow (i). Suppose that (ii) holds for all $x \in X$ and $z \in X \backslash V\left(x_{0}, \operatorname{Ker}(f)\right)$.

Then we have

$$
\left(x, \left.\frac{\lambda\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{i} \leq 0 \leq\left(x, \left.\frac{\lambda\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \right\rvert\, z\right)_{s}
$$

for all $x \in \operatorname{Ker}(f)$. Then by property (viii), that

$$
\begin{equation*}
\frac{\lambda\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|} \perp_{z} \operatorname{ker}(f)(B) . \tag{8}
\end{equation*}
$$

If $\lambda>0$, obviously $x_{0}-g_{0} \perp_{z} \operatorname{ker}(f)(B)$
$\Rightarrow g_{0} \in P_{\operatorname{ker}(f)}^{z}\left(x_{0}\right)$.
If $\lambda<0$, then also $-\left(x_{0}-g_{0}\right) \perp_{z} \operatorname{ker}(f)(B)($ or $)\left(x_{0}-g_{0}\right) \perp_{z}(-\operatorname{ker}(f))(B)$.
Since $-\operatorname{ker}(f)=\operatorname{ker}(f)$, we have $g_{0} \in P_{\operatorname{ker}(f)}^{z}\left(x_{0}\right)$
Hence the proof.
Proof of the Theorem 1 Proof of the theorem follows by the Lemma 2 applied to the linear 2-normed space $G_{x_{0}}=G \oplus s p\left(x_{0}\right),\left(x_{0} \notin G\right)$.

4 Variational characterization

The following theorem gives the variational characterization of the best approximation element.

Theorem 2 Let $(X,\|.,\|$.$) be a linear 2-normed space and G$ be a closed linear subspace in X with $G \neq X, x_{0} \in X \backslash G$ and $g_{0} \in G$. Then the following statements are equivalent:
(i) $g_{0} \in P_{G}^{z}(x)$.
(ii) For every $f \in\left(G_{x_{0}} \times K\right)^{*}$, where K is a linear subspace of $G_{x_{0}}$ with $\operatorname{ker}(f)=G$.
i.e., $G_{x_{0}}=G \oplus \operatorname{sp}\left(x_{0}\right)$, the element

$$
u_{0}=\frac{f\left(x_{0}, z\right)\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}}, z \in X \backslash V\left(x_{0}, \operatorname{ker}(f)\right),
$$

minimizes the quadratic functional

$$
\begin{array}{r}
F_{f}: G_{x_{o}} \times K \rightarrow \mathbb{R} \\
F_{f}(x, z)=\|x, z\|^{2}-2 f(x, z) .
\end{array}
$$

To prove this theorem we need the following lemma.

Lemma 3 Let $(X,\|.,\|$.$) be a real linear 2-normed space, f \in(X \times K)^{*} \backslash\{0\}$ and $w \in X \backslash\{0\}$, where K is a linear subspace of X. Then the following statements are equivalent:
(i)
(9) $\quad(x, w \mid z)_{i} \leq f(x, z) \leq(x, w \mid z)_{s}$ for all $x, z \in X$
and z is independent of x and w.
(ii) The element w minimizes the quadratic functional

$$
\begin{aligned}
& F_{f}=X \times K \rightarrow \mathbb{R} \quad K \in X, \\
& F_{f}(u, z)=\|u, z\|^{2}-2 f(u, z) .
\end{aligned}
$$

Proof. (i) \Rightarrow (ii). Let w satisfy the relation (9).
Then, for $x=w$, we obtain $f(w, z)=\|w, z\|^{2}$.
Let $u \in X$. Then for z is independent of u and w,

$$
\begin{aligned}
F_{f}(u, z)-F_{f}(w, z) & =\|u, z\|^{2}-2 f(u, z)-\|w, z\|^{2}+2 f(w, z) \\
& =\|u, z\|^{2}-2 f(u, z)+\|w, z\|^{2} \\
& \geq\|u, z\|^{2}-2(u, w \mid z)_{s}+\|w, z\|^{2} \\
& \geq\|u, z\|^{2}-2\|u, z\|\|w, z\|+\|w, z\|^{2} \\
& =(\|u, z\|-\|w, z\|)^{2} \\
& \geq 0 .
\end{aligned}
$$

Which proves that w minimizes the functional F_{f}.
(ii) \Rightarrow (i). If w minimizes the functional F_{f}, then for all $u \in X$ and $\lambda \in \mathbb{R}$, we have
$F_{f}(w+\lambda u, z)-F_{f}(w, z)>0$, for $u \in X, \lambda \in \mathbb{R}$ and z is independent of u and w.

$$
\text { i.e., } \quad \begin{aligned}
\quad F_{f}(w+\lambda u, z)-F_{f}(w, z)= & \|w+\lambda u, z\|^{2}-\|w, z\|^{2} \\
& -2 f(w+\lambda u, z)+2 f(w, z) \\
= & \|w+\lambda u, z\|^{2}-\|w, z\|^{2}-2 \lambda f(u, z) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
2 \lambda f(u, z) \leq\|w+\lambda u, z\|^{2}-\|w, z\|^{2} \text { for all } u, z \in X, \text { and } \lambda \in \mathbb{R} \tag{10}
\end{equation*}
$$

Now, Let $\lambda>0$. Then by (10), we have

$$
f(u, z) \leq \frac{\|w+\lambda u, z\|^{2}-\|w, z\|^{2}}{2 \lambda}, \quad u, z \in X
$$

Taking limit as $\lambda \rightarrow 0^{+}$, we obtain
$f(u, z) \leq(u, w \mid z)_{s}$ for all $u, z \in X$.
Replacing u by $-u$ in the above relation we obtain
$f(u, z) \geq-(-u, w \mid z)_{s}=(u, w \mid z)_{i}$ for all $u, z \in X$
Thus the lemma is proved.

Corollary 1 Let $(X,\|.,\|$.$) be a real linear 2-normed space, f \in(X \times$ $[b])^{*} \backslash\{o\}$ and $w \in X \backslash\{o\}$. Then w is a point of smoothness of X and it minimizes the functional F_{f} if and only if $f(x, z)=(x, w \mid z)_{p}$ for all $x \in X$, where $p=s$ or i.

Proof of the Theorem 2.

(i) \Rightarrow (ii). Let $g_{0} \in P_{G}^{z}\left(x_{0}\right)$.

Then by Theorem 1, for every $f \in\left(G_{x_{0}} \times K\right)^{*}, K$ is a subspace of $G_{x_{0}}$, with $\operatorname{ker}(\mathrm{f})=G$. We have the estimation (1). In this relation put $x=\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}$, we obtain
$\|f\|_{G_{x_{0}}}=\frac{\left|f\left(x_{0}, z\right)\right|}{\left\|x_{0}-g_{0}, z\right\|}$.
Then (1) becomes

$$
\begin{equation*}
\left.\left(x, \left.\frac{f\left(x_{0}, z\right)\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}} \right\rvert\, z\right)_{i} \leq x, z\right) \leq\left(x, \left.\frac{f\left(x_{0}, z\right)\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}} \right\rvert\, z\right)_{s} \tag{11}
\end{equation*}
$$

for all $x \in G_{x_{0}}$.
Now applying Lemma 3 for $u_{0}=f\left(x_{0}, z\right) \frac{\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}}$ on the space $G_{x_{0}}$, u_{0} minimizes the functional F_{f} on the space $G_{x_{0}}$.
(ii) \Rightarrow (i). If u_{0} given above minimizes the functional F_{f} on $G_{x_{0}}$, by Lemma 3, we derive that the estimation (11). Further (1) is valid, that is by Theorem 1 , we obtain $g_{0} \in P_{G}^{z}\left(x_{0}\right)$. Hence the proof.

5 Two new characterization

Let $(X,\|.,\|$.$) be a linear 2-normed space and let X_{z}^{*}$ be the space of all bounded linear 2-functionals defined on $X \times V(z)$ for every non-zero $z \in X$.

Then the mapping $J: X \times V(z) \rightarrow 2^{X_{z}^{*}}$ defined by
$J(x, y)=\left\{f \in X_{z}^{*}: f(x, y)=\|f\|\|x, y\|,\|f\|=\|x, y\|, x \in X\right.$ and $\left.y \in V(z)\right\}$
will be called the normalized duality mapping associated with 2-normed space $(X,\|.,\|$.$) .$

Lemma 4 Let ($X,\|.,\|$.$) be a real linear 2-normed space. Then for every$ \tilde{J} a section of the normalized duality mapping one has the representations

$$
\begin{equation*}
(y, x \mid z)_{s}=\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+t y), y \mid z\rangle \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
(y, x \mid z)_{i}=\lim _{t \rightarrow 0^{-}}\langle\tilde{J}(x+t y), y \mid z\rangle \tag{13}
\end{equation*}
$$

for all $x, y, z \in X$ and z is independent of x and y.

Proof. Let \tilde{J} be a section of the duality mapping J. Then, for all $x, y, z \in X$ and z is independent of x and $y, t \in \mathbb{R}$ and $x \neq 0$,

$$
\begin{aligned}
\|x+t y, z\|-\|x, z\| & =\frac{\|x+t y, z\|\|x, z\|-\|x, z\|^{2}}{\|x, z\|} \\
& \geq \frac{\langle\tilde{J} x, x+t y \mid z\rangle-\|x, z\|^{2}}{\|x, z\|} \\
& =\frac{\langle\tilde{J} x, x \mid z\rangle+t\langle\tilde{J} x, y \mid z\rangle-\|x, z\|^{2}}{\|x, z\|} \\
& =\frac{t\langle\tilde{J} x, y \mid z\rangle}{\|x, z\|} .
\end{aligned}
$$

Whence

$$
\begin{equation*}
\|x, z\| \frac{(\|x+t y, z\|-\|x, z\|)}{t} \geq\langle\tilde{J} x, y \mid z\rangle f \tag{14}
\end{equation*}
$$

or all $x, y \in X, z \in X \backslash V(x, y)$ and $t>0$.
On the other hand, for $t \neq 0$ and $x+t y \neq 0$, we have

$$
\begin{aligned}
\frac{\|x+t y, z\|-\|x, z\|}{t} & =\frac{\|x+t y, z\|^{2}-\|x, z\|\|x+t y, z\|}{\|x+t y, z\| t} \\
& =\frac{\langle\tilde{J}(x+t y), x+t y \mid z\rangle-\|x, z\|\|x+t y, z\|}{t\|x+t y, z\|} \\
& =\frac{\langle\tilde{J}(x+t y), x \mid z\rangle+t\langle\tilde{J}(x+t y), y \mid z\rangle-\|x, z\|\|x+t y, z\|}{t\|x+t y, z\|} \\
& \leq \frac{\langle\tilde{J}(x+t y), y \mid z\rangle}{\|x+t y, z\|}
\end{aligned}
$$

Since $\langle\tilde{J}(x+t y), x \mid z\rangle \leq\|x, z\|\|x+t y, z\|$ for all $x, y \in X, z \in X \backslash V(x, y)$ and $t \in \mathbb{R}$.

Consequently we have,

$$
\begin{equation*}
\langle\tilde{J}(x+t y), y \mid z\rangle \geq\|x+t y, z\| \frac{(\|x+t y, z\|-\|x, z\|)}{t} \tag{15}
\end{equation*}
$$

for all $x, y \in X, t>0 \quad$ and $z \in X \backslash V(x, y)$.
Replacing x by $x+t y$ in the inequality (14) we have,

$$
\begin{equation*}
\|x+t y, z\| \frac{(\|x+2 t y, z\|-\|x+t y, z\|)}{t} \geq\langle\tilde{J}(x+t y), y \mid z\rangle \tag{16}
\end{equation*}
$$

for all $x, y \in X, t>0$ and $z \in X \backslash V(x, y)$.
By (15) and (16),we obtain

$$
\begin{array}{r}
\|x+t y, z\| \frac{\|x+t y, z\|-\|x, z\|}{t} \leq\langle\tilde{J}(x+t y), y \mid z\rangle \tag{17}\\
\leq\|x+t y, z\| \frac{\|x+2 t y, z\|-\|x+t y, z\|}{t}
\end{array}
$$

for all $x, y \in X, t>0$ and $z \in X \backslash V(x, y)$.
Since $(y, x \mid z)_{s}=\lim _{t \rightarrow 0^{+}}\left(\|x+t y, z\| \frac{\|x+t y, z\|-\|x, z\|}{t}\right)$, a simple calculation gives

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}}\left(\|x+t y, z\| \frac{\|x+2 t y, z\|-\|x+t y, z\|}{t}\right) \\
&=\|x, z\|\left[2 \lim _{t \rightarrow 0^{+}}\left(\|x+t y, z\| \frac{(\|x+2 t y, z\|-\|x, z\|)}{2 t}\right)\right. \\
&\left.-\lim _{t \rightarrow 0^{+}}\left(\|x+t y, z\| \frac{\|x+t y, z\|-\|x, z\|}{t}\right)\right] \\
&=\|x, z\| \lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|-\|x, z\|}{t} \\
&=(y, x \mid z)_{s} \quad \text { for all } x, y, z \in X
\end{aligned}
$$

Then by taking limit as $t \rightarrow 0^{+}$in the inequality (17) we observe that
$\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+t y), y \mid z\rangle$ exists for all $x, y, z \in X$ and $\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+t y), y \mid z\rangle=(y, x \mid z)_{s}$ for all $x, y, z \in X$.

Then we have established (12).
On the other hand,

$$
\begin{aligned}
(y, x \mid z)_{i} & =-(-y, x \mid z)_{s} \\
& =-\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+t(-y)),-y \mid z\rangle \\
& =\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+(-t) y), y \mid z\rangle \\
& =\lim _{t \rightarrow 0^{-}}\langle\tilde{J}(x+t y), y \mid z\rangle \quad \text { for all } x, y, z \in X .
\end{aligned}
$$

Thus (13) is obtained.

Theorem 3 Let $(X,\|.,\|$.$) be a real linear 2-normed space, G$ be a linear subspace of $X, x_{0} \in X \backslash G$ and $g_{0} \in G$. Then the following statements are equivalent:
(i) $g_{0} \in P_{G}^{z}\left(x_{0}\right)$.
(ii) For every $\left.f \in\left(G_{x_{o}} \times[b]\right)^{*}\right)$ with $\operatorname{ker}(f)=G$ we have

$$
\begin{aligned}
& \frac{f\left(x_{0}, z\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}} \lim _{t \rightarrow 0^{-}}\left\langle\frac{\tilde{J}\left(\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}+t x\right)-\tilde{J}\left(\left.\frac{\lambda_{0}\left(x_{0}-g_{0}\right),}{\left\|x_{0}-g_{0}, z\right\|} x_{0}-g_{0} \right\rvert\, z\right)}{t}\right\rangle \leq f(x, z) \\
& \leq \frac{f\left(x_{0}, z\right)}{\left\|x_{0}-g_{0}, z\right\|^{2}} \lim _{t \rightarrow 0^{+}}\left\langle\frac{\tilde{J}\left(\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}+t x\right)-\tilde{J}\left(\frac{\lambda_{0}\left(x_{0}-g_{0}\right)}{\left\|x_{0}-g_{0}, z\right\|}, x_{0}-g_{0} \mid z\right)}{t}\right\rangle
\end{aligned}
$$

for all $x \in G_{x_{0}}$ and \tilde{J} a section of the normalized duality mapping J.
To prove this theorem we need the following Lemma.
Lemma 5 Let $(X,\|.,\|$.$) be a real linear 2-normed space. Then for any \tilde{J}$ a section of duality mapping J, we have

$$
\begin{aligned}
& (y, x \mid z)_{s}=\lim _{t \rightarrow 0^{+}}\left\langle\frac{\tilde{J}(x+t y)-\tilde{J}(x)}{t}, x \mid z\right\rangle \\
& (y, x \mid z)_{i}=\lim _{t \rightarrow 0^{-}}\left\langle\frac{\tilde{J}(x+t y)-\tilde{J}(x)}{t}, x \mid z\right\rangle \text { for all } x, y, z \in X \text { and } z \in X \backslash V(x, y)
\end{aligned}
$$

Proof. For every $x, y \in X, t \in \mathbb{R}$ with $t \neq 0$ and $z \in X \backslash V(x, y)$,

$$
\begin{aligned}
\frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{t} & =\frac{\langle\tilde{J}(x+t y), x+t y \mid z\rangle-\langle\tilde{J} x, x \mid z\rangle}{t} \\
& =\frac{\langle\tilde{J}(x+t y), x \mid z\rangle+t\langle\tilde{J}(x+t y, y \mid z)-\tilde{J} x, x \mid z\rangle}{t} \\
& =\left\langle\frac{\tilde{J}(x+t y)-\tilde{J}(x, x \mid z)}{t}\right\rangle+\langle\tilde{J}(x+t y), y \mid z\rangle
\end{aligned}
$$

Since $\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{t}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|-\|x, z\|}{t} \lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|+\|x, z\|}{t} \\
& =2\|x, z\| \lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|-\|x, z\|}{t} \\
& =2(y, x \mid z)_{s} \text { and }
\end{aligned}
$$

$\lim _{t \rightarrow 0^{+}}\langle\tilde{J}(x+t y), y \mid z\rangle=(y, x \mid z)_{s}$. Then by the above relation, $\lim _{t \rightarrow 0^{+}}\left\langle\frac{\tilde{J}(x+t y)-\tilde{J}(x),}{t}, x \mid z\right\rangle$ exists for all $x, y \in X$ and $z \in X \backslash V(x, y)$.
Thus $\lim _{t \rightarrow 0^{+}}\left\langle\frac{\tilde{J}(x+t y)-\tilde{J}(x),}{t}, x \mid z\right\rangle=(y, x \mid z)_{s}$
for all \tilde{J} a section of normalized duality mapping.
Proof of the Theorem $\mathbf{3}$ follows from Theorem 1 and from Lemma 5.

References

[1] C.Diminnie, S.Gahler and A.White, 2-inner product spaces, Demonstratio Math. 6, 1973, 525-536.
[2] C.Diminnie,2-inner product spaces II, Demonstratio Math. 10, 1977, 169-188.
[3] S.S.Dragomir, A characterization of best approximation elements in real normed spaces (Romanian),Stud.Mat.(Bucharest), 39, 1987, 497506.
[4] S.S.Dragomir, A characterization of the elements of best approximation in real normed spaces, Studia Univ.Babes-Bolyai Math. 33, 1988,74-80.
[5] S.S.Dragomir, On best approximation in the sence of Lumer and application, Riv.Mat.Univ.Parma 15 (1989), 253-263.
[6] S.Gahler, Linear 2-normierte Raume, Math. Nachr. 28 (1965), 1-43.
[7] A.L.Garkavi, The theory of best approximation in normed linear spaces, Progress in mathematics, New York 8, 1970, 83-151.
[8] A.H.Siddique and S.M.Rizvi, 2-semi-inner product spaces, I.Math.Japon. 21, 1976,391-397.
[9] I.Singer, Best approximation in normed linear spaces by elements of linear subspaces (Romanian), Ed.Acad.Bucharest,1967.
S.Elumalai

Ramanujan Institute for Advanced Study in Mathematics
University of Madras
Chennai - 600005, Tamilnadu, India.
R.Vijayaragavan

Vellore Institute of Technology University
Vellore - 632014, Tamilnadu, India.

[^0]: ${ }^{1}$ Received 30 October, 2008
 Accepted for publication (in revised form) 5 November, 2008

