On a problem in the theory of univalent functions ${ }^{1}$

Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

Abstract

Let \mathcal{A} be the class of functions f, analytic in $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. In the present note, we prove that $f \in \mathcal{A}$, satisfying the differential inequality $$
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]<\beta, z \in \mathbb{E}
$$ implies that $\Re f^{\prime}(z)>0, z \in \mathbb{E}$, for all real numbers α and β satisfying $\alpha \geq \beta>1$ and hence f is univalent.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Analytic function, univalent function.

[^0]
1 Introduction

Let \mathcal{A} be the class of functions f, analytic in $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$.

For real number α, let

$$
I(\alpha, f(z))=(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) .
$$

It is well-known that any close-to-convex function is univalent.
In 1934/35, Noshiro [3] and Warchawski [5] obtained a simple but interesting criterion for univalence of analytic functions. They proved that if an analytic function f satisfies $\Re f^{\prime}(z)>0$ for all z in \mathbb{E}, then f is close-to-convex and hence univalent in \mathbb{E}.

Al-Amiri and Reade [1], in 1975, have shown that for $\alpha \leq 0$ and also for $\alpha=1$, the functions $f \in \mathcal{A}$, satisfying the differential inequality $\Re[I(\alpha, f(z))]>0, z \in \mathbb{E}$, are univalent in \mathbb{E}.

In 2005, Singh, Singh and Gupta [4] proved that for $0<\alpha<1$, functions $f \in \mathcal{A}$, satisfying the differential inequality $\Re[I(\alpha, f(z))]>\alpha, z \in \mathbb{E}$, are univalent in \mathbb{E}.

The univalence of the above problem is still open for $\alpha>1$.
In the present note, we prove, if $f \in \mathcal{A}$ satisfies the differential inequality $\Re[I(\alpha, f(z))]<\beta, z \in \mathbb{E}$, then $\Re f^{\prime}(z)>0, z \in \mathbb{E}$, for all real numbers α and β satisfying $\alpha \geq \beta>1$ and hence f is univalent.

We use the following celebrated lemma of Miller to prove our result.

Lemma 1 ([2]). Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}(\mathbb{C}$ is the complex plane) and let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ be a complex function. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$
($u_{1}, u_{2}, v_{1}, v_{2}$ are reals), let ϕ satisfy the following conditions:
(i) ϕ is continuous in \mathbb{D};
(ii) $(1,0) \in \mathbb{D}$ and $\Re \phi(1,0)>0$; and
(iii) $\Re \phi\left(i u_{2}, v_{1}\right) \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be regular in the unit disc E, such that $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{D}$, for all $z \in \mathbb{E}$. If $\Re\left[\phi\left(p(z), z p^{\prime}(z)\right)\right]>0, z \in \mathbb{E}$, then $\Re p(z)>0, z \in \mathbb{E}$.

2 Main Result

Theorem 1 Let α and β be real numbers such that $\alpha \geq \beta>1$. Assume that an analytic function $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\Re[I(\alpha, f(z))]<\beta, z \in \mathbb{E} \tag{1}
\end{equation*}
$$

Then $\Re f^{\prime}(z)>0$ in \mathbb{E}. So, f is close to convex and hence univalent in \mathbb{E}.

Proof. Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be analytic in \mathbb{E} such that,

$$
\begin{equation*}
f^{\prime}(z)=p(z), z \in \mathbb{E} \tag{2}
\end{equation*}
$$

Then,

$$
I(\alpha, f(z))=(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=(1-\alpha) p(z)+\alpha\left(1+\frac{z p^{\prime}(z)}{p(z)}\right) .
$$

Thus, condition (1) is equivalent to

$$
\begin{equation*}
\Re\left(\frac{1-\alpha}{1-\beta} p(z)+\frac{\alpha}{1-\beta} \frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha-\beta}{1-\beta}\right)>0, z \in \mathbb{E} . \tag{3}
\end{equation*}
$$

If $\mathbb{D}=(\mathbb{C} \backslash\{0\}) \times \mathbb{C}$, define $\phi(u, v): \mathbb{D} \rightarrow \mathbb{C}$ as

$$
\phi(u, v)=\frac{1-\alpha}{1-\beta} u+\frac{\alpha}{1-\beta} \frac{v}{u}+\frac{\alpha-\beta}{1-\beta} .
$$

Then ϕ is continuous in $\mathbb{D},(1,0) \in \mathbb{D}$ and $\Re \phi(1,0)=1>0$. Further, in view of (3), we get $\Re \phi\left(p(z), z p^{\prime}(z)\right)>0, z \in \mathbb{E}$. Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ where u_{1}, u_{2}, v_{1} and v_{2} are all reals. Then, for $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$, we have

$$
\begin{aligned}
\Re \phi\left(i u_{2}, v_{1}\right) & =\Re\left(\frac{1-\alpha}{1-\beta} u_{2} i+\frac{\alpha}{1-\beta} \frac{v_{1}}{u_{2} i}+\frac{\alpha-\beta}{1-\beta}\right) \\
& =\frac{\alpha-\beta}{1-\beta} \\
& \leq 0 .
\end{aligned}
$$

In view of (2) and Lemma 1, proof now follows.

References

[1] Al-Amiri, H. S. and Reade, M. O., On a linear combination of some expressions in the theory of univalent functions, Monatshefto für mathematik, 80(1975), 257-264.
[2] Miller, S. S., Differential Inequalities and Carathéodory functions, Bull. Amer. Math. Soc., 81(1975), 79-81.
[3] Noshiro, K., On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.
[4] Singh, V., Singh, S. and Gupta, S., A problem in the theory of univalent functions, Integral Transforms and Special Functions, 16, 2(2005), 179-186.
[5] Warchawski, S. E., On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38(1935), 310-340.

Sukhwinder Singh
Deaprtment of Applied Sciences
B.B.S.B.Engineering College

Fatehgarh Sahib-140 407 (Punjab) India
e-mail:ss_billing@yahoo.co.in

Sushma Gupta and Sukhjit Singh
Department of Mathematics
S.L.I.E.T. Longowal-148 106 (Punjab) India
e-mail: sushmagupta1@yahoo.com
e-mail: sukhjit_d@yahoo.com

[^0]: ${ }^{1}$ Received 25 September, 2008
 Accepted for publication (in revised form) 22 October, 2008

