A general coefficient inequality ${ }^{1}$
 Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

Abstract

In the present note, we obtain a general coefficient inequality regarding a multiplier transformation in the open unit disc $\mathbb{E}=\{z$: $|z|<1\}$. As special case to our main result, we obtain a coefficient inequality for n-starlikeness of analytic functions. Also certain known coefficient inequalities for starlikeness and convexity of analytic functions appear as particular cases of our main result.

2000 Mathematics Subject Classification: 30C45, 30C50. Key words and phrases: Analytic function, Starlike function, Convex function, Multiplier transformation.

[^0]
1 Introduction

Let \mathcal{A}_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in \mathbb{N}=\{1,2, \cdots\}
$$

which are analytic in the open unit disc $\mathbb{E}=\{z:|z|<1\}$. We write $\mathcal{A}_{1}=\mathcal{A}$.

Denote by $S^{*}(\alpha)$ and $K(\alpha)$, the classes of starlike functions of order α and convex functions of order α respectively, which are analytically defined as follows:

$$
S^{*}(\alpha)=\left\{f(z) \in \mathcal{A}: \Re \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathbb{E}\right\}
$$

and

$$
K(\alpha)=\left\{f(z) \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{E}\right\}
$$

where α is a real number such that $0 \leq \alpha<1$.
We shall use S^{*} and K to denote $S^{*}(0)$ and $K(0)$, respectively which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

For $f \in \mathcal{A}_{p}$, we define the multiplier transformation $I_{p}(n, \lambda)$ as

$$
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},(\lambda \geq 0, n \in \mathbb{Z})
$$

$I_{1}(n, 0)$ is the well-known Sălăgean [2] derivative operator D^{n}, defined as

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

and for $f \in \mathcal{A}$.

Denote by $S_{n}^{*}(\alpha)$, the class of n-starlike functions of order α, which is analytically defined as follows

$$
S_{n}^{*}(\alpha)=\left\{f(z) \in \mathcal{A}: \Re \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha, z \in \mathbb{E}\right\}
$$

where α is a real number such that $0 \leq \alpha<1$.
In the present note, we obtain a general coefficient inequality regarding multiplier transformation $I_{p}(n, \lambda)$ in the open unit disc $\mathbb{E}=\{z:|z|<1\}$. As special case to our main result, we obtain a coefficient inequality for n starlikeness of analytic functions. Also certain known coefficient inequalities for starlikeness and convexity of analytic functions appear as particular cases of our main result.

2 Main Result

Theorem 1 If $f \in \mathcal{A}_{p}$ satisfies

$$
\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left(\frac{k+\lambda}{p+\lambda}-1+p-\alpha\right)\left|a_{k}\right| \leq p-\alpha
$$

then

$$
\left|\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}-1\right|<p-\alpha, 0 \leq \alpha<p, z \in \mathbb{E}
$$

Proof. To prove the required result, we prove that

$$
\left|I_{p}(n+1, \lambda) f(z)-I_{p}(n, \lambda) f(z)\right|-(p-\alpha)\left|I_{p}(n, \lambda) f(z)\right| \leq 0
$$

Indeed, we have

$$
\left|I_{p}(n+1, \lambda) f(z)-I_{p}(n, \lambda) f(z)\right|-(p-\alpha)\left|I_{p}(n, \lambda) f(z)\right|
$$

$$
\begin{aligned}
= & \left|\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left(\frac{k+\lambda}{p+\lambda}-1\right) a_{k} z^{k}\right| \\
& -(p-\alpha)\left|z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k}\right| \\
\leq & \sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left(\frac{k+\lambda}{p+\lambda}-1\right)\left|a_{k}\right|\left|z^{k}\right| \\
& -(p-\alpha)\left(\left|z^{p}\right|-\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left|a_{k}\right|\left|z^{k}\right|\right) \\
= & \sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left(\frac{k+\lambda}{p+\lambda}-1+p-\alpha\right)\left|a_{k}\right|\left|z^{k}\right|-(p-\alpha)\left|z^{p}\right| \\
< & \sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n}\left(\frac{k+\lambda}{p+\lambda}-1+p-\alpha\right)\left|a_{k}\right|-(p-\alpha) \leq 0 .
\end{aligned}
$$

Hence

$$
\left|\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}-1\right|<p-\alpha, 0 \leq \alpha<p, z \in \mathbb{E}
$$

3 Applications

For $\lambda=0$ and $p=1$ in Theorem 1, we obtain the following result.

Corollary 1 If $f \in \mathcal{A}$ satisfies

$$
\sum_{k=2}^{\infty} k^{n}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha
$$

then $f \in S_{n}^{*}(\alpha)$.

For $\lambda=0, p=1$ and $n=0$ in Theorem 1, we obtain the following result.

Corollary 2 If $f \in \mathcal{A}$ satisfies

$$
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha,
$$

then $f \in S^{*}(\alpha)$.

For $\lambda=0, p=1$ and $n=1$ in Theorem 1, we obtain the following result.

Corollary 3 If $f \in \mathcal{A}$ satisfies

$$
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right| \leq 1-\alpha
$$

then $f \in K(\alpha)$.

Remark 1 For $\alpha=$ 0, Corollary 2 and Corollary 3 are the results of Clunie and Keogh [1] and Silverman [3].

References

[1] Clunie, J. and Keogh, F.R. , On starlike and convex schlicht functions, J. londan Math. Soc., 35(1960), 229-233.
[2] Sălăgean, G. S., Subclasses of univalent functions, Lecture Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg,1983.
[3] Silverman, H. , Univalent functions with negative coefficient, Proc. Amer. Math. Soc., 51(1975), 109-116.

Sukhwinder Singh
Department of Applied Sciences
Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib -140407 (Punjab), INDIA
e-mail : ss_billing@yahoo.co.in

Sushma Gupta, Sukhjit Singh
Department of Mathematics
Sant Longowal Institute of Engineering \& Technology
Longowal-148106 (Punjab), INDIA
e-mail : sushmagupta1@yahoo.com, sukhjit_d@yahoo.com

[^0]: ${ }^{1}$ Received 4 September, 2008
 Accepted for publication (in revised form) 16 September, 2008

