Convergence of an iterative algorithm to a fixed point of uniformly L-Lipschitzian mapping ${ }^{1}$

Nikhat Bano, Nazir Ahmad Mir

Abstract

Let K be a non-empty closed convex subset of an arbitrary Banach space E. Let $T: K \rightarrow K$ be uniformly L Lipschitzian with $F(T) \neq \emptyset$. Let $\left\{k_{n}\right\} \subseteq[1, \infty)$ be a sequence with $\lim _{n \rightarrow \infty} k_{n}=1$.For any $x_{0} \in K$ and fixed $u \in K$, define the sequence $\left\{x_{n}\right\}$ by $$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T^{n} x_{n},
$$ where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are real sequences in $(0,1)$ satisfying some conditions. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Asymptotically nonexpansive, Asymptotically pseudocontractive, uniformly L-Lipschitzian, Banach space.

[^0]
1 Introduction and preliminaries

Let K be the closed convex subset of a real Banach space E with the dual space E^{*}. The normalized duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined as

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2},\|f\|=\|x\|\right\} \quad \forall x \in E,
$$

where $\langle.,$.$\rangle denotes the duality pairing between E$ and E^{*}. The single valued normalized duality mapping is denoted by j. Let $F(T)$ denotes the set of fixed points of the mapping $T: K \rightarrow K$.

Definition 1 The mapping $T: K \rightarrow K$ is said to be non-expansive if

$$
\|T x-T y\| \leq\|x-y\| \quad \text { for all } x, y \in K .
$$

Definition 2 The mapping $T: K \rightarrow K$ is said to be uniformly L-Lipschitzian if there exists $L>0$ such that $\forall n \geq 1$

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\| \quad \text { for all } x, y \in K
$$

Definition 3 The mapping $T: K \rightarrow K$ is said to be asymptotically non expansive if there exists a sequence $\left\{k_{n}\right\} \subseteq[1, \infty)$ with $k_{n} \rightarrow 1$ such that $\forall n \geq 1$

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\| \quad \text { for all } x, y \in K
$$

Definition 4 The mapping $T: K \rightarrow K$ is said to be asymptotically pseudocontractive if there exists a sequence $\left\{k_{n}\right\} \subseteq[1, \infty)$ with $k_{n} \rightarrow 1$ and $j(x-y) \in J(x-y)$ such that $\forall n \geq 1$

$$
\left\langle T^{n} x-T^{n} y, j(x-y)\right\rangle \leq k_{n}\|x-y\|^{2} \quad \text { for all } x, y \in K
$$

It is easy to see that every asymptotically nonexpansive mapping is uniformly L - Lipschitzian and every asymptotically non-expansive mapping is asymptotically pseudocontractive but the converse is not true. The class of asymptotically pseudocontractive mappings was introduced by Schu[6] who proved the strong convergence theorem for the iterative approximation of fixed points of asymptotically pseudocontractive mappings in Hilbert space. Chang [2] extended the result of Schu to real uniformly smooth Banach space. $\operatorname{In}[8]$, there has been introduced an iteration scheme as

$$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T x_{n}, \quad n \geq 0
$$

for given $x_{0} \in K$ and arbitrary but fixed $u \in K$. The result proved in [8] is as under:

Theorem 1 [8] Let C be a nonempty closed convex subset of a uniformly smooth Banach space E. Let $T: C \rightarrow C$ be a non expansive mapping such that $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three real sequences in $(0,1)$ satisfying the following control conditions
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \geq 0$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(iii) $\lim _{n \rightarrow \infty} \gamma_{n}=0$, for given $x_{0} \in C$ arbitrarily and fixed $u \in C$, let the sequence $\left\{x_{n}\right\}$ be generated iteratively by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T x_{n}, \quad n \geq 0 . \tag{1}
\end{equation*}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Our main motive here is to generalize the result of [8] to arbitrary Banach space and for uniformly L-Lipschitzian mappings. Our iteration scheme is a modification of the iteration scheme given in (1). Our result improves and generalizes the results proved in $[2,4,6,9,5,1,3,7]$.

Lemma 1 Let E be real Banach space and J be the normalized duality mapping. Then for any given $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y) .
$$

Lemma 2 Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two nonnegative real sequences satisfying the following condition

$$
a_{n+1} \leq\left(1+\lambda_{n}\right) a_{n}+b_{n}, \quad \forall n \geq n_{0},
$$

where $\left\{\lambda_{n}\right\}$ is a sequence in $(0,1)$ with $\sum_{n=0}^{\infty} \lambda_{n}<\infty$. If $\sum_{n=0}^{\infty} b_{n}<\infty$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

Lemma 3 Let $\left\{\theta_{n}\right\}$ be a sequence of nonnegative real numbers and $\left\{\lambda_{n}\right\} \subseteq$ $[0,1]$ be the real sequence satisfying the following condition

$$
\sum_{n=0}^{\infty} \lambda_{n}=\infty
$$

If there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\theta_{n+1}^{2} \leq \theta_{n}^{2}-\lambda_{n} \phi\left(\theta_{n+1}\right)+\sigma_{n}, \forall n \geq n_{0}
$$

where n_{0} is some non negative integer and $\left\{\sigma_{n}\right\}$ is a sequence of nonnegative numbers such that $\sigma_{n}=o\left(\lambda_{n}\right)$, then $\theta_{n} \rightarrow 0$ as $n \rightarrow \infty$.

2 Main results

Theorem 2 Let K be a non empty closed convex subset of an arbitrary Banach space E. Let $T: K \rightarrow K$ be a uniformly L-Lipschitzian mapping with $F(T) \neq \emptyset$. Let $\left\{k_{n}\right\} \subseteq[1, \infty)$ be a sequence with $\lim _{n \rightarrow \infty} k_{n}=1$. For any $x_{0} \in K$, and fixed $u \in K$ define the sequence $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} T^{n} x_{n}, \tag{2}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are real sequences in $(0,1)$ satisfying the following conditions
(i) $\sum_{n=0}^{\infty} \gamma_{n}=\infty$; (ii) $\sum_{n=0}^{\infty} \gamma_{n}^{2}<\infty$; (iii) $\sum_{n=0}^{\infty} \alpha_{n}<\infty$; (iv) $\sum_{n=0}^{\infty} \gamma_{n} k_{n}<\infty$;
(v) $\alpha_{n}=o\left(\gamma_{n}\right) ;(v i) \lim _{n \rightarrow \infty} \gamma_{n}=0$.

If there exists a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that

$$
\left\langle T^{n} x-p, j(x-p)\right\rangle \leq k_{n}\|x-p\|^{2}-\phi(\|x-p\|), \quad \forall x \in K
$$

then the iterative scheme $\left\{x_{n}\right\}$ defined by (2) converges strongly to a fixed point of T.

Proof. Let $p \in F(T)$. First we prove that $\left\{x_{n}\right\}$ is bounded. By using Lemma 6 we have:

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n}(u-p)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(T^{n} x_{n}-p\right)\right\|^{2} \\
& \leq \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2\left\langle\alpha_{n}(u-p)+\gamma_{n}\left(T^{n} x_{n}-p\right), j\left(x_{n+1}-p\right)\right\rangle
\end{aligned}
$$

$$
\begin{align*}
\leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2\left\langle\alpha_{n}(u-p), j\left(x_{n+1}-p\right)\right\rangle \\
& +2\left\langle\gamma_{n}\left(T^{n} x_{n}-p\right), j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\|u-p\|\left\|x_{n+1}-p\right\|+2 \gamma_{n}\left\|T^{n} x_{n+1}-T^{n} x_{n}\right\|\left\|x_{n+1}-p\right\| \\
& +2 \gamma_{n}\left\langle T^{n} x_{n+1}-p, j\left(x_{n+1}-p\right)\right\rangle \\
\leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\|u-p\|\left\|x_{n+1}-p\right\|+2 \gamma_{n}\left\|T^{n} x_{n+1}-T^{n} x_{n}\right\|\left\|x_{n+1}-p\right\| \\
& +2 \gamma_{n}\left(k_{n}\left\|x_{n+1}-p\right\|^{2}-\phi\left(\left\|x_{n+1}-p\right\|\right)\right) \\
\leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\|u-p\|\left\|x_{n+1}-p\right\|+2 \gamma_{n} L\left\|x_{n+1}-x_{n}\right\|\left\|x_{n+1}-p\right\| \\
& +2 \gamma_{n}\left(k_{n}\left\|x_{n+1}-p\right\|^{2}-\phi\left(\left\|x_{n+1}-p\right\|\right)\right) \tag{3}
\end{align*}
$$

Now consider

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(T^{n} x_{n}-x_{n}\right)\right\| \\
& \leq \alpha_{n}\left\|u-x_{n}\right\|+\gamma_{n}\left\|T^{n} x_{n}-x_{n}\right\| \\
& \leq \alpha_{n}\left(\|u-p\|+\left\|x_{n}-p\right\|\right)+\gamma_{n}\left(\left\|T^{n} x_{n}-p\right\|+\left\|x_{n}-p\right\|\right) \\
\text { 4) } & \leq\left[\alpha_{n}+\gamma_{n}(L+1)\right]\left\|x_{n}-p\right\|+\alpha_{n}\|u-p\| . \tag{4}
\end{align*}
$$

Substituting (4) into (3)

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\|u-p\|\left\|x_{n+1}-p\right\| \\
& +2 \gamma_{n} L\left(\left(\alpha_{n}+\gamma_{n}(L+1)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|u-p\|\right)\left\|x_{n+1}-p\right\| \\
& +2 \gamma_{n}\left(k_{n}\left\|x_{n+1}-p\right\|^{2}-\phi\left(\left\|x_{n+1}-p\right\|\right)\right)
\end{aligned}
$$

$$
\begin{align*}
\leq & \beta_{n}^{2}\left\|x_{n}-p\right\|^{2}+\alpha_{n}\|u-p\|^{2}+\alpha_{n}\left\|x_{n+1}-p\right\|^{2} \\
& +\gamma_{n} L\left(\alpha_{n}+\gamma_{n}(L+1)\right)\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n} L\left(\alpha_{n}+\gamma_{n}(L+1)\right)\left\|x_{n+1}-p\right\|^{2} \\
& +\gamma_{n} L \alpha_{n}\|u-p\|^{2}+\gamma_{n} L \alpha_{n}\left\|x_{n+1}-p\right\|^{2} \\
& +2 \gamma_{n}\left(k_{n}\left\|x_{n+1}-p\right\|^{2}-\phi\left(\left\|x_{n+1}-p\right\|\right)\right) \\
= & \left(\beta_{n}^{2}+\gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2}+\left(\alpha_{n}+\gamma_{n} \alpha_{n} L\right)\|u-p\|^{2} \\
& +\left(\alpha_{n}+2 \gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)+2 \gamma_{n} k_{n}\right)\left\|x_{n+1}-p\right\|^{2}-2 \gamma_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
\leq & \left(\beta_{n}^{2}+\gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}(1+L)\|u-p\|^{2} \\
& +\left(\alpha_{n}+2 \gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)+2 \gamma_{n} k_{n}\right)\left\|x_{n+1}-p\right\|^{2}-2 \gamma_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) . \tag{5}
\end{align*}
$$

By (5) we get

$$
\begin{align*}
\left(1-\sigma_{n}\right)\left\|x_{n+1}-p\right\|^{2} & \leq\left(\beta_{n}^{2}+\gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}(1+L)\|u-p\|^{2} \\
& -2 \gamma_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& \leq\left(\beta_{n}+\gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}(1+L)\|u-p\|^{2} \tag{6}
\end{align*}
$$

where $\sigma_{n}=\alpha_{n}+2 \gamma_{n} \alpha_{n} L+\gamma_{n}^{2} L(L+1)+2 \gamma_{n} k_{n}$. By conditions (i) and (ii) it is obvious that $\lim _{n \rightarrow \infty} \sigma_{n}=0$, therefore there exists a positive integer N such that $0<\sigma_{n}<\frac{1}{2}$ for all $n \geq N$, which implies $1-\sigma_{n}>0$, hence $\frac{\gamma_{n}}{1-\sigma_{n}}>0$. By (6) we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1+\frac{3 L \gamma_{n} \alpha_{n}+2 \gamma_{n} k_{n}+2 \gamma_{n}^{2} L(L+1)}{1-\sigma_{n}}-\frac{\gamma_{n}}{1-\sigma_{n}}\right)\left\|x_{n}-p\right\|^{2} \\
& +\frac{\alpha_{n}(1+L)}{1-\sigma_{n}}\|u-p\|^{2}-\frac{2 \gamma_{n}}{1-\sigma_{n}} \phi\left(\left\|x_{n+1}-p\right\|\right)
\end{aligned}
$$

$$
\begin{align*}
\leq & \left(1+\frac{3 L \gamma_{n} \alpha_{n}+2 \gamma_{n} k_{n}+2 \gamma_{n}^{2} L(L+1)}{1-\sigma_{n}}\right)\left\|x_{n}-p\right\|^{2} \\
& +\frac{\alpha_{n}(1+L)}{1-\sigma_{n}}\|u-p\|^{2}-\frac{2 \gamma_{n}}{1-\sigma_{n}} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
\leq & \left(1+6 L \gamma_{n} \alpha_{n}+4 \gamma_{n} k_{n}+4 \gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2} \\
& +2 \alpha_{n}(1+L)\|u-p\|^{2}-\frac{2 \gamma_{n}}{1-\sigma_{n}} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
\leq & \left(1+6 L \alpha_{n}+4 \gamma_{n} k_{n}+4 \gamma_{n}^{2} L(L+1)\right)\left\|x_{n}-p\right\|^{2} \\
& +2 \alpha_{n}(1+L)\|u-p\|^{2} . \tag{7}
\end{align*}
$$

By conditions (ii), (iii), (iv) we deduce that

$$
\sum_{n=0}^{\infty}\left(6 L \alpha_{n}+4 \gamma_{n} k_{n}+4 \gamma_{n}^{2} L(L+1)\right)<\infty
$$

and

$$
\sum_{n=0}^{\infty} 2 \alpha_{n}(1+L)\|u-p\|^{2}<\infty
$$

Hence by Lemma 7 and inequality (7), we deduce that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists.
Therefore the sequence $\left\{x_{n}\right\}$ is bounded. Let $M=\min \left\{\sup _{n}\left\|x_{n}-p\right\|,\|u-p\|\right\}$, for a positive constant M. Secondly we prove that $x_{n} \rightarrow p$ as $n \rightarrow \infty$.Considering inequality (7) as $n \rightarrow \infty$, we have:

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-2 \gamma_{n} \phi\left(\left\|x_{n+1}-p\right\|\right) \\
& +2 \gamma_{n}\left(3 L \frac{\alpha_{n}}{\gamma_{n}}+2 k_{n}+2 \gamma_{n} L(L+1)+\frac{\alpha_{n}}{\gamma_{n}}(L+1)\right) M^{2} .
\end{aligned}
$$

Let $\theta_{n}:=\left\|x_{n}-p\right\|, \lambda_{n}:=\gamma_{n}, \delta_{n}=\left(3 L \frac{\alpha_{n}}{\gamma_{n}}+2 k_{n}+2 \gamma_{n} L(L+1)+\frac{\alpha_{n}}{\gamma_{n}}(L+1)\right) M^{2}$, then by conditions (i) to (vi) $\delta_{n}=o\left(\lambda_{n}\right)$. Therefore using Lemma 3 it follows that $\left\|x_{n}-p\right\| \rightarrow 0$. Hence $x_{n} \rightarrow p$ as $n \rightarrow \infty$. This completes the proof.

References

[1] S.C.Bose, Weak convergence to a fixed point of an asymptotically nonexpansive map, Proc. Amer. Math. Soc. 68(1978) 305-308.
[2] S.S.Chang, Some results for asymptotically pseudocontractive mappings, Proc. Amer. Math. Soc. 129(2000) 845-853.
[3] S.S.Chang, Y.J.Cho, H.Zhou, Demi-closed principle and weak convergence problems for asymptotically non expansive mappings, J.Korean Math. Soc. 38(2001)1245-1260.
[4] Y.J.Cho, J.I.Kang, H.Y.Zhou, Approximating common fixed points of asymptotically nonexpansive mappings, Bull. Korean Math. Soc.42(2005)661-670
[5] B.E.Rhoades, Fixed point iterations for certain non linear mappings, J.Math. Anal. Appl. 183(1994)118-120.
[6] J.Schu, Iterative construction of fixed points of asymptotically non expansive mapping, J.Math.Anal.Appl.158(1991)407-413.
[7] K.K.Tan, H.K.Xu, Fixed point iteration process for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc.122(1994)733-739.
[8] Y. Yao, Y. C. Liou, H. Zhou,Strong convergence of an iterative method for non expansive mapppingswith new control conditions, Nonlinear Nalysis(2008),doi:10.1016/j.na.2008.03.014.
[9] L.C.Zeng, On the approximation of fixed points for asymptotically nonexpansive mappings in Banach spaces, Acta Math.Sci, 23(2003)31-37.

Nikhat Bano

Centre for Advanced Studies in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan 60800, Pakistan
e-mail: nikhat.bano@gmail.com

Nazir Ahmad Mir
Department of Mathematics
COMSATS Institute of Information Technology
Plot No. 30, Sector H-8/1, Islamabad 44000, Pakistan
e-mail: nazirahmad.mir@gmail.com

[^0]: ${ }^{1}$ Received 26 August, 2008
 Accepted for publication (in revised form) 22 January, 2009

