Some results on sub classes of univalent functions of complex order

T. Ram Reddy, P. Thirupathi Reddy

Abstract

In this paper we introduce the class $R_{\lambda}^{b}(A, B)(b \neq 0$ complex $)$, of function of the form $f(z)$ analytic in the disc $E=\{z:|z|<1\}$, such that $$
1+\frac{1}{b}\left\{f^{\prime}(z)-1\right\} \prec(1-\lambda) \frac{1+A z}{1+B z}+\lambda, z \in E .
$$ where A and B are fixed numbers, $-1=B<A=1,0=\lambda<1$ and \prec denotes subordination. We determine sharp coefficient estimates, sufficient condition in terms of coefficients, distortion theorem, maximization theorem for the class $R_{\lambda}^{b}(A, B)$.

2000 Mathematics Subject Classification:30 C 45.

Key words and phrases: Univalent, Distortion, Subordination.

[^0]
1 Introduction

Let U denote the class of function

$$
\begin{equation*}
w(z)=\sum_{\mathrm{n}=1}^{\infty} b_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z:|z|<1\}$ and satisfying the condition $\mathrm{w}(0)=0$ and $|\mathrm{w}(z)|<1$.

The present paper is devoted to a unified study of various subclasses of univalent functions. For this purpose we introduce the new class R_{λ}^{b} (A, B) of functions of the form

$$
\begin{equation*}
f(z)=\mathrm{z}+\sum_{\mathrm{n}=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

analytic in E and satisfying the condition

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)-1}{b(A-B)(1-\lambda)-B\left(f^{\prime}(z)-1\right)}\right|<1 \tag{3}
\end{equation*}
$$

where A and B are fixed numbers with $-1=B<A=1,0=\lambda<1, b$ is non-zero complex number. A function $f(\mathrm{z})$ is in $R_{\lambda}^{b}(A, B)$ if and only if there exists a schwarz function w (z) analytic in E and satisfying w $(0)=$ 0 and $|\mathrm{w}(\mathrm{z})|<1$, such that

$$
1+\frac{1}{b}\left\{f^{\prime}(z)-1\right\}=(1-\lambda) \frac{1+A w(z)}{1+B w(z)}+\lambda, z \in E
$$

By giving specific values of λ, A, B and b in (3) we obtain the following important classes studied by various researchers in their earlier works.
(i) For $b=1, \mathrm{~A}=\delta, \mathrm{B}=-\delta$ and $\lambda=0$ we obtain the class of functions f (z) satisfying the condition

$$
\left|\frac{f^{\prime}(z)-1}{f^{\prime}(z)+1}\right|<\delta, \quad z \in E .
$$

studied by Caplinger and Causey[1] and Padmanabhan[6].
(ii) For $b=1, \lambda=0$ we obtain the class of functions $f(z)$ satisfying the condition

$$
\left|\frac{f^{\prime}(z)-1}{B f^{\prime}(z)-A}\right|<1, \quad z \in E
$$

studied by Goel and Mehrok[4].
(iii) For $b=e-i \alpha \cos \alpha$ and $\lambda=0$ we obtain the class of functions $f(\mathrm{z})$ satisfying the condition

$$
\left|\frac{e^{i \alpha}\left\{f^{\prime}(z)-1\right\}}{B e^{i \alpha} f^{\prime}(z)-(A \cos \alpha+i B \sin \alpha)}\right|<1, \quad z \in E .
$$

studied by Dashrath[3].
In this paper we obtain coefficient estimates, sufficient condition in terms of coefficients, distortion theorem and maximization theorem.

Now we state a lemma due to Keogh and Merks[5].
Lemma 1 Let $w(z)=\sum_{k=1}^{\infty} b_{k} z^{k}$ be analytic with $|w(z)|<1$ in E. If s is any complex number then.

$$
\left|b_{2}-s b_{1}^{2}\right| \leq \max (1,|\mathrm{~s}|)
$$

Equality may be attained with functions $w(z)=z 2$ and $w(z)=z$.

Theorem 1 If $f(z)$ is in $R_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$ then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(A-B)(1-\lambda)|b|}{n} \tag{4}
\end{equation*}
$$

The estimates are sharp.
Proof. Since $f \in R_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$, we have

$$
\begin{equation*}
1+\frac{1}{b}\left\{f^{\prime}(z)-1\right\}=(1-\lambda) \frac{1+A w(z)}{1+B w(z)}+\lambda \tag{5}
\end{equation*}
$$

for some schwarz function $w(z)$ in E for $z \in E$. From (5) we have

$$
\left[(B-A)(1-\lambda)+\left(\frac{B}{b}\right) \sum_{n=2}^{\infty} n a_{n} z^{n-1}\right] w(z)=-\frac{1}{b} \sum_{n=2}^{\infty} n a_{n} z^{n-1}
$$

that is
(6) $\left[(A-B)(1-\lambda)-\left(\frac{B}{b}\right) \sum_{n=2}^{\infty} n a_{n} z^{n-1}\right]\left[\sum_{n=1}^{\infty} b_{n} z^{n}\right]=\frac{1}{b} \sum_{n=2}^{\infty} n a_{n} z^{n-1}$

Equating corresponding coefficients in (6) we observe that the coefficient an on the right of (6) depends only on $a_{2}, a_{3}, a_{4}, \ldots . . a_{n-1}$ on the left side of (6). Hence for $n \geq 2$ it follows from (6) that
$\left[(A-B)(1-\lambda)-\left(\frac{B}{b}\right) \sum_{n=2}^{k-1} n a_{n} z^{n-1}\right] w(z)=\frac{1}{b}\left[\sum_{n=2}^{k} n a_{n} z^{n-1}+\sum_{n=k+1}^{\infty} n a_{n} z^{n-1}\right]$
This yields
(7)

$$
\left|(A-B)(1-\lambda)-\left(\frac{B}{b}\right) \sum_{n=2}^{k-1} n a_{n} z^{n-1}\right| \geq\left|\frac{1}{b}\left[\sum_{n=2}^{k} n a_{n} z^{n-1}+\sum_{n=k+1}^{\infty} n a_{n} z^{n-1}\right]\right|
$$

Squaring both sides of (7) and integrating on the circle $|z|=r,(0<r<1)$ we obtain

$$
\begin{aligned}
& (A-B)^{2}(1-\lambda)^{2}+\frac{B^{2}}{\left|b^{2}\right|} \sum_{n=2}^{k-1} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} \\
\geq & \frac{1}{|b|^{2}}\left[\sum_{n=2}^{k} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}+\sum_{n=k+1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}\right]
\end{aligned}
$$

and letting $r 1$ we get

$$
(A-B)^{2}(1-\lambda)^{2}+\frac{B^{2}}{|b|^{2}} \sum_{n=2}^{k-1} n^{2}\left|a_{n}\right|^{2} \geq \frac{1}{|b|^{2}} \sum_{n=2}^{k} n^{2}\left|a_{n}\right|^{2}
$$

or

$$
\begin{equation*}
(1-B)^{2} \sum_{n=2}^{\infty} n^{2}\left|a_{n}\right|^{2}+n^{2}\left|a_{n}\right|^{2} \leq(A-B)^{2}(1-\lambda)^{2}|b|^{2} \tag{8}
\end{equation*}
$$

since $-1 \leq B<1$ we obtain from (8)

$$
n^{2}\left|a_{n}\right|^{2} \leq(A-B)^{2}(1-\lambda)^{2}|b|^{2}
$$

This gives

$$
\left|a_{n}\right| \leq \frac{(A-B)(1-\lambda)|b|}{n}, \quad \mathrm{n}=2,3 \ldots \ldots \ldots
$$

The sharpness of the result follows for the function

$$
f(z)=\int_{0}^{z}\left[1+\frac{(A-B)(1-\lambda) b z^{n-1}}{1+B}\right] d z
$$

for $n \geq 2$ and $z \in E$.

Theorem $2 \operatorname{Let} f(z)$ be analytic in E. If for some $A, B,-1=B<A=1$,

$$
\begin{equation*}
\sum_{n=2}^{\infty}(1+|B|) n\left|a_{n}\right| \leq(A-B)(1-\lambda)|b| \tag{9}
\end{equation*}
$$

Then $f \in R_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$. The result is sharp.
Proof. Suppose that condition (9) holds then for $|z|<1$,

$$
\begin{gathered}
\quad\left|f^{\prime}(z)-1\right|-\left|b(\mathrm{~A}-\mathrm{B})(1-\lambda)-B\left\{f^{\prime}(z)-1\right\}\right| \\
=\left|\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right|-\left|b(\mathrm{~A}-\mathrm{B})(1-\lambda)-B \sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \\
\leq \sum_{n=2}^{\infty} n\left|a_{n}\right| r^{n-1}-|b|(\mathrm{A}-\mathrm{B})(1-\lambda)+|\mathrm{B}| \sum_{n=2}^{\infty} n\left|a_{n}\right| r^{n-1} \\
\quad<\sum_{n=2}^{\infty} n\left|a_{n}\right|-|b|(\mathrm{A}-\mathrm{B})(1-\lambda)+|\mathrm{B}| \sum_{n=2}^{\infty} n\left|a_{n}\right| \\
=\sum_{n=2}^{\infty} n(1+|\mathrm{B}|)\left|a_{n}\right|-(\mathrm{A}-\mathrm{B})(1-\lambda)|b|=0, \text { by }(9) .
\end{gathered}
$$

Hence it follows that

$$
\left|\frac{f^{\prime}(z)-1}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)-\mathrm{B}\left(f^{\prime}(z)-1\right)}\right|<1, \mathrm{z} \in E .
$$

Therefore $f \in \mathrm{R}_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$. The result is sharp for the function

$$
f(z)=z+\frac{(\mathrm{A}-\mathrm{B})(1-\lambda) b}{(1+|\mathrm{B}|) n} z^{n}, \text { for } \mathrm{n}=2 \text { and } z \in E \text {. }
$$

Theorem 3 If $f(z) \in \mathrm{R}_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$ then
$\operatorname{Re} f^{\prime}(z) \geq \frac{1-(1-\lambda) \mathrm{AB} r^{2} \operatorname{Re}(b)-\mathrm{B}^{2} r^{2} \cdot \operatorname{Re}(1-(1-\lambda) b)-(\mathrm{A}-\mathrm{B})|b| r}{1-\mathrm{B}^{2} r^{2}}$ and
$\operatorname{Re} f^{\prime}(z) \leq \frac{1-(1-\lambda) \mathrm{AB} r^{2} \operatorname{Re}(b)-\mathrm{B}^{2} r^{2} \cdot \operatorname{Re}(1-(1-\lambda) b)+(\mathrm{A}-\mathrm{B})|b| r}{1-\mathrm{B}^{2} r^{2}}$
The bounds are sharp.

Proof. Since $f \in \mathrm{R}_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$, we have

$$
\begin{equation*}
1+\frac{1}{b}\left\{f^{\prime}(z)-1\right\}=(1-\lambda) \frac{1+\operatorname{Aw}(z)}{1+\operatorname{Bw}(z)}+\lambda=p(z) \tag{10}
\end{equation*}
$$

It is known that the images of the closed disk $|z|=r$ under the transformations

$$
p(z)=(1-\lambda) \frac{1+\operatorname{Aw}(z)}{1+\operatorname{Bw}(z)}+\lambda
$$

are contained in the closed disk with centre C and radius D , where

$$
\mathrm{C}=\frac{1-(1-\lambda) \mathrm{AB} b r^{2}+((1-\lambda) b-1) \mathrm{B}^{2} r^{2}}{1-\mathrm{B}^{2} r^{2}}
$$

and

$$
\mathrm{D}=\frac{(\mathrm{A}-B)(1-\lambda)|b| r}{1-\mathrm{B}^{2} r^{2}}
$$

Thus we have

$$
\begin{equation*}
\left|p(z)-\frac{\left(1-\lambda \mathrm{B}^{2} r^{2}\right)-(1-\lambda) \mathrm{ABr} r^{2}}{1-\mathrm{B}^{2} r^{2}}\right| \leq \frac{(\mathrm{A}-\mathrm{B})(1-\lambda) r}{1-\mathrm{B}^{2} r^{2}} \tag{11}
\end{equation*}
$$

Equation (10) and (11) yields
$\left|f^{\prime}(z)-\frac{1-(1-\lambda) \mathrm{AB} b r^{2}+((1-\lambda) b-1) \mathrm{B}^{2} r^{2}}{1-\mathrm{B}^{2} r^{2}}\right| \leq \frac{(\mathrm{A}-\mathrm{B})(1-\lambda)|b| r}{1-\mathrm{B}^{2} r^{2}}$
Hence
$\operatorname{Re} f^{\prime}(z) \geq \frac{1-(1-\lambda) \mathrm{ABr} r^{2} \operatorname{Re}(b)-\mathrm{B}^{2} r^{2} \operatorname{Re}(1-(1-\lambda) b)-(\mathrm{A}-\mathrm{B})(1-\lambda)|b| r}{1-\mathrm{B}^{2} r^{2}}$ and
$\operatorname{Re} f^{\prime}(z) \leq \frac{1-(1-\lambda) \mathrm{AB} r^{2} \operatorname{Re}(b)-\mathrm{B}^{2} r^{2} \operatorname{Re}(1-(1-\lambda) b)+(\mathrm{A}-\mathrm{B})(1-\lambda)|b| r}{1-\mathrm{B}^{2} r^{2}}$
Equalities is attained for the function

$$
f(z)=\frac{\mathrm{B}+(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}} z-\frac{(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}^{2} e^{i \gamma}} \log \left(1+\mathrm{B} z e^{i \gamma}\right)
$$

where

$$
e^{i \gamma}=\frac{|b|-\mathrm{B} z b}{b-\mathrm{B} z|b|}
$$

Theorem 4 If $f(z) \in \mathrm{R}_{\lambda}^{b}(\mathrm{~A}, \mathrm{~B})$ and μ is any complex number then
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b|(\mathrm{A}-\mathrm{B})(1-\lambda)}{3} \max \left\{1, \frac{|4 \mathrm{~B}+3 \mu b(\mathrm{~A}-\mathrm{B})(1-\lambda)|}{4}\right\}$
The result is sharp.
Proof. Since $f \in \mathrm{R}_{\lambda}^{\mathrm{b}}(\mathrm{A}, \mathrm{B})$, we have

$$
\begin{equation*}
1+\frac{1}{b}\left\{f^{\prime}(z)-1\right\}=(1-\lambda) \frac{1+\mathrm{A} w(z)}{1+\mathrm{B} w(z)}+\lambda \tag{13}
\end{equation*}
$$

where $w(z)=\sum_{k=1}^{\infty} b_{k} z^{k}$ is regular in E and satisfies the condition $w(0)=0$ $|w(z)|<1$ for $z \in E$.
From (13) we have

$$
\begin{gathered}
w(z)=\frac{f^{\prime}(z)-1}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)-\mathrm{B}\left\{f^{\prime}(z)-1\right\}} \\
=\frac{\sum_{n=2}^{\infty} n a_{n} z^{n-1}}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)-\mathrm{B} \sum_{n=2}^{\infty} n a_{n} z^{n-1}} \\
=\frac{\sum_{n=2}^{\infty} n a_{n} z^{n-1}}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)}\left[1+\frac{\mathrm{B}}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)} \sum_{n=2}^{\infty} n a_{n} z^{n-1}+\ldots\right]
\end{gathered}
$$

and then comparing the coefficients of z and $z 2$ on both sides, we have

$$
\begin{gathered}
b_{1}=\frac{2 a_{2}}{b(\mathrm{~A}-\mathrm{B})(1-\lambda)} \\
b_{2}=\frac{1}{(1-\lambda)(\mathrm{A}-\mathrm{B}) b}\left[3 a_{3}+\frac{4 \mathrm{~B} a_{2}^{2}}{(1-\lambda)(\mathrm{A}-\mathrm{B}) b}\right]
\end{gathered}
$$

Thus

$$
a_{2}=\frac{b(\mathrm{~A}-\mathrm{B})(1-\lambda) b_{1}}{2}
$$

and

$$
a_{3}=\frac{b(1-\lambda)(\mathrm{A}-\mathrm{B}) b_{2}}{3}-\frac{4 \mathrm{~B} a_{2}^{2}}{3 b(\mathrm{~A}-\mathrm{B})(1-\lambda)}
$$

Hence

$$
a_{3}-\mu a_{2}^{2}=\frac{b(\mathrm{~A}-\mathrm{B})(1-\lambda)}{3}\left[b_{2}-\left\{\mathrm{B}+\frac{3 \mu b(\mathrm{~A}-\mathrm{B})(1-\lambda)}{4}\right\} b_{1}^{2}\right]
$$

Therefore

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{|b|(\mathrm{A}-\mathrm{B})(1-\lambda)}{3}\left[\left|b_{2}-\left\{\frac{4 \mathrm{~B}+3 \mu b(\mathrm{~A}-\mathrm{B})(1-\lambda)}{4}\right\} b_{1}^{2}\right|\right] \tag{14}
\end{equation*}
$$

Using Lemma 1 in (14) we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b|(\mathrm{A}-\mathrm{B})(1-\lambda)}{3} \max \left\{1, \frac{|4 \mathrm{~B}+3 \mu b(\mathrm{~A}-\mathrm{B})(1-\lambda)|}{4}\right\}
$$

which is (12) of Theorem 4.
If $\left|\frac{4 \mathrm{~B}+3 b \mu(\mathrm{~A}-\mathrm{B})(1-\lambda)}{4}\right|>1$ then we choose the function

$$
f(z)=\frac{\mathrm{B}+(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}} z-\frac{(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}^{2}} \log (1+\mathrm{B} z)
$$

and if $\left|\frac{4 \mathrm{~B}+3 b \mu(\mathrm{~A}-\mathrm{B})(1-\lambda)}{4}\right|<1$, then we choose the function

$$
f(z)=\frac{\mathrm{B}+(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}} z-\frac{(\mathrm{A}-\mathrm{B})(1-\lambda) b}{\mathrm{~B}} \int_{0}^{\mathrm{z}} \frac{d t}{1+\mathrm{B} t^{2}}
$$

for attaining the equality sign in (12)

References

[1] T.R. Caplinger and W.M. Causey, A class of univalent functions, Proc. Amer. Math. Soc. 39 (1973), 357 - 361.
[2] J. Clunie and F.R. Koegh, On starlike and convex schlicht functions, J. Londan Math. Soc. 35 (1960), 229 - 233.
[3] Dashrath, On some classes related to spiral-like univalent and multivalent functions, Ph.D. Thesis, Kanpur University, Kanpur, (1984).
[4] R.M. Goel and B.S. Mehrok, A subclass of univalent functions, J. Austral. Math. Soc. (Ser. A) 35 (1983), 1-17.
[5] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1) (1969), 8-12.
[6] K.S. Padmanabhan, On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math. 23 (1970), 73-81.
T. Ram Reddy, P. Thirupathi Reddy

Department of Mathematics
Kakatiya University
Warangal-506 009 (A.P) India
e-mail: reddypt2@yahoo.com

[^0]: ${ }^{1}$ Received 28 August, 2008
 Accepted for publication (in revised form) 15 September, 2008

