# Subordination by p-valent convex functions ${ }^{1}$ 

H. A. Alkharsani, S. S. Alhajry


#### Abstract

We obtain an interesting subordination relation for analytic pvalent functions by using subordinating factor sequence $\left(b_{k}\right)_{1}^{\infty}$.

\section*{2000 Mathematics Subject Classification:30C45}

Key words and phrases: $p$-valent functions, subordination, subordinating factor sequence.


## 1 Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2}^{\infty} a_{k} z^{p+k-1}, \tag{1}
\end{equation*}
$$

[^0]which are analytic in the open unit disk $D=\{z: z \in C ;|z|<1\}$ and $p \in N$. Consider also its subclasses $C(p), S^{*}(p)$ consisting of $p$-valent convex and starlike functions respectivly, where $C(1) \equiv C, S^{*}(1) \equiv S^{*}$, the classes of univalent convex and starlike functions .

For $f(z)$ given by (1) and $g(z)$ given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=2}^{\infty} g_{k} z^{p+k-1}, \tag{2}
\end{equation*}
$$

the convolution (or Hadamard product) of $f$ and $g$, denoted by $f * g$, is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=2}^{\infty} a_{k} g_{k} z^{p+k-1} .
$$

Let $g(z)$ given by (2) be a fixed function, with $g_{k} \geq g_{2}>0(k \geq 2), \gamma<1$, and let

$$
T_{g}(\gamma):=\left\{f(z) \in A(p): \sum_{k=2}^{\infty}\left|a_{k} g_{k}\right|<p(p-\gamma)\right\} .
$$

Definition 1 A sequence $\left(b_{k}\right)_{1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if for every convex p-valent function $f(z)$ given by (1)

$$
\sum_{k=2}^{\infty} a_{k} b_{k} z^{p+k-1} \prec f(z) \quad(\prec \text { means subordinate }) .
$$

Theorem 1 A sequence $\left(b_{k}\right)_{1}^{\infty}$ of complex numbers is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=2}^{\infty} b_{k} z^{k+p-1}\right\}>0 . \tag{3}
\end{equation*}
$$

Proof. Assume that the sequence $\left(b_{k}\right)_{1}^{\infty}$ of complex numbers is a subordinating factor sequence. Then

$$
\sum_{k=1}^{\infty} b_{k} z^{p+k-1} \prec \sum_{k=1}^{\infty} z^{p+k-1}=z^{p} \frac{z}{(1-z)},
$$

then

$$
\operatorname{Re}\left(\sum_{k=1}^{\infty} b_{k} z^{p+k-1}\right) \geq \operatorname{Re}\left(\frac{z^{p}}{(1-z)}\right)
$$

and since

$$
\operatorname{Re}\left(\frac{z^{p}}{(1-z)}\right) \geq\left(-\frac{\cos p \pi}{2}\right),-1 \leq \cos p \pi \leq 1
$$

which is equivalent to

$$
\operatorname{Re}\left\{\sum_{k=2}^{\infty} b_{k} z^{p+k-1}\right\}>-\frac{1}{2},(|z|<1) .
$$

## 2 Subordination with convex functions

We begin with the following subordination result.

Theorem 2 If $f(z) \in T_{g}(\gamma)$ and $h(z) \in C(p)$, then

$$
\begin{gather*}
\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)}(f * h)(z) \prec h(z),  \tag{4}\\
\operatorname{Re}(f(z))>-\frac{\left(g_{2}+p(p-\gamma)\right)}{g_{2}}, z \in D .
\end{gather*}
$$

The constant factor

$$
\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)}
$$

in the subordination result (4) cannot be replaced by a larger number.

Proof. Let $G(z)=z+\sum_{k=2}^{\infty} g_{2} z^{p+k-1}$. Since $T_{g}(\gamma) \subseteq T_{G}(\gamma)$, our result follows if we prove the result for the class $T_{G}(\gamma)$. Let $f(z) \in T_{G}(\gamma)$ and suppose that

$$
h(z)=z^{p}+\sum_{k=2}^{\infty} c_{k} z^{p+k-1} \in C(p) .
$$

In this case,

$$
\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)}(f * h)(z)=\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)}\left(z^{p}+\sum_{k=2}^{\infty} a_{k} c_{k} z^{p+k-1}\right) .
$$

Observe that the subordination result (4) holds true if

$$
\left(\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)} a_{k}\right)_{1}^{\infty}
$$

is a subordinating factor sequence (with $a_{1}=1$ ). In view of Theorem 2, this is equivalent to the condition that

$$
\begin{equation*}
\operatorname{Re}\left(1+\sum_{k=1}^{\infty} \frac{g_{2}}{\left(g_{2}+p(p-\gamma)\right)} a_{k} z^{p+k-1}\right)>0 \tag{6}
\end{equation*}
$$

Since $g_{k} \geq g_{2}>0$ for $k \geq 2$, we have

$$
\begin{gathered}
\operatorname{Re}\left(1+\sum_{k=1}^{\infty} \frac{g_{2}}{\left(g_{2}+p(p-\gamma)\right)} a_{k} z^{p+k-1}\right)= \\
\operatorname{Re}\left(1+\frac{g_{2}}{g_{2}+p(p-\gamma)} z^{p}+\frac{1}{g_{2}+p(p-\gamma)} \sum_{k=2}^{\infty} g_{2} a_{k} z^{p+k-1}\right) \\
\geq 1-\left(\frac{g_{2}}{g_{2}+p(p-\gamma)} r^{p}+\frac{1}{g_{2}+p(p-\gamma)} \sum_{k=2}^{\infty}\left|g_{2} a_{k}\right| r^{p+k-1}\right) \\
>1-\left(\frac{g_{2}}{g_{2}+p(p-\gamma)} r^{p}+\frac{p(p-\gamma)}{g_{2}+p(p-\gamma)} r^{p}\right)>0,(|z|=r<1) .
\end{gathered}
$$

Thus(6) holds true in $D$, and proves (4). The inequality (5) follows by taking

$$
h(z)=p \int_{0}^{z} \frac{t^{p-1}}{(1-t)^{2 p}} d t=z^{p}+2 \sum_{k=2}^{\infty} B_{k} z^{p+k-1}, B_{k}=\frac{(2 p)_{k-p}}{k(k-p)!}
$$

in (4).
Now consider the function

$$
F(z)=z^{p}-\frac{p(p-\gamma)}{g_{2}} z^{2},(\gamma<1) .
$$

Clearly, $F(z) \in T_{g}(\gamma)$. For this function $F(z)$, (4) becomes

$$
\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)} F(z) \prec h(z)=p \int_{0}^{z} \frac{t^{p-1}}{(1-t)^{2 p}} d t,
$$

It is easily verified that

$$
\min \left\{\operatorname{Re}\left(\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)} F(z)\right)\right\}=\frac{-1}{2}, z \in D
$$

Therefore,

$$
\frac{g_{2}}{2\left(g_{2}+p(p-\gamma)\right)}
$$

cannot be replaced by any larger constant.

Corollary 1 If $f(z) \in T_{p}(j, \lambda, \alpha, n)$, (Alkharsani and Alhajry [1]); and $h(z) \in C(p)$, then

$$
\begin{equation*}
\frac{2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)}{2\left(2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1)\right)}(f * h)(z) \prec h(z), \tag{7}
\end{equation*}
$$

$\operatorname{Re}(f(z))>-\frac{\left(2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1)\right)}{2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)}, z \in D$.
The constant factor

$$
\frac{2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)}{2\left(2^{n}(2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1)\right)}
$$

in the subordination result (7) cannot be replaced by a larger number.
Corollary 2 If $f(z) \in T(j, p, \lambda, \alpha)$ (Altintas et al. [2]); and $h(z) \in C(p)$, then
(8)

$$
\begin{aligned}
& \frac{(2 p-\alpha)(\lambda(2 p-1)+1)}{2((2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1))}(f * h)(z) \prec h(z) \\
& \operatorname{Re}(f(z))>-\frac{(2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1)}{(2 p-\alpha)(\lambda(2 p-1)+1)}, z \in D
\end{aligned}
$$

The constant factor

$$
\frac{(2 p-\alpha)(\lambda(2 p-1)+1)}{2((2 p-\alpha)(\lambda(2 p-1)+1)+(p-\alpha)(\lambda(p-1)+1))}
$$

in the subordination result (8) cannot be replaced by a larger number.
Remark 1 The case $\lambda=1$ and $p=1$ in Corollary 2 was obtained by Rosihan et al. [6]

Corollary 3 If $f(z) \in T^{*}(p, j, \alpha)$ (Owa [5]); and $h(z) \in C(p)$, then

$$
\begin{gather*}
\frac{(2 p-\alpha)}{2(3 p-2 \alpha)}(f * h)(z) \prec h(z)  \tag{9}\\
\operatorname{Re}(f(z))>-\frac{(3 p-2 \alpha)}{(2 p-\alpha)}, z \in D .
\end{gather*}
$$

The constant factor

$$
\frac{(2 p-\alpha)}{2(3 p-2 \alpha)}
$$

in the subordination result (9) cannot be replaced by a larger number.

Remark 2 The case $\alpha=0$ and $p=1$ in Corollary 3 was obtained by Singh [7].

Corollary 4 If $f(z) \in p(j, \lambda, \alpha, n)$, (Aouf and Srivastava [3]); and $h(z) \in$ $C$, then

$$
\begin{gather*}
\frac{2^{n-1}(2-\alpha)(\lambda+1)}{\left(2^{n}(2-\alpha)(\lambda+1)+(1-\alpha)\right)}(f * h)(z) \prec h(z),  \tag{10}\\
\operatorname{Re}(f(z))>-\frac{\left(2^{n}(2-\alpha)(\lambda+1)+(1-\alpha)\right)}{2^{n-1}(2-\alpha)(\lambda+1)}, z \in D .
\end{gather*}
$$

The constant factor

$$
\frac{2^{n-1}(2-\alpha)(\lambda+1)}{\left(2^{n}(2-\alpha)(\lambda+1)+(1-\alpha)\right)}
$$

in the subordination result (10) cannot be replaced by a larger number.

Remark 3 The case $\lambda=0$ in Corollary 4 was obtained by Eker et al. [4].

## References

[1] Alkharsani, H.A. and S.S. Alhajry, A Certain Class of p-vallent Functions with Negative Coefficients, SEAMS Bull. Math., 32, 2008, 209-222.
[2] O. Altintas, H. Irmak, and H.M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl. 30(2),1995, 9-15.
[3] M. K. Aouf and H.M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203(411),1996, 762-790.
[4] S. S. Eker, Bilal S, eker, and Shigeyoshi Owa, On Subordination Result Associated with Certain Subclass of Analytic Functions Involving Salagean Operator, Int. J. Math. Math. Sci. Article ID 48294, 2007, 1-6.
[5] S. Owa, Some properties of certain multivalent functions, Appl. Math. Lett. 4(5), 1991, 79-83.
[6] M. A.Rosihan, V. Ravichandran, and N. Seenivasagan, Subordination by Convex Functions, Int. J. Math. Math. Sci. Article ID 62548, 2006, pp. 1-6.
[7] S. Singh, A subordination theorem for spirallike functions, Int. J. Math. Math. Sci. 24(7), 2000, 433-435.
S. S. Alhajry

King Faisal University
Department of Mathematics
Dammam, Saudi Arabia.
e-mail: ssmh69@gmail.com
H. A. Alkharsani

King Faisal University
Department of Mathematics
Dammam, Saudi Arabia.
e-mail: hakh73@hotmail.com


[^0]:    ${ }^{1}$ Received 29 June, 2008
    Accepted for publication (in revised form) 15 September, 2008

