General Mathematics Vol. 17, No. 3 (2009), 63-70

Subordination by p-valent convex functions ¹

H. A. Alkharsani, S. S. Alhajry

Abstract

We obtain an interesting subordination relation for analytic pvalent functions by using subordinating factor sequence $(b_k)_1^{\infty}$.

2000 Mathematics Subject Classification: 30C45

Key words and phrases:*p*-valent functions, subordination, subordinating factor sequence.

1 Introduction

Let A(p) denote the class of functions of the form

(1)
$$f(z) = z^p + \sum_{k=2}^{\infty} a_k z^{p+k-1},$$

Accepted for publication (in revised form) 15 September, 2008

 $^{^1}Received$ 29 June, 2008

which are analytic in the open unit disk $D = \{z : z \in C; |z| < 1\}$ and $p \in N$. Consider also its subclasses $C(p), S^*(p)$ consisting of p-valent convex and starlike functions respectively, where $C(1) \equiv C, S^*(1) \equiv S^*$, the classes of univalent convex and starlike functions.

For f(z) given by (1) and g(z) given by

(2)
$$g(z) = z^p + \sum_{k=2}^{\infty} g_k z^{p+k-1},$$

the convolution (or Hadamard product) of f and g, denoted by f * g, is defined by

$$(f * g)(z) = z^p + \sum_{k=2}^{\infty} a_k g_k z^{p+k-1}.$$

Let g(z) given by (2) be a fixed function, with $g_k \ge g_2 > 0$ $(k \ge 2), \gamma < 1$, and let

$$T_g(\gamma) := \{ f(z) \in A(p) : \sum_{k=2}^{\infty} |a_k g_k| < p(p-\gamma) \}.$$

Definition 1 A sequence $(b_k)_1^{\infty}$ of complex numbers is said to be a subordinating factor sequence if for every convex p-valent function f(z) given by (1)

$$\sum_{k=2}^{\infty} a_k b_k z^{p+k-1} \prec f(z) \qquad (\prec means \ subordinate).$$

Theorem 1 A sequence $(b_k)_1^{\infty}$ of complex numbers is a subordinating factor sequence if and only if

(3)
$$\operatorname{Re}\left\{1+2\sum_{k=2}^{\infty}b_k z^{k+p-1}\right\} > 0.$$

Proof. Assume that the sequence $(b_k)_1^{\infty}$ of complex numbers is a subordinating factor sequence. Then

$$\sum_{k=1}^{\infty} b_k z^{p+k-1} \prec \sum_{k=1}^{\infty} z^{p+k-1} = z^p \frac{z}{(1-z)},$$

then

$$\operatorname{Re}\left(\sum_{k=1}^{\infty} b_k z^{p+k-1}\right) \ge \operatorname{Re}\left(\frac{z^p}{(1-z)}\right),$$

and since

$$\operatorname{Re}\left(\frac{z^p}{(1-z)}\right) \ge \left(-\frac{\cos p\pi}{2}\right), -1 \le \cos p\pi \le 1$$

which is equivalent to

$$\operatorname{Re}\left\{\sum_{k=2}^{\infty} b_k z^{p+k-1}\right\} > -\frac{1}{2}, (|z| < 1).$$

2 Subordination with convex functions

We begin with the following subordination result.

Theorem 2 If $f(z) \in T_g(\gamma)$ and $h(z) \in C(p)$, then

(4)
$$\frac{g_2}{2(g_2 + p(p - \gamma))}(f * h)(z) \prec h(z),$$

(5)
$$\operatorname{Re}(f(z)) > -\frac{(g_2 + p(p - \gamma))}{g_2}, z \in D.$$

The constant factor

$$\frac{g_2}{2(g_2 + p(p - \gamma))}$$

in the subordination result (4) cannot be replaced by a larger number.

Proof. Let $G(z) = z + \sum_{k=2}^{\infty} g_2 z^{p+k-1}$. Since $T_g(\gamma) \subseteq T_G(\gamma)$, our result follows if we prove the result for the class $T_G(\gamma)$. Let $f(z) \in T_G(\gamma)$ and suppose that

$$h(z) = z^p + \sum_{k=2}^{\infty} c_k z^{p+k-1} \in C(p).$$

In this case,

$$\frac{g_2}{2(g_2 + p(p - \gamma))}(f * h)(z) = \frac{g_2}{2(g_2 + p(p - \gamma))} \left(z^p + \sum_{k=2}^{\infty} a_k c_k z^{p+k-1}\right).$$

Observe that the subordination result (4) holds true if

$$\left(\frac{g_2}{2(g_2+p(p-\gamma))}a_k\right)_1^\infty$$

is a subordinating factor sequence (with $a_1 = 1$). In view of Theorem 2 , this is equivalent to the condition that

(6)
$$\operatorname{Re}\left(1 + \sum_{k=1}^{\infty} \frac{g_2}{(g_2 + p(p - \gamma))} a_k z^{p+k-1}\right) > 0.$$

Since $g_k \ge g_2 > 0$ for $k \ge 2$, we have

$$\operatorname{Re}\left(1+\sum_{k=1}^{\infty}\frac{g_2}{(g_2+p(p-\gamma))}a_k z^{p+k-1}\right) = \\\operatorname{Re}\left(1+\frac{g_2}{g_2+p(p-\gamma)}z^p + \frac{1}{g_2+p(p-\gamma)}\sum_{k=2}^{\infty}g_2 a_k z^{p+k-1}\right) \\ \ge 1-\left(\frac{g_2}{g_2+p(p-\gamma)}r^p + \frac{1}{g_2+p(p-\gamma)}\sum_{k=2}^{\infty}|g_2 a_k| r^{p+k-1}\right) \\> 1-\left(\frac{g_2}{g_2+p(p-\gamma)}r^p + \frac{p(p-\gamma)}{g_2+p(p-\gamma)}r^p\right) > 0, (|z|=r<1).$$

Thus(6) holds true in D, and proves (4). The inequality (5) follows by taking

$$h(z) = p \int_{0}^{z} \frac{t^{p-1}}{(1-t)^{2p}} dt = z^{p} + 2\sum_{k=2}^{\infty} B_{k} z^{p+k-1}, B_{k} = \frac{(2p)_{k-p}}{k(k-p)!}$$

in (4).

Now consider the function

$$F(z) = z^{p} - \frac{p(p-\gamma)}{g_{2}}z^{2}, (\gamma < 1).$$

Clearly, $F(z) \in T_g(\gamma)$. For this function F(z), (4) becomes

$$\frac{g_2}{2(g_2 + p(p - \gamma))}F(z) \prec h(z) = p \int_0^z \frac{t^{p-1}}{(1 - t)^{2p}} dt,$$

It is easily verified that

$$\min\left\{\operatorname{Re}\left(\frac{g_2}{2(g_2+p(p-\gamma))}F(z)\right)\right\} = \frac{-1}{2}, z \in D.$$

Therefore,

$$\frac{g_2}{2(g_2 + p(p - \gamma))}$$

cannot be replaced by any larger constant.

Corollary 1 If $f(z) \in T_p(j, \lambda, \alpha, n)$, (Alkharsani and Alhajry [1]); and $h(z) \in C(p)$, then

(7)

$$\frac{2^n (2p - \alpha) (\lambda (2p - 1) + 1)}{2 (2^n (2p - \alpha) (\lambda (2p - 1) + 1) + (p - \alpha) (\lambda (p - 1) + 1))} (f * h)(z) \prec h(z),$$

H. A. Alkharsani, S. S. Alhajry

$$\operatorname{Re}(f(z)) > -\frac{(2^n (2p - \alpha) (\lambda (2p - 1) + 1) + (p - \alpha) (\lambda (p - 1) + 1))}{2^n (2p - \alpha) (\lambda (2p - 1) + 1)}, z \in D.$$

The constant factor

$$\frac{2^{n} (2p - \alpha) (\lambda (2p - 1) + 1)}{2 (2^{n} (2p - \alpha) (\lambda (2p - 1) + 1) + (p - \alpha) (\lambda (p - 1) + 1))}$$

in the subordination result (7) cannot be replaced by a larger number.

Corollary 2 If $f(z) \in T(j, p, \lambda, \alpha)$ (Altintas et al. [2]); and $h(z) \in C(p)$, then

(8)

$$\frac{(2p-\alpha)(\lambda(2p-1)+1)}{2((2p-\alpha)(\lambda(2p-1)+1)+(p-\alpha)(\lambda(p-1)+1))}(f*h)(z) \prec h(z),$$

$$\operatorname{Re}(f(z)) > -\frac{(2p-\alpha)(\lambda(2p-1)+1)+(p-\alpha)(\lambda(p-1)+1)}{(2p-\alpha)(\lambda(2p-1)+1)}, z \in D.$$

The constant factor

$$\frac{(2p-\alpha)\left(\lambda\left(2p-1\right)+1\right)}{2\left((2p-\alpha)\left(\lambda\left(2p-1\right)+1\right)+(p-\alpha)\left(\lambda\left(p-1\right)+1\right)\right)}$$

in the subordination result (8) cannot be replaced by a larger number.

Remark 1 The case $\lambda = 1$ and p = 1 in Corollary 2 was obtained by Rosihan et al. [6]

Corollary 3 If $f(z) \in T^*(p, j, \alpha)$ (Owa [5]); and $h(z) \in C(p)$, then

(9)
$$\frac{(2p-\alpha)}{2(3p-2\alpha)}(f*h)(z) \prec h(z),$$

$$\operatorname{Re}(f(z)) > -\frac{(3p-2\alpha)}{(2p-\alpha)}, z \in D.$$

The constant factor

$$\frac{(2p-\alpha)}{2\left(3p-2\alpha\right)}$$

in the subordination result (9) cannot be replaced by a larger number.

Remark 2 The case $\alpha = 0$ and p = 1 in Corollary 3 was obtained by Singh [7].

Corollary 4 If $f(z) \in p(j, \lambda, \alpha, n)$, (Aouf and Srivastava [3]); and $h(z) \in C$, then

(10)
$$\frac{2^{n-1}(2-\alpha)(\lambda+1)}{(2^n(2-\alpha)(\lambda+1)+(1-\alpha))}(f*h)(z) \prec h(z),$$

$$\operatorname{Re}(f(z)) > -\frac{(2^n (2 - \alpha) (\lambda + 1) + (1 - \alpha))}{2^{n-1} (2 - \alpha) (\lambda + 1)}, z \in D.$$

The constant factor

$$\frac{2^{n-1} (2-\alpha) (\lambda+1)}{(2^n (2-\alpha) (\lambda+1) + (1-\alpha))}$$

in the subordination result (10) cannot be replaced by a larger number.

Remark 3 The case $\lambda = 0$ in Corollary 4 was obtained by Eker et al. [4].

References

- Alkharsani, H.A. and S.S. Alhajry, A Certain Class of p-vallent Functions with Negative Coefficients, SEAMS Bull. Math., 32, 2008, 209-222.
- [2] O. Altintas, H. Irmak, and H.M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl. 30(2),1995, 9-15.
- [3] M. K. Aouf and H.M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203(411),1996, 762-790.

- [4] S. S. Eker, Bilal S, eker, and Shigeyoshi Owa, On Subordination Result Associated with Certain Subclass of Analytic Functions Involving Salagean Operator, Int. J. Math. Math. Sci. Article ID 48294, 2007, 1–6.
- [5] S. Owa, Some properties of certain multivalent functions, Appl. Math. Lett. 4(5), 1991, 79-83.
- [6] M. A.Rosihan , V. Ravichandran, and N. Seenivasagan, Subordination by Convex Functions, Int. J. Math. Math. Sci. Article ID 62548, 2006, pp. 1–6.
- S. Singh, A subordination theorem for spirallike functions, Int. J. Math. Math. Sci. 24(7), 2000, 433–435.

S. S. AlhajryKing Faisal UniversityDepartment of MathematicsDammam, Saudi Arabia.e-mail: ssmh69@gmail.com

H. A. AlkharsaniKing Faisal UniversityDepartment of MathematicsDammam, Saudi Arabia.e-mail: hakh73@hotmail.com