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Quenching for semidiscretizations of a

parabolic equation with a nonlinear

boundary condition 1

Theodore K. Boni, Halima Nachid, Nabongo Diabate

Abstract

This paper concerns the study of the numerical approximation

for the following initial-boundary value problem





ut(x, t) = uxx(x, t), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = (1− u(1, t))−p, t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p > 0. We obtain some conditions under which the solution of

a semidiscrete form of the above problem quenches in a finite time

and estimate its semidiscrete quenching time. We also establish the

convergence of the semidiscrete quenching time. Finally, we give

some numerical results to illustrate our analysis.
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1 Introduction

In this paper, we are interested in the numerical approximation for the

following initial-boundary value problem

(1) ut(x, t) = uxx(x, t), 0 < x < 1, t > 0,

(2) u(0, t) = 0, ux(1, t) = (1− u(1, t))−p, t > 0,

(3) u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ 1,

where p > 0, u0 ∈ C2([0, 1]), u
′
0(x) > 0, u

′′
0(x) > 0, x ∈ (0, 1), u0(0) = 0,

u
′
0(1) = (1− u0(1))−p.

The particularity of this kind of problem is that the flux on the boundary

admits a singularity at the point 1 and the solution u may reach this value

in a finite time T . In this case, we say that u quenches in a finite time and

the time T is called the quenching time of u. The solutions which quench in

a finite time have been the subject of investigations of many authors (see [2],

[4]–[7], [10], [11], [13]–[15], [20], [21] and the references cited therein). Under

the conditions given on the initial data, the authors have proved that the

solution u of (1)–(3) quenches in a finite time and given some estimations
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of the quenching time (see, for instance [15]). The condition u
′′
0(x) > 0,

x ∈ (0, 1), allows the solution u of (1)–(3) to increase with respect to the

second variable and the hypothesis u
′
0(x) > 0, x ∈ (0, 1) permits the solution

u to quench at the point x = 1.

In this paper, we are interested in the numerical study of the phe-

nomenon of quenching. We start by the construction of a semidiscrete

scheme as follows. Let I be a positive integer, and define the grid xi = ih,

0 ≤ i ≤ I, where h = 1/I. We approximate the solution u of (1)–(3) by

the solution Uh(t) = (U0(t), U1(t), . . . , UI(t))
T of the following semidiscrete

equations

(4)
dUi(t)

dt
= δ2Ui(t), 1 ≤ i ≤ I − 1, t ∈ (0, T h

q ),

(5) U0(t) = 0,
dUI(t)

dt
= δ2UI(t) +

2

h
(1− UI(t))

−p, t ∈ (0, T h
q ),

(6) Ui(0) = ϕi, 0 ≤ i ≤ I,

where ϕ0 = 0, ϕi > 0, 1 ≤ i ≤ I,

δ2UI(t) =
2UI−1(t)− 2UI(t)

h2
, δ2Ui(t) =

Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
.

Here, (0, T h
q ) is the maximal time interval on which ‖Uh(t)‖∞ < 1 where

‖Uh(t)‖∞ = max0≤i≤I |Ui(t)|. If T h
q is finite, then we say that Uh(t) quenches

in a finite time, and the time T h
q is called the semidiscrete quenching time

of Uh(t).

In this paper, we give some conditions under which the solution of (4)–

(6) quenches in a finite time and estimate its semidiscrete quenching time.
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We also prove that the semidiscrete quenching time converges to the real

one when the mesh size goes to zero. Nabongo and Boni have obtained in

[19] similar results considering (1)–(3) in the case where the first boundary

condition in (2) is replaced by ux(0, t) = 0. Thus, the results found in the

present paper generalize those obtained in [19], but let us notice that this is

not a simple generalization. In fact, because of the condition u(0, t) = 0 in

(2), the methods used in [19] can not be applied directly. So we utilize other

methods. Our work was also motived by the papers in [1] and [3] where the

authors have proved similar results about the blow-up phenomenon consid-

ering a semilinear parabolic equation with Dirichlet boundary conditions

(we say that a solution blows up in a finite time if it takes an infinite value

in a finite time). Also, previously in [3] the phenomenon of extinction is

studied by numerical methods where a semilinear parabolic equation with

Dirichlet boundary conditions is considered (we say that a solution extincts

in a finite time it reaches the value zero in a finite time).

This paper is written in the following manner. In the next section, we

prove some results about the discrete maximum principle. In the third sec-

tion, under some conditions, we prove that the solution of (4)–(6) quenches

in a finite time and estimate its semidiscrete quenching time. In the fourth

section, we study the convergence of the semidiscrete quenching time. Fi-

nally, in the last section, we give some numerical results to illustrate our

analysis.
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2 Properties of the semidiscrete problem

In this section, we give some lemmas which will be used later.

The following lemma reveals a property of the operator δ2.

Lemma 1 Let Vh, Uh ∈ RI+1. If δ−(UI)δ
−(VI) ≥ 0,

δ+(Ui)δ
+(Vi) ≥ 0 and δ−(Ui)δ

−(Vi) ≥ 0, 1 ≤ i ≤ I − 1,

then

δ2(UiVi) ≥ Uiδ
2Vi + Viδ

2Ui, 1 ≤ i ≤ I,

where δ+(Ui) = Ui+1−Ui

h
and δ−(Ui) = Ui−1−Ui

h
.

Proof. A straightforward computation yields

δ2(UiVi) = δ+(Ui)δ
+(Vi) + δ−(Ui)δ

−(Vi) + Uiδ
2Vi + Viδ

2Ui, 1 ≤ i ≤ I − 1,

δ2(UIVI) = 2δ−(UI)δ
−(VI) + UIδ

2VI + VIδ
2UI .

Using the assumptions of the lemma, we obtain the desired result.

The result below reveals a property of the semidiscrete solution.

Lemma 2 Let Uh(t) be the solution of (4)–(6). Then, we have Ui(t) > 0,

1 ≤ i ≤ I, t ∈ (0, T h
q ).

Proof. Let t0 be the first t > 0 such that Ui(t) > 0 for t ∈ [0, t0), 1 ≤ i ≤ I,

but Ui0(t0) = 0 for a certain i0 ∈ {1, ..., I}. Without loss of generality, we

may suppose that i0 is the smallest integer which satisfies the equality. We

have
dUi0(t0)

dt
= lim

k→0

Ui0(t0)− Ui0(t0 − k)

k
≤ 0,
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δ2Ui0(t0) =
Ui0+1(t0)− 2Ui0(t0) + Ui0−1(t0)

h2
> 0 if 1 ≤ i0 ≤ I − 1,

δ2Ui0(t0) =
2UI−1(t0)− 2UI(t0)

h2
> 0 if i0 = I.

We deduce that

dUi0(t0)

dt
− δ2Ui0(t0) < 0 if 1 ≤ i0 ≤ I − 1,

dUi0(t0)

dt
− δ2Ui0(t0)−

2

h
(1− Ui0(t0))

−p < 0 if i0 = I,

which contradicts (4)–(5). This ends the proof.

The following lemma shows another property of the semidiscrete solution.

Lemma 3 Let Uh(t) be the solution of (4)–(6) such that the initial data

at (6) satisfies δ+ϕi > 0, 0 ≤ i ≤ I − 1. Then, we have δ+Ui(t) > 0,

0 ≤ i ≤ I − 1, t ∈ (0, T h
q ).

Proof. Let t0 be the first t > 0 such that δ+Ui(t) > 0, 0 ≤ i ≤ I − 1,

t ∈ [0, t0) but δ+Ui0(t0) = 0 for a certain i0 ∈ {1, ..., I}. Without loss of

generality, we may suppose that i0 is the smallest integer which satisfies the

equality. If i0 = 0, then we have U1(t0) = U0(t0) = 0, which contradicts

Lemma 2. Put Zi0(t) = Ui0+1(t)− Ui0(t). We have

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0 if 1 ≤ i0 ≤ I − 2,

δ2Zi0(t0) =
Zi0−1(t0)− 3Zi0(t0)

h2
> 0 if i0 = I − 1,

which implies that

dZi0(t0)

dt
− δ2Zi0(t0) < 0 if 1 ≤ i0 ≤ I − 2,
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dZi0(t0)

dt
− δ2Zi0(t0)−

2

h
(1− Ui0(t0))

−p < 0 if i0 = I − 1.

Therefore, we have a contradiction because of (4)–(5) and the proof is com-

plete.

The above lemma reveals that if the initial data of the semidiscrete solu-

tion is increasing in space, then the semidiscrete solution is also increasing

in space. This property will be used later to show that the semidiscrete

solution attains its maximum at the last node.

The result below shows another property of the operator δ2.

Lemma 4 Let Uh ∈ RI+1such that ‖Uh‖∞ < 1. Then, we have

δ2(1− Ui)
−p ≥ p(1− Ui)

−p−1δ2Ui, 1 ≤ i ≤ I.

Proof. Apply Taylor’s expansion to obtain

δ2(1− Ui)
−p = p(1− Ui)

−p−1δ2Ui + (Ui+1 − Ui)
2p(p + 1)

2h2
θ−p−2

i

+(Ui−1 − Ui)
2p(p + 1)

2h2
η−p−2

i if 1 ≤ i ≤ I − 1,

δ2(1− UI)
−p = p(1− UI)

−p−1δ2UI + (UI−1 − UI)
2p(p + 1)

h2
η−p−2

I ,

where θi is an intermediate value between Ui and Ui+1 and ηi the one between

Ui and Ui−1. Use the fact that ‖Uh‖∞ < 1 to complete the rest of the proof.

The following lemma is a semidiscrete version of the maximum principle.

Lemma 5 Let ah(t) ∈ C0([0, T ),RI+1) and let Vh(t) ∈ C1([0, T ),RI+1)

such that

(7)
dVi(t)

dt
− δ2Vi(t) + ai(t)Vi(t) ≥ 0, 1 ≤ i ≤ I, t ∈ (0, T ),
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(8) V0(t) ≥ 0, t ∈ (0, T ),

(9) Vi(0) ≥ 0, 0 ≤ i ≤ I.

Then, we have Vi(t) ≥ 0 for 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let T0 < T and define the vector Zh(t) = eλtVh(t), where λ is such

that ai(t)− λ > 0 for t ∈ [0, T0], 0 ≤ i ≤ I. Let m = min0≤i≤I,0≤t≤T0 Zi(t).

Since for i ∈ {0, ..., I}, Zi(t) is a continuous function, there exists t0 ∈ [0, T0]

such that m = Zi0(t0) for a certain i0 ∈ {0, ..., I}. It is not hard to see that

(10)
dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

(11) δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I,

(12) δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1.

Using (7), a straightforward computation reveals that

(13)
dZi0(t0)

dt
− δ2Zi0(t0) + (ai0(t0)− λ)Zi0(t0) ≥ 0 if 1 ≤ i0 ≤ I.

Due to (10)–(13), we arrive at (ai0(t0)− λ)Zi0(t0) ≥ 0, 1 ≤ i0 ≤ I. Taking

into account (8) and the fact that ai0(t0)−λ > 0, we deduce that Vh(t) ≥ 0

for t ∈ [0, T0], which leads us to the desired result.

Another form of the maximum principle for semidiscrete equations is

the following comparison lemma.
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Lemma 6 Let Vh(t), Uh(t) ∈ C1([0, T ),RI+1) and f ∈ C0(R × R,R) such

that for t ∈ (0, T ),

(14)
dVi(t)

dt
−δ2Vi(t)+f(Vi(t), t) <

dUi(t)

dt
−δ2Ui(t)+f(Ui(t), t), 1 ≤ i ≤ I,

(15) V0(t) < U0(t),

(16) Vi(0) < Ui(0), 0 ≤ i ≤ I.

Then, we have Vi(t) < Ui(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Define the vector Zh(t) = Uh(t)−Vh(t). Let t0 be the first t ∈ (0, T )

such that Zh(t) > 0 for t ∈ [0, t0), but

Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I}.

We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0 if i0 = I,

which implies that

dZi0(t0)

dt
− δ2Zi0(t0) + f(Ui0(t0), t0)− f(Vi0(t0), t0) ≤ 0 if 1 ≤ i0 ≤ I.

But, this inequality contradicts (14). If i0 = 0, then we have a contradiction

because of (15), and the proof is complete.
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3 Quenching in the semidiscrete problem

In this section, under some assumptions, we show that the solution Uh of

(4)–(6) quenches in a finite time and estimate its semidiscrete quenching

time.

Our result about the quenching time is the following.

Theorem 1 Let Uh be the solution of (4)–(6). Assume that there exists a

constant A > 0 such that the initial data at (6) satisfies

(17) δ2ϕi + (1− ϕi)
−p ≥ A sin(ih

π

2
)(1− ϕi)

−p, 0 ≤ i ≤ I,

and

(18) 1− π2

2A(p + 1)
(1− ‖ϕh‖∞)p+1 > 0.

Then, under the hypothesis of Lemma 3, the solution Uh(t) quenches in a

finite time T h
q and the following estimate holds

(19) T h
q < − 2

π2
ln(1− π2

2A(p + 1)
(1− ‖ϕh‖∞)p+1).

Proof. Since (0, T h
q ) is the maximal time interval on which ‖Uh(t)‖∞ <

1, our aim is to show that T h
q is finite and satisfies the above inequality.

Introduce the vector Jh(t) such that

Ji(t) =
dUi(t)

dt
− Ci(t)(1− Ui(t))

−p, 0 ≤ i ≤ I,

where Ci(t) = Ae−λht sin(ihπ
2
) with λh =

2−2 cos(π
2
h)

h2 . A straightforward

computation gives

dJi(t)

dt
−δ2Ji(t) =

d

dt
(
dUi(t)

dt
−δ2Ui(t))−pCi(t)(1−Ui)

−p−1dUi(t)

dt
−dCi(t)

dt
(1−Ui)

−p
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+δ2(Ci(t)(1− Ui)
−p), 1 ≤ i ≤ I.

Obviously δ+(Ci) > 0, 0 ≤ i ≤ I − 1. From Lemmas 1, 3 and 4, we get

δ2(Ci(1− Ui)
−p) ≥ pCi(1− Ui)

−p−1δ2Ui + (1− Ui)
−pδ2Ci, 1 ≤ i ≤ I.

Hence, we deduce that

dJi(t)

dt
−δ2Ji(t) ≤ d

dt
(
dUi(t)

dt
−δ2Ui(t))−pCi(t)(1−Ui)

−p−1(
dUi(t)

dt
−δ2Ui(t))

−(1− Ui)
−p(

dCi(t)

dt
− δ2Ci(t)), 1 ≤ i ≤ I.

It is not hard to see that C0(t) = 0, dCi(t)
dt

−δ2Ci(t) = 0, 1 ≤ i ≤ I. Therefore

using (4)–(6), we arrive at

dJi(t)

dt
− δ2Ji(t) ≤ 0, 1 ≤ i ≤ I − 1,

dJi(t)

dt
− δ2Ji(t) ≤ p(1− UI(t))

−p−1JI(t).

Obviously J0(t) = 0 and from (17), Jh(0) ≥ 0. We deduce from Lemma 5

that Jh(t) ≥ 0 for (0, T h
q ). We observe that λh ≤ π2

2
for h small enough.

Therefore, we obtain

(20) (1− UI)
pdUI ≥ Ae−

π2

2
tdt for (0, T h

q ).

From Lemma 3, ‖Uh(t)‖∞ = UI(t). Integrating (20) over (0, T h
q ) and using

the fact that ‖Uh(0)‖∞ = ‖ϕh‖∞, we arrive at

T h
q < − 2

π2
ln(1− π2

2A(p + 1)
(1− ‖ϕh‖∞)p+1).

Taking into account (18), we see that T h
q is finite and the proof is complete.
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Remark 1 Suppose that there exists a time t0 ∈ (0, T h
q ) such that

1− π2

2A(p + 1)
e

π2

2
t0(1− ‖Uh(t0)‖∞)p+1 > 0.

Integrating the inequality (20) over (t0, T
h
q ) and using the fact that ‖Uh(t0)‖∞ =

UI(t0), we find that

T h
q − t0 < − 2

π2
ln(1− π2

2A(p + 1)
e

π2

2
t0(1− ‖Uh(t0)‖∞)p+1).

4 Convergence of the semidiscrete quench-

ing time

In this section, under some assumptions, we show that the semidiscrete

quenching time converges to the real one when the mesh size goes to zero.

We denote uh(t) = (u(x0, t), ..., u(xI , t))
T .

We need the following result about the convergence of our scheme.

Theorem 2 Assume that the problem (1)–(3) has a solution u ∈ C4,1([0, 1]×
[0, T ]) such that supt∈[0,T ] ‖u(·, t)‖∞ = α < 1 and

(21) ‖ϕh − uh(0)‖∞ = o(1) as h → 0.

Then, for h sufficiently small, the problem (4)–(6) has a unique solution

Uh ∈ C1([0, T ],RI+1) such that

(22) max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h) as h → 0.

Proof. We take ρ > 0 such that ρ + α < 1. Let L be such that

(23) 2p(1− ρ− α)−p−1 ≤ L.
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The problem (4)–(6) has for each h, a unique solution Uh ∈ C1([0, T h
q ),RI+1).

Let t(h) the greatest value of t > 0 such that

(24) ‖Uh(t)− uh(t)‖∞ < ρ for t ∈ (0, t(h)).

The relation (21) implies that t(h) > 0 for h sufficiently small. Let t∗(h) =

min{t(h), T}. By the triangle inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(·, t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that

(25) ‖Uh(t)‖∞ ≤ ρ + α < 1 for t ∈ (0, t∗(h)).

Apply Taylor’s expansion to obtain

δ2u(xi, t) = uxx(xi, t) +
h2

12
uxxxx(x̃i, t), 1 ≤ i ≤ I − 1,

δ2u(xI , t) = −2

h
(1− u(xI , t))

−p + uxx(xI , t)− h

3
uxxx(x̃I , t),

which implies that

ut(xi, t)− δ2u(xi, t) = −h2

12
uxxxx(xi, t), 1 ≤ i ≤ I − 1,

ut(xI , t)− δ2u(xI , t) =
2

h
(1− u(xI , t))

−p +
h

3
uxxx(x̃I , t).

Let eh(t) = Uh(t) − uh(t) be the error of discretization. Using the mean

value theorem, we have for t ∈ (0, t∗(h)),

dei(t)

dt
− δ2ei(t) =

h2

12
uxxxx(x̃i, t), 1 ≤ i ≤ I − 1,

deI(t)

dt
− δ2eI(t) =

2

h
p(1− θI(t))

−p−1eI(t)− h

3
uxxx(x̃I , t),
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where θI(t) is an intermediate value between UI(t) and u(xI , t). Since

u ∈ C4,1, using (23) and (25), there exists a positive constant K such that

(26)
dei(t)

dt
− δ2ei(t) ≤ Kh2, 1 ≤ i ≤ I − 1,

(27)
deI(t)

dt
− δ2eI(t) ≤ L|eI(t)|

h
+ hK.

Now, consider the function z(x, t) defined as follows

z(x, t) = e((M+1)t+Cx2)(‖ϕh − uh(0)‖∞ + Qh) in [0, 1]× [0, T ],

where M , C, Q are positive constants which will be determined later. We

observe that

zt = (M + 1)z,

zx = 2Cxz,

zxx = (2C + 4C2x2)z,

zxxx = (12C2x + 8C3x3)z,

zxxxx = (12C2 + 48C3x2 + 16C4x4)z.

A direct calculation reveals that

zt(xi, t)− zxx(xi, t) = (M + 1− 2C − 4C2x2
i )z(xi, t), 1 ≤ i ≤ I.

On the other hand, use Taylor’s expansion to obtain

δ2z(xi, t) = zxx(xi, t) +
h2

12
zxxxx(x̃i, t), 1 ≤ i ≤ I − 1,

δ2z(xI , t) = −4C

h
z(xI , t) + zxx(xI , t)− h

3
zxxx(x̃I , t),
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which implies that

zt(xi, t)−δ2z(xi, t) = (M+1−2C−4C2x2
i )z(xi, t)−h2

12
zxxxx(x̃i, t), 1 ≤ i ≤ I−1,

z(x0, t) > 0,

zt(xI , t)−δ2z(xI , t) = (M +1−2C−4C2)z(xI , t)+
4C

h
z(xI , t)+

h

3
zxxx(x̃I , t).

Since z(x, t) ≥ Qh for (x, t) ∈ [0, 1] × [0, T ], we may choose M , C, Q such

that

(28)
dz(xi, t)

dt
> δ2z(xi, t) + Kh2, 1 ≤ i ≤ I − 1, t ∈ (0, t∗(h)),

(29)
dz(xI , t)

dt
> δ2z(xI , t) +

L

h
|z(xI , t)|+ Kh, t ∈ (0, t∗(h)),

(30) z(x0, t) > e0(t), t ∈ (0, t∗(h)),

(31) z(xi, 0) > ei(0), 0 ≤ i ≤ I.

Applying Comparison Lemma 6, we arrive at

z(xi, t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

In the same way, we also prove that

z(xi, t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

‖Uh(t)− uh(t)‖∞ ≤ e(Mt+C)(‖ϕh − uh(0)‖∞ + Qh), t ∈ (0, t∗(h)).
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Let us show that t∗(h) = T . Suppose that T > t(h). From (24), we obtain

(32)
%

2
= ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(MT+C)(‖ϕh − uh(0)‖∞ + Qh).

Since the term in the right hand side of the above inequality goes to zero

as h goes to zero, we deduce that %
2
≤ 0, which is impossible. Consequently

t∗(h) = T , and the proof is complete.

Now, we are able to prove the following.

Theorem 3 Suppose that the problem (1)–(3) has a solution u which quenches

in a finite time Tq such that u ∈ C4,1([0, 1]× [0, Tq)). Assume that the initial

data at (6) satisfies the condition (21). Under the assumptions of Theorem

1, the problem (4)–(6) admits a unique solution Uh which quenches in a

finite time T h
q and we have limh→0 T h

q = Tq.

Proof. Let ε ∈ (0, Tq/2). There exists a constant ρ ∈ (0, 1) such that

(33) − 1

2π2
ln(1− 4π2

A(p + 1)
e2π2Tq(1− y)p+1) <

ε

2
for y ∈ [1− ρ, 1).

Since u quenches at the time Tq, there exists T1 ∈ (Tq − ε
2
, Tq) such that

1 > ‖u(·, t)‖∞ ≥ 1 − ρ
2

for t ∈ [T1, Tq). From Theorem 2, we know that

the problem (4)–(6) admits a unique solution Uh(t) such that the following

estimate holds

‖Uh(t)− uh(t)‖∞ <
ρ

2
for t ∈ [0, T2]

where T2 = T1+Tq

2
. Using the triangle inequality, we get

‖Uh(t)‖∞ ≥ ‖uh(t)‖∞−‖Uh(t)−uh(t)‖∞ ≥ 1−ρ

2
−ρ

2
≥ 1−ρ for t ∈ [0, T2],
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which implies that ‖Uh(T2)‖∞ ≥ 1 − ρ. Due to (33), it is not hard to see

that

(34) − 1

2π2
ln(1− 4π2

A(p + 1)
e2π2T2(1− ‖Uh(T2)‖∞)p+1) <

ε

2
.

From Theorem 1, Uh(t) quenches at the time T h
q . Using (34) and Remark

1, we arrive at

|T h
q − Tq| ≤ |T h

q − T2|+ |T2 − Tq| ≤ ε

2
+

ε

2
= ε,

which leads us to the desired result.

5 Numerical experiments

In this section, we give some computational results about the approximation

of the real quenching time. We consider the problem (1)–(3) in the case

where p = 1 and u0(x) = 1
2
x4. For our numerical experiments, we propose

some adaptive schemes as follows. Firstly, we approximate the solution u

of (1)–(3) by the solution U
(n)
h of the following explicit scheme

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
, 1 ≤ i ≤ I − 1,

U
(n)
0 = 0,

U
(n+1)
I − U

(n)
I

∆tn
=

U
(n)
I−1 − 2U

(n)
I

h2
+

2

h
(1− U

(n)
I )−p,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0. In order to permit the discrete solution to reproduce the

property of the continuous one when the time t approaches the quenching

time T , we need to adapt the size of the time step so that we take

∆tn = {h2

2
, h2(1− ‖U (n)

h ‖∞)p+1}.
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We also approximate the solution u of (1)–(3) by the solution U
(n)
h of the

implicit scheme below

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
, 1 ≤ i ≤ I − 1,

U
(n)
0 = 0,

U
(n+1)
I − U

(n)
I

∆tn
=

U
(n+1)
I−1 − 2U

(n+1)
I

h2
+

2

h
(1− U

(n)
I )−p,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0. As in the case of the explicit scheme, here, we also choose

∆tn = h2(1− ‖U (n)
h ‖∞)p+1.

In both cases, we take ϕi = 1
2
(ih)4.

We need the following definition.

Definition 1 We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→+∞ ‖U (n)
h ‖∞ = 1,

but the series
∑+∞

n=0 ∆tn converges. The quantity
∑+∞

n=0 ∆tn is called the

numerical quenching time.

In the tables 1 and 2, in rows, we present the numerical quenching times,

numbers of iterations, CPU times and the orders of the approximations

corresponding to meshes of 16, 32, 64, 128, 256. We take for the numerical

quenching time T n =
∑n−1

j=0 ∆tj which is computed at the first time when

∆tn = |T n+1 − T n| ≤ 10−16.

The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.
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Table 1: Numerical quenching times, numbers of iterations, CPU times

(seconds) and orders (s) of the approximations obtained with the ex-

plicit scheme

I T n n CPUtime s

16 0.025538 163 - -

32 0.023834 422 - -

64 0.023270 1236 1 1.60

128 0.023093 4086 17 1.67

256 0.023039 14734 506 1.71

Table 2: Numerical quenching times, numbers of iterations, CPU times

(seconds) and orders (s) of the approximations obtained with the im-

plicit scheme

I T n n CPUtime s

16 0.026126 164 - -

32 0.024009 423 - -

64 0.023317 1238 2 1.62

128 0.023105 4089 35 1.71

256 0.023043 14737 1140 1.77
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