Hyperstructures associated to \mathcal{E} -lattices¹

Marius Tărnăuceanu

Abstract

The goal of this paper is to present some basic properties of \mathcal{E} lattices and their connections with hyperstructure theory.

2000 Mathematics Subject Classification: Primary 06B99, Secondary 20N20.

Key words and phrases: \mathcal{E} -lattices, canonical \mathcal{E} -lattices, lattices, hypergroups.

1 Introduction

The starting point for our discussion is given by the paper [8], where there is introduced the category of \mathcal{E} -lattices and there are made some elementary constructions in this category. Given a nonvoid set L and a map $\varepsilon: L \to L$,

Accepted for publication (in revised form) 30 April, 2009

¹Received 21 March, 2008

we denote by Ker ε the kernel of ε (i.e. Ker $\varepsilon = \{(a,b) \in L \times L \mid \varepsilon(a) = \varepsilon(b)\}$), by Im ε the image of ε (i.e. Im $\varepsilon = \{\varepsilon(a) \mid a \in L\}$) and by Fix ε the set consisting of all fixed points of ε (i.e. Fix $\varepsilon = \{a \in L \mid \varepsilon(a) = a\}$). We say that L is an \mathcal{E} -lattice (relative to ε) if there exist two binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ on L which satisfy the following properties:

a)
$$a \wedge_{\varepsilon} (b \wedge_{\varepsilon} c) = (a \wedge_{\varepsilon} b) \wedge_{\varepsilon} c$$
, $a \vee_{\varepsilon} (b \vee_{\varepsilon} c) = (a \vee_{\varepsilon} b) \vee_{\varepsilon} c$, for all $a, b, c \in L$;

b)
$$a \wedge_{\varepsilon} b = b \wedge_{\varepsilon} a$$
, $a \vee_{\varepsilon} b = b \vee_{\varepsilon} a$, for all $a, b \in L$;

c)
$$a \wedge_{\varepsilon} a = a \vee_{\varepsilon} a = \varepsilon(a)$$
, for any $a \in L$;

d)
$$a \wedge_{\varepsilon} (a \vee_{\varepsilon} b) = a \vee_{\varepsilon} (a \wedge_{\varepsilon} b) = \varepsilon(a)$$
, for all $a, b \in L$.

Clearly, in an \mathcal{E} -lattice L (relative to ε) the map ε is idempotent and $\operatorname{Im} \varepsilon = \operatorname{Fix} \varepsilon$. Moreover, for any $a, b \in L$, we have:

$$a \wedge_{\varepsilon} \varepsilon(a) = a \vee_{\varepsilon} \varepsilon(a) = \varepsilon(a),$$

$$a \wedge_{\varepsilon} \varepsilon(b) = \varepsilon(a) \wedge_{\varepsilon} b = \varepsilon(a) \wedge_{\varepsilon} \varepsilon(b) = \varepsilon(a \wedge_{\varepsilon} b),$$

$$a \vee_{\varepsilon} \varepsilon(b) = \varepsilon(a) \vee_{\varepsilon} b = \varepsilon(a) \vee_{\varepsilon} \varepsilon(b) = \varepsilon(a \vee_{\varepsilon} b).$$

Also, note that the set $\operatorname{Fix} \varepsilon$ is closed under the binary operations \wedge_{ε} , \vee_{ε} and, denoting by \wedge , \vee the restrictions of \wedge_{ε} , \vee_{ε} to $\operatorname{Fix} \varepsilon$, we have that $(\operatorname{Fix} \varepsilon, \wedge, \vee)$ is a lattice. The connection between the \mathcal{E} -lattice concept and the lattice concept is very powerful. So, if $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is an \mathcal{E} -lattice and \sim is an equivalence relation on L such that $\sim \subseteq \operatorname{Ker} \varepsilon$, then the factor set L/\sim is a lattice isomorphic to the lattice $\operatorname{Fix} \varepsilon$. Conversely, if L is a nonvoid set and \sim is an equivalence relation on L having the property that the factor set

 L/\sim is a lattice, then the set L can be endowed with a \mathcal{E} -lattice structure (relative to a map $\varepsilon:L\to L$) such that $\sim\subseteq \operatorname{Ker} \varepsilon$ and $L/\sim\cong\operatorname{Fix} \varepsilon$.

If $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is an \mathcal{E} -lattice and for every $x \in L$ we denote by [x] the equivalence class of x modulo $\operatorname{Ker} \varepsilon$ (i.e. $[x] = \{y \in L \mid \varepsilon(x) = \varepsilon(y)\}$), then we have $a \wedge_{\varepsilon} b \in [\varepsilon(a) \wedge \varepsilon(b)]$ and $a \vee_{\varepsilon} b \in [\varepsilon(a) \vee \varepsilon(b)]$, for all $a, b \in L$. We say that L is a canonical \mathcal{E} -lattice if $a \wedge_{\varepsilon} b, a \vee_{\varepsilon} b \in \operatorname{Fix} \varepsilon$, for all $a, b \in L$. Three fundamental types of canonical \mathcal{E} -lattices have been identified, as follows:

- let (L, \wedge, \vee) be a lattice, ε be an idempotent endomorphism of L and define $a \wedge_{\varepsilon} b = \varepsilon(a \wedge b)$, $a \vee_{\varepsilon} b = \varepsilon(a \vee b)$, for every $a, b \in L$; then $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is a canonical \mathcal{E} -lattice, called a *canonical* \mathcal{E} -lattice of type 1;
- let (L, \wedge, \vee) be a lattice, $\varepsilon : L \to L$ be an idempotent map such that Fix ε is a sublattice of L and define $a \wedge_{\varepsilon} b = \varepsilon(a) \wedge (b)$, $a \vee_{\varepsilon} b = \varepsilon(a) \vee (b)$, for every $a, b \in L$; then $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is a canonical \mathcal{E} -lattice, called a *canonical* \mathcal{E} -lattice of type 2;
- let L be a set, $\varepsilon: L \to L$ be an idempotent map such that Fix ε is a lattice (we denote by \wedge, \vee its binary operations) and define $a \wedge_{\varepsilon} b = \varepsilon(a) \wedge \varepsilon(b)$, $a \vee_{\varepsilon} b = \varepsilon(a) \vee \varepsilon(b)$, for every $a, b \in L$; then $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is a canonical \mathcal{E} -lattice, called a *canonical* \mathcal{E} -lattice of type 3.

The above constructions furnish us many examples of canonical \mathcal{E} -lattices. Mention also that any canonical \mathcal{E} -lattice is isomorphic to a canonical \mathcal{E} -lattice of type 3 (see [8], Section 2, Proposition 2).

Let $(L_1, \wedge_{\varepsilon_1}, \vee_{\varepsilon_1})$ and $(L_2, \wedge_{\varepsilon_2}, \vee_{\varepsilon_2})$ be two \mathcal{E} -lattices. According to [8], a map $f: L_1 \to L_2$ is called an \mathcal{E} -lattice homomorphism if:

a)
$$f \circ \varepsilon_1 = \varepsilon_2 \circ f$$
;

b) for all $a, b \in L_1$, we have:

i)
$$f(a \wedge_{\varepsilon_1} b) = f(a) \wedge_{\varepsilon_2} f(b);$$

ii)
$$f(a \vee_{\varepsilon_1} b) = f(a) \vee_{\varepsilon_2} f(b)$$
.

Moreover, if f is one-to-one and onto, then we say that it is an \mathcal{E} -lattice isomorphism. \mathcal{E} -lattice homomorphisms (respectively \mathcal{E} -lattice isomorphisms) of an \mathcal{E} -lattice into itself are called \mathcal{E} -lattice endomorphisms (respectively \mathcal{E} -lattice automorphisms). The most significant results concerning to \mathcal{E} -lattice homomorphisms / isomorphisms have been obtained in the particular case of subgroup \mathcal{E} -lattices (see [9]).

Most of our notation is standard and will usually not be repeated here. Basic definitions and results on lattices can be found in [1] and [4]. For hyperstructure theory notions we refer the reader to [3].

2 Basic properties of \mathcal{E} -lattices

In this section we investigate some properties of \mathcal{E} -lattices, as modularity, distributivity or complementation. We shall prove that they are strongly connected to the similar properties of lattices.

In order to introduce the modularity for \mathcal{E} -lattices, we need to extend at this situation the notion of ordering relation. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice. A binary relation \leq_{ε} on L is called an \mathcal{E} -ordering relation (relative

to ε) if, for all $a, b \in L$, we have:

- a) $\varepsilon(a) \leq_{\varepsilon} \varepsilon(a)$;
- b) $a \leq_{\varepsilon} b$ and $b \leq_{\varepsilon} a$ imply that a = b;
- c) $a \leq_{\varepsilon} b$ and $b \leq_{\varepsilon} c$ imply that $a \leq_{\varepsilon} c$.

In a natural way, on L we define the following two \mathcal{E} -ordering relations:

$$- a \leq_{\varepsilon}' b \quad \text{iff} \quad a \wedge_{\varepsilon} b = a;$$

$$- a \leq_{\varepsilon}'' b \text{ iff } a \vee_{\varepsilon} b = b.$$

These are not equivalent $(a \leq_{\varepsilon}' b \text{ implies that } a \vee_{\varepsilon} b = \varepsilon(b) \text{ and } a \leq_{\varepsilon}'' b \text{ implies that } a \wedge_{\varepsilon} b = \varepsilon(a)).$ Moreover, we have

$$a \leq_{\varepsilon}' b$$
 iff $a \in \operatorname{Fix} \varepsilon$ and $a \leq \varepsilon(b)$

and

$$a \leq_{\varepsilon}^{"} b$$
 iff $b \in \operatorname{Fix} \varepsilon$ and $\varepsilon(a) \leq b$,

where \leq is the ordering relation associated to the lattice Fix ε .

Definition 1 We say that an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is \wedge_{ε} -modular if $a \leq_{\varepsilon}' b$ implies that $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c) = b \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$, and \vee_{ε} -modular if $a \leq_{\varepsilon}'' b$ implies that $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c) = b \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$.

The following result shows that the above two concepts are equivalent and, moreover, the modularity of an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ can be reduced to the modularity of the lattice Fix ε .

Proposition 1 For an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$, the next conditions are equivalent:

- a) L is \wedge_{ε} -modular.
- b) L is \vee_{ε} -modular.
- c) The lattice Fix ε is modular.

Proof. a) \iff c) Suppose that L is \wedge_{ε} -modular and let $a, b, c \in \operatorname{Fix} \varepsilon$ such that $a \leq b$. Then $a \wedge_{\varepsilon} b = \varepsilon(a) \wedge_{\varepsilon} \varepsilon(b) = \varepsilon(a) \wedge \varepsilon(b) = \varepsilon(a) = a$ and so $a \leq'_{\varepsilon} b$. It obtains that $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c) = b \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$, which means $a \vee (b \wedge c) = b \wedge (a \vee c)$ in the lattice $\operatorname{Fix} \varepsilon$.

Conversely, assume that Fix ε is modular and let a, b, c be three elements of L satisfying $a \leq_{\varepsilon}' b$. Then $a \in \text{Fix } \varepsilon$ and $a \leq \varepsilon(b)$. This last relation implies that $a \vee (\varepsilon(b) \wedge \varepsilon(c)) = \varepsilon(b) \wedge (a \vee \varepsilon(c))$. Since a is a fixed point, the previous equality is equivalent to $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c) = b \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$ and hence L is \wedge_{ε} -modular.

b) \iff c) Similarly with a) \iff c).

Note that each of the following well-known conditions (which for lattices are equivalent to the modularity – see, for example, Chapter IV of [4]):

- (1) $a \wedge_{\varepsilon} (b \vee_{\varepsilon} c) = a \wedge_{\varepsilon} \{ [b \wedge_{\varepsilon} (a \vee_{\varepsilon} c)] \vee_{\varepsilon} c \}, \text{ for all } a, b, c \in L,$
- (2) $a \wedge_{\varepsilon} [b \vee_{\varepsilon} (a \wedge_{\varepsilon} c)] = (a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c)$, for all $a, b, c \in L$,
- (3) $x \wedge_{\varepsilon} a = x \wedge_{\varepsilon} b$, $x \vee_{\varepsilon} a = x \vee_{\varepsilon} b$ and $a \leq'_{\varepsilon} b$ (or $a \leq''_{\varepsilon} b$) imply that a = b,
- (4) L does not contain five distinct elements x, a, b, c, y satisfying $a \wedge_{\varepsilon} c = b \wedge_{\varepsilon} c = x$, $a \vee_{\varepsilon} c = b \vee_{\varepsilon} c = y$ and $a \leq'_{\varepsilon} b$ (or $a \leq''_{\varepsilon} b$)

assures the modularity of the \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$, but not conversely.

Our next aim is to study the concept of distributivity for \mathcal{E} -lattice.

Definition 2 We say that an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is \wedge_{ε} -distributive if $a \wedge_{\varepsilon}$ $(b \vee_{\varepsilon} c) = (a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c), \text{ for all } a, b, c \in L, \text{ and } \vee_{\varepsilon}\text{-distributive if }$ $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c) = (a \vee_{\varepsilon} b) \wedge_{\varepsilon} (a \vee_{\varepsilon} c), \text{ for all } a, b, c \in L.$

The above two types of distributivity of an \mathcal{E} -lattice are not equivalent, as shows the following example.

Example 1 Let L be the set consisting of all natural divisors of 72 and $\varepsilon: L \to L$ be the map defined by $\varepsilon(1) = 1$, $\varepsilon(2) = \varepsilon(4) = \varepsilon(8) = 2$, $\varepsilon(3) = \varepsilon(9) = 3$, $\varepsilon(6) = \varepsilon(12) = \varepsilon(18) = \varepsilon(24) = \varepsilon(36) = \varepsilon(72) = 6$. On L we introduce an \mathcal{E} -lattice structure, by defining two binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ in the next manner:

- if two elements a, b of L are contained in distinct classes of equivalence modulo $\operatorname{Ker} \varepsilon$, put $a \wedge_{\varepsilon} b = \varepsilon(a) \wedge \varepsilon(b)$ and $a \vee_{\varepsilon} b = \varepsilon(a) \vee \varepsilon(b)$ (note that in this case the binary operations \wedge and \vee on Fix ε are G.C.D. and L.C.M., respectively);
- $-4 \wedge_{\varepsilon} 8 = 4 \vee_{\varepsilon} 8 = 2;$

$$-12 \wedge_{\varepsilon} 18 = 12 \wedge_{\varepsilon} 24 = 12 \wedge_{\varepsilon} 72 = 36, \ 12 \wedge_{\varepsilon} 36 = 6$$
$$18 \wedge_{\varepsilon} 24 = 18 \wedge_{\varepsilon} 36 = 18 \wedge_{\varepsilon} 72 = 6$$
$$24 \wedge_{\varepsilon} 36 = 24 \wedge_{\varepsilon} 72 = 6$$

$$24 \wedge_{\varepsilon} 36 = 24 \wedge_{\varepsilon} 72 = 6$$

$$36 \wedge_{\varepsilon} 72 = 6$$

12
$$\vee_{\varepsilon}$$
 18 = 12 \vee_{ε} 24 = 36, 12 \vee_{ε} 36 = 12 \vee_{ε} 72 = 6

18
$$\vee_{\varepsilon} 24 = 72$$
, 18 $\vee_{\varepsilon} 36 = 18 \vee_{\varepsilon} 72 = 6$
24 $\vee_{\varepsilon} 36 = 24 \vee_{\varepsilon} 72 = 6$
36 $\vee_{\varepsilon} 72 = 6$.

By a direct calculation, it is easy to see that L is \vee_{ε} -distributive. On the other hand, we have $12 \wedge_{\varepsilon} (18 \vee_{\varepsilon} 24) \neq (12 \wedge_{\varepsilon} 18) \vee_{\varepsilon} (12 \wedge_{\varepsilon} 24)$ and therefore L is not \wedge_{ε} -distributive.

In the previous example, remark that the lattice Fix $\varepsilon = \{1, 2, 3, 6\}$ is distributive and so the distributivity of the lattice Fix ε does not imply that of the \mathcal{E} -lattice L. Clearly, the converse implication holds, i.e. any \wedge_{ε} -distributive (or \vee_{ε} -distributive) \mathcal{E} -lattice has a distributive lattice of fixed points. Mention also that these two properties are equivalent for canonical \mathcal{E} -lattices and that both \wedge_{ε} -distributivity and \vee_{ε} -distributivity of an \mathcal{E} -lattice imply its modularity.

Into an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$, each of the following well-known conditions (which for lattices are equivalent to the distributivity – see, for example, Chapter II of [4]):

- (1) $(a \wedge_{\varepsilon} b) \vee_{\varepsilon} (b \wedge_{\varepsilon} c) \vee_{\varepsilon} (c \wedge_{\varepsilon} a) = (a \vee_{\varepsilon} b) \wedge_{\varepsilon} (b \vee_{\varepsilon} c) \wedge_{\varepsilon} (c \vee_{\varepsilon} a),$ for all $a, b, c \in L$,
- (2) $x \wedge_{\varepsilon} a = x \wedge_{\varepsilon} b$ and $x \vee_{\varepsilon} a = x \vee_{\varepsilon} b$ imply that a = b,
- (3) L is modular and it does not contain five distinct elements x, a, b, c, y satisfying $a \wedge_{\varepsilon} b = b \wedge_{\varepsilon} c = c \wedge_{\varepsilon} a = x$ and $a \vee_{\varepsilon} b = b \vee_{\varepsilon} c = c \vee_{\varepsilon} a = y$

assures the distributivity of the lattice Fix ε , but not the \wedge_{ε} -distributivity or the \vee_{ε} -distributivity of L.

Next we shall indicate some sufficient condition for an \mathcal{E} -lattice in order to have its distributivity. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice and $\{a_i \mid i \in I\}$ be a set of representatives for the equivalence classes modulo $\ker \varepsilon$. A nonvoid subset L' of L is called an \mathcal{E} -sublattice of L if $\varepsilon(L') \subseteq L'$ and L' is closed under the binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ (note that $\operatorname{Fix} \varepsilon$, as well as every equivalence class modulo $\ker \varepsilon$ are \mathcal{E} -sublattice of L). For any two distinct elements $x, y \in [a_i] \setminus \{a_i\}$ $(i \in I)$, the \mathcal{E} -sublattice $\langle x, y \rangle$ of L generated by x and y can have one of the following forms:

$$\langle x, y \rangle = L'_0 = \{a_i, x, y\}, \text{ where } x \wedge_{\varepsilon} y = x \vee_{\varepsilon} y = a_i,$$

$$\langle x, y \rangle = L'_1 = \{a_i, x, y, x \wedge_{\varepsilon} y\}, \text{ where } x \vee_{\varepsilon} y = a_i,$$

$$\langle x, y \rangle = L'_2 = \{a_i, x, y, x \vee_{\varepsilon} y\}, \text{ where } x \wedge_{\varepsilon} y = a_i,$$

$$\langle x, y \rangle = L'_3 = \{a_i, x, y, x \wedge_{\varepsilon} y, x \vee_{\varepsilon} y\}.$$

Obviously, all \mathcal{E} -lattices L'_i , $i = \overline{0,3}$, are included in the class $[a_i]$ and each of them possesses an \mathcal{E} -sublattice of type L'_0 . Then the following two conditions are equivalent:

- i) $[a_i]$ does not contain an \mathcal{E} -sublattice of type L'_0 , for any $i \in I$.
- ii) $|[a_i]| \leq 2$, for any $i \in I$.

Assume now that the \mathcal{E} -lattice L satisfies the above conditions and it has a fully ordered lattice of fixed points. Since $\operatorname{Fix} \varepsilon$ is distributive, for any $a,b,c\in L$, both $a \wedge_{\varepsilon} (b \vee_{\varepsilon} c)$ and $(a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c)$ (respectively $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c)$ and $(a \vee_{\varepsilon} b) \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$) are contained in the same equivalence class modulo $\operatorname{Ker} \varepsilon$. Clearly, if one of the elements a,b,c is a fixed point, then the equalities $a \wedge_{\varepsilon} (b \vee_{\varepsilon} c) = (a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c)$ and $a \vee_{\varepsilon} (b \wedge_{\varepsilon} c)$

 $c) = (a \vee_{\varepsilon} b) \wedge_{\varepsilon} (a \vee_{\varepsilon} c)$ hold. Let us consider that $a, b, c \notin \operatorname{Fix} \varepsilon$ and $a \wedge_{\varepsilon} (b \vee_{\varepsilon} c) \neq (a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c)$ (the other situation can be treated in a similar way). Put $a \in [a_i] = \{a_i, a\}, b \in [a_j] = \{a_j, b\}, c \in [a_k] = \{a_k, c\}$ and suppose $a_i \leq a_j \leq a_k$. Then $a \wedge_{\varepsilon} (b \vee_{\varepsilon} c), (a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c) \in [a_i]$ and so we have the next two cases:

Case 1.
$$a \wedge_{\varepsilon} (b \vee_{\varepsilon} c) = a_i$$
 and $(a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c) = a$

Since a is not a fixed point, the same property is verified by $a \wedge_{\varepsilon} b$ and $a \wedge_{\varepsilon} c$. But $a \wedge_{\varepsilon} b, a \wedge_{\varepsilon} c \in [a_i]$ and therefore $a \wedge_{\varepsilon} b = a \wedge_{\varepsilon} c = a$. This implies that $a \in \text{Fix } \varepsilon$, a contradiction.

Case 2.
$$a \wedge_{\varepsilon} (b \vee_{\varepsilon} c) = a$$
 and $(a \wedge_{\varepsilon} b) \vee_{\varepsilon} (a \wedge_{\varepsilon} c) = a_i$

Because $a \notin \operatorname{Fix} \varepsilon$, we have $b \vee_{\varepsilon} c \notin \operatorname{Fix} \varepsilon$ and thus $b \vee_{\varepsilon} c = c$. This equality shows that $b \leq_{\varepsilon}'' c$. Hence $c \in \operatorname{Fix} \varepsilon$, a contradiction.

Mention that the study of the other five situations of ordering between a_i, a_j and a_k is analogous to the above. Therefore we have proved the next proposition.

Proposition 2 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice satisfying the previous equivalent conditions i), ii) and having a fully ordered lattice of fixed points. Then L is both \wedge_{ε} -distributive and \vee_{ε} -distributive.

Finally, we present some results concerning to the concept of complementation for \mathcal{E} -lattices. Since on an \mathcal{E} -lattice we have two \mathcal{E} -ordering relations, it is natural to introduce two different types of initial (respectively final) elements. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice. An element $a_0 \in L$

is called \wedge_{ε} -initial if $a_0 \leq_{\varepsilon}' a$, for all $a \in L$, and \vee_{ε} -initial if $a_0 \leq_{\varepsilon}'' a$, for all $a \in L$. By duality, an element $a_1 \in L$ is called \wedge_{ε} -final if $a \leq_{\varepsilon}' a_1$, for all $a \in L$, and \vee_{ε} -final if $a \leq_{\varepsilon}'' a_1$, for all $a \in L$. The notions of \vee_{ε} -initial element or \wedge_{ε} -final element of an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ lead to the trivial case $L = \operatorname{Fix} \varepsilon$ and so we shall consider only the other situations. For two elements $a_0, a_1 \in L$, we have that

 a_0 is \wedge_{ε} -initial in L iff a_0 is an initial element of Fix ε

and

 a_1 is \vee_{ε} -final in L iff a_1 is a final element of Fix ε .

Remark also that, under the hypothesis of their existence, we have the uniqueness of a \wedge_{ε} -initial element or of a \vee_{ε} -final element of an \mathcal{E} -lattice. In the following, by a bounded \mathcal{E} -lattice we shall understand an \mathcal{E} -lattice having both a \wedge_{ε} -initial element (denoted usually by a_0) and a \vee_{ε} -final element (denoted usually by a_1).

Definition 3 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a bounded \mathcal{E} -lattice and $a \in L$. An element $\bar{a} \in L$ is called an \mathcal{E} -complement of a if $a \wedge_{\varepsilon} \bar{a} = a_0$ and $a \vee_{\varepsilon} \bar{a} = a_1$. We say that L is \mathcal{E} -complemented if every element of L has an \mathcal{E} -complement.

First of all, we show that the \mathcal{E} -complementation of an \mathcal{E} -lattice is equivalent to the complementation of its lattice of fixed points.

Proposition 3 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a bounded \mathcal{E} -lattice. Then L is \mathcal{E} -complemented if and only if $\operatorname{Fix} \varepsilon$ is a complemented lattice.

Proof. Suppose that L is \mathcal{E} -complemented. If \bar{a} is an \mathcal{E} -complement of $a \in L$, then, by applying ε to the equalities $a \wedge_{\varepsilon} \bar{a} = a_0$ and $a \vee_{\varepsilon} \bar{a} = a_1$, it obtains that $\varepsilon(\bar{a})$ is a complement of $\varepsilon(a)$ in Fix ε (and an \mathcal{E} -complement of a in L, too). Since Fix $\varepsilon = \text{Im } \varepsilon$, it results that Fix ε is complemented.

Conversely, assume that $\operatorname{Fix} \varepsilon$ is a complemented lattice and let $a \in L$. Then a complement of $\varepsilon(a)$ in $\operatorname{Fix} \varepsilon$ is also an \mathcal{E} -complement of a in L. Hence L is \mathcal{E} -complemented.

Corollary 1 A bounded \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is uniquely \mathcal{E} -complemented if and only if $L = \operatorname{Fix} \varepsilon$ and $\operatorname{Fix} \varepsilon$ is a uniquely complemented lattice.

Proof. Suppose that L is uniquely \mathcal{E} -complemented, that is, every element of L possesses a unique \mathcal{E} -complement. Let a be an element of L and $\bar{a} \in L$ such that $a \wedge_{\varepsilon} \bar{a} = a_0$ and $a \vee_{\varepsilon} \bar{a} = a_1$. Then $\varepsilon(a) \wedge_{\varepsilon} \bar{a} = a_0$ and $\varepsilon(a) \vee_{\varepsilon} \bar{a} = a_1$.

Since \bar{a} has a unique \mathcal{E} -complement, it follows that $\varepsilon(a) = a$ and so $L = \operatorname{Fix} \varepsilon$. In this case the concepts of \mathcal{E} -complement and complement coincide, therefore $\operatorname{Fix} \varepsilon$ is a uniquely complemented lattice. The converse implication is obvious.

As we have already seen, if an element a of a bounded \mathcal{E} -lattice L possesses an \mathcal{E} -complement, this is not unique in general. Let C_a be the set of all \mathcal{E} -complements of a. Then we can easily verify that the following relations hold: $C_a \subseteq C_{\varepsilon(a)}$, and $\varepsilon(C_{\varepsilon(a)}) = \varepsilon(C_a) \subseteq C_a$. With the supplementary assumption that L is \wedge_{ε} -distributive (respectively \vee_{ε} -distributive), it obtains that C_a is closed under the binary operation \vee_{ε} (respectively

 \wedge_{ε}). Thus, for a bounded \mathcal{E} -lattice L which is both \wedge_{ε} -distributive and \vee_{ε} -distributive, C_a is an \mathcal{E} -sublattice of L. Because the \wedge_{ε} -distributivity or the \vee_{ε} -distributivity of L implies the distributivity of the lattice Fix ε , we also have

(1)
$$C_a \subseteq [\bar{a}] \subseteq C_{\varepsilon(a)}$$
,

where \bar{a} is an arbitrary \mathcal{E} -complement of a. Note that if a is a fixed point, then $C_a = C_{\varepsilon(a)}$ and hence

(2)
$$C_a = [\bar{a}].$$

It is well-known that an element of a distributive lattice can have only one complement. This uniqueness fails for \mathcal{E} -complements, as shows the equality (2).

3 Links to hyperstructure theory

There are well-known the connections between the lattice theory and the hyperstructure theory (for example, see Chapter 4 of [3]). In this way, many properties of lattices (as modularity, distributivity, ... and so on) can be characterized by properties of some hyperstructures associated to them. Since \mathcal{E} -lattices constitute generalizations of lattices, it is natural to study their links with hyperstructures. The first steps of this study represent the main purpose of the present section.

Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice, $\mathcal{P}^*(L)$ be the set of all nonempty subsets of L and, for every $a \in L$, denote by [a] the equivalence class of a modulo

Ker ε . The simplest hyperoperations which can be defined on L are the following:

$$\overline{\wedge}_{\varepsilon}, \overline{\vee}_{\varepsilon} : L \times L \to \mathcal{P}^{*}(L)$$

$$a \overline{\wedge}_{\varepsilon} b = [a \wedge_{\varepsilon} b], \ a \overline{\vee}_{\varepsilon} b = [a \vee_{\varepsilon} b], \ \text{for all } a, b \in L.$$

These are associative and commutative, therefore $(L, \overline{\wedge}_{\varepsilon})$ and $(L, \overline{\vee}_{\varepsilon})$ are commutative semihypergroups. Note also that if $(L_1, \wedge_{\varepsilon_1}, \vee_{\varepsilon_1}), (L_2, \wedge_{\varepsilon_2}, \vee_{\varepsilon_2})$ are two \mathcal{E} -lattices and $f: L_1 \to L_2$ is an \mathcal{E} -lattice homomorphism, then f is a semihypergroup homomorphism both from $(L_1, \overline{\wedge}_{\varepsilon_1})$ to $(L_2, \overline{\wedge}_{\varepsilon_2})$ and from $(L_1, \overline{\vee}_{\varepsilon_1})$ to $(L_2, \overline{\vee}_{\varepsilon_2})$.

On the other hand, $\overline{\wedge}_{\varepsilon}$ and $\overline{\vee}_{\varepsilon}$ verify the conditions in the definition of a new concept, which extends that of hyperlattice.

Definition 4 Let L be a nonvoid set and $\overline{\wedge}, \overline{\vee}$ be two hyperoperations on L. We say that $(L, \overline{\wedge}, \overline{\vee})$ is a generalized hyperlattice if, for any $(a, b, c) \in L^3$, the following conditions are satisfied:

- a) $a \in (a \overline{\wedge} a) \cap (a \overline{\vee} a)$;
- b) $a\overline{\wedge}b = b\overline{\wedge}a$, $a\overline{\vee}b = b\overline{\vee}a$:
- c) $a\overline{\wedge}(b\overline{\wedge}c) = (a\overline{\wedge}b)\overline{\wedge}c, \ a\overline{\vee}(b\overline{\vee}c) = (a\overline{\vee}b)\overline{\vee}c;$
- d) $a \in [a\overline{\wedge}(a\overline{\vee}b)] \cap [a\overline{\vee}(a\overline{\wedge}b)];$
- e) $a \in a \overline{\vee} b \iff b \in a \overline{\wedge} b$.

By a direct calculation, it is easy to prove the next proposition.

Proposition 4 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice and $\overline{\wedge}_{\varepsilon}, \overline{\vee}_{\varepsilon}$ be the above hyperoperations on L. Then $(L, \overline{\wedge}_{\varepsilon}, \overline{\vee}_{\varepsilon})$ is a generalized hyperlattice.

Another remarkable hyperoperation on the \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ can be constructed by using $\overline{\wedge}_{\varepsilon}$ and $\overline{\vee}_{\varepsilon}$ in the next manner:

$$*: L \times L \to \mathcal{P}^*(L)$$

$$a*b = (a \overline{\wedge}_{\varepsilon} b) \cup (a \overline{\vee}_{\varepsilon} b), \text{ for all } a, b \in L.$$

Clearly, the hyperoperation * is commutative. We also have:

$$a * a = [a]$$
, for every $a \in L$.

Other usual properties of * are equivalent to some properties of the \mathcal{E} -lattice L, as show the following results.

Proposition 5 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice and * be the previous hyperoperation on L. Then the following conditions are equivalent:

- a) (L,*) is a semihypergroup.
- b) (L,*) is a quasihypergroup.
- c) The lattice Fix ε is fully ordered.

Proof. a) \Longrightarrow c) Suppose that * is associative and let a, b be two arbitrary elements of L. Then a * (a * b) = (a * a) * b, which means:

$$\bigcup_{x \in [a \, \wedge_\varepsilon \, b] \cup [a \, \vee_\varepsilon \, b]} ([a \, \wedge_\varepsilon \, x] \cup [a \, \vee_\varepsilon \, x]) = \bigcup_{x \in [a]} ([x \, \wedge_\varepsilon \, b] \cup [x \, \vee_\varepsilon \, b]).$$

Take $y \in \bigcup_{x \in [a \wedge_{\varepsilon} b]} [a \vee_{\varepsilon} x]$. Then $y \in [a \vee_{\varepsilon} x]$, for some $x \in [a \wedge_{\varepsilon} b]$, and so $\varepsilon(y) = \varepsilon(a) \vee \varepsilon(x) = \varepsilon(a) \vee (\varepsilon(a) \wedge \varepsilon(b)) = \varepsilon(a)$. If $y \in \bigcup_{x \in [a]} [x \wedge_{\varepsilon} b]$ it obtains

30 M. Tärnäuceanu

 $\varepsilon(y) = \varepsilon(a) \wedge \varepsilon(b)$ and if $y \in \bigcup_{x \in [a]} [x \vee_{\varepsilon} b]$ it obtains $\varepsilon(y) = \varepsilon(a) \vee \varepsilon(b)$. Thus $\varepsilon(a) = \varepsilon(a) \wedge \varepsilon(b)$ or $\varepsilon(a) = \varepsilon(a) \vee \varepsilon(b)$, which imply that $\varepsilon(a) \leq \varepsilon(b)$ or $\varepsilon(b) \leq \varepsilon(a)$. Hence Fix ε is fully ordered.

c) \Longrightarrow a) Suppose Fix ε to be fully ordered and let $a,b\in L$. We have to prove that a*(b*c)=(a*b)*c, i.e.:

$$(3) \bigcup_{x \in [b \wedge_{\varepsilon} c] \cup [b \vee_{\varepsilon} c]} ([a \wedge_{\varepsilon} x] \cup [a \vee_{\varepsilon} x]) = \bigcup_{x \in [a \wedge_{\varepsilon} b] \cup [a \vee_{\varepsilon} b]} ([x \wedge_{\varepsilon} c] \cup [x \vee_{\varepsilon} c]).$$

It is easy to see that the next equalities hold:

$$\begin{cases}
\bigcup_{x \in [b \wedge_{\varepsilon} c]} [a \wedge_{\varepsilon} x] = \bigcup_{x \in [a \wedge_{\varepsilon} b]} [x \wedge_{\varepsilon} c] = [a \wedge_{\varepsilon} b \wedge_{\varepsilon} c], \\
\bigcup_{x \in [b \vee_{\varepsilon} c]} [a \vee_{\varepsilon} x] = \bigcup_{x \in [a \vee_{\varepsilon} b]} [x \vee_{\varepsilon} c] = [a \vee_{\varepsilon} b \vee_{\varepsilon} c], \\
\bigcup_{x \in [b \wedge_{\varepsilon} c]} [a \vee_{\varepsilon} x] = [a \vee_{\varepsilon} (b \wedge_{\varepsilon} c)], \quad \bigcup_{x \in [b \vee_{\varepsilon} c]} [a \wedge_{\varepsilon} x] = [a \wedge_{\varepsilon} (b \vee_{\varepsilon} c)], \\
\bigcup_{x \in [a \wedge_{\varepsilon} b]} [x \vee_{\varepsilon} c] = [(a \wedge_{\varepsilon} b) \vee_{\varepsilon} c)], \quad \bigcup_{x \in [a \vee_{\varepsilon} b]} [x \wedge_{\varepsilon} c] = [(a \vee_{\varepsilon} b) \wedge_{\varepsilon} c)].
\end{cases}$$

Assume that $\varepsilon(a) \leq \varepsilon(b) \leq \varepsilon(c)$ (the other five cases of ordering between $\varepsilon(a), \varepsilon(b)$ and $\varepsilon(c)$ may be treated in a similar way). Then the equalities (4) become:

$$\begin{cases}
\bigcup_{x \in [b \land_{\varepsilon} c]} [a \land_{\varepsilon} x] = \bigcup_{x \in [a \land_{\varepsilon} b]} [x \land_{\varepsilon} c] = [a], \\
\bigcup_{x \in [b \lor_{\varepsilon} c]} [a \lor_{\varepsilon} x] = \bigcup_{x \in [a \lor_{\varepsilon} b]} [x \lor_{\varepsilon} c] = [c], \\
\bigcup_{x \in [b \land_{\varepsilon} c]} [a \lor_{\varepsilon} x] = [b], \bigcup_{x \in [b \lor_{\varepsilon} c]} [a \land_{\varepsilon} x] = [a], \\
\bigcup_{x \in [a \land_{\varepsilon} b]} [x \lor_{\varepsilon} c] = [c], \bigcup_{x \in [a \lor_{\varepsilon} b]} [x \land_{\varepsilon} c] = [b].
\end{cases}$$

These imply that the both sides of (3) are equal to $[a] \cup [b] \cup [c]$ and so (3) holds.

b) \Longrightarrow c) Suppose that (L,*) is a quasihypergroup, that is, it satisfies the reproductive law:

$$a*L = L*a = L$$
, for every $a \in L$.

Let $a, b \in L$. Then $b \in a * L$, therefore there exists $x \in L$ such that $b \in a * x$. It results $b \in [a \wedge_{\varepsilon} x]$ or $b \in [a \vee_{\varepsilon} x]$ and thus $\varepsilon(b) = \varepsilon(a) \wedge \varepsilon(x)$ or $\varepsilon(b) = \varepsilon(a) \vee \varepsilon(x)$. So $\varepsilon(b) \leq \varepsilon(a)$ or $\varepsilon(a) \leq \varepsilon(b)$, which show that Fix ε is fully ordered.

c) \Longrightarrow b) Let a and b be two elements of L. Because Fix ε is fully ordered, we have $\varepsilon(b) \leq \varepsilon(a)$ or $\varepsilon(a) \leq \varepsilon(b)$, i.e. $\varepsilon(b) = \varepsilon(a) \wedge \varepsilon(b) = \varepsilon(a \wedge_{\varepsilon} b)$ or $\varepsilon(b) = \varepsilon(a) \vee \varepsilon(b) = \varepsilon(a \vee_{\varepsilon} b)$. It obtains $b \in [a \wedge_{\varepsilon} b]$ or $b \in [a \vee_{\varepsilon} b]$ and so $b \in a * b$. Hence L = a * L and our proof is finished.

By Proposition 3.3, we get immediately the next corollary.

Corollary 2 Under the hypothesis of Proposition 3.3, we have that (L,*) is a hypergroup if and only if the lattice $Fix \varepsilon$ is fully ordered.

As we have seen in the proof of Proposition 3.3, if Fix ε is fully ordered, then $\{a,b\} \subseteq a*b$, for all $a,b \in L$. This shows that any element in L is an identity of (L,*). Also, remark that (L,*) contains a scalar iff |L| = 1.

Moreover, the assumption that $\operatorname{Fix} \varepsilon$ is fully ordered leads us to the conclusion that the hypergroup (L,*) is of a special type.

Proposition 6 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice having a fully ordered lattice of fixed points. Then (L, *) is a join space.

Proof. We must prove that, for any $(a, b, c, d) \in L^4$, $a/b \cap c/d \neq \emptyset$ implies that $a*d \cap b*c \neq \emptyset$. Let $x \in a/b \cap c/d$. Then $a \in x*b$ and $c \in x*d$, which mean $a \in [x \land_{\varepsilon} b] \cup [x \lor_{\varepsilon} b]$ and $c \in [x \land_{\varepsilon} d] \cup [x \lor_{\varepsilon} d]$. We distinguish the next four cases.

Case 1. $a \in [x \land_{\varepsilon} b]$ and $c \in [x \land_{\varepsilon} d]$

It obtains $\varepsilon(a) = \varepsilon(x) \wedge \varepsilon(b)$ and $\varepsilon(c) = \varepsilon(x) \wedge \varepsilon(d)$, therefore $\varepsilon(a) \wedge \varepsilon(d) = (\varepsilon(x) \wedge \varepsilon(b)) \wedge \varepsilon(d) = \varepsilon(b) \wedge (\varepsilon(x) \wedge \varepsilon(d)) = \varepsilon(b) \wedge \varepsilon(c)$. This shows that $[a \wedge_{\varepsilon} d] = [b \wedge_{\varepsilon} c]$ and so:

$$[a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c] \neq \emptyset.$$

Case 2. $a \in [x \vee_{\varepsilon} b]$ and $c \in [x \vee_{\varepsilon} d]$

Dually to Case 1, we obtain:

$$[a \lor_{\varepsilon} d] \cap [b \lor_{\varepsilon} c] \neq \emptyset.$$

Case 3. $a \in [x \wedge_{\varepsilon} b]$ and $c \in [x \vee_{\varepsilon} d]$

We have $\varepsilon(a) = \varepsilon(x) \wedge \varepsilon(b)$ and $\varepsilon(c) = \varepsilon(x) \vee \varepsilon(d)$. Assume that $\varepsilon(d) \leq \varepsilon(b)$. Then $\varepsilon(a) \vee \varepsilon(d) = (\varepsilon(x) \wedge \varepsilon(b)) \vee \varepsilon(d) = (\varepsilon(x) \vee \varepsilon(d)) \wedge (\varepsilon(b) \vee \varepsilon(d)) = \varepsilon(c) \wedge (\varepsilon(b) \vee \varepsilon(d)) = \varepsilon(c) \wedge \varepsilon(b)$, which implies that $[a \wedge_{\varepsilon} d] = [b \wedge_{\varepsilon} c]$. Thus:

$$[a \lor_{\varepsilon} d] \cap [b \land_{\varepsilon} c] \neq \emptyset.$$

Now, let us assume that $\varepsilon(b) \leq \varepsilon(d)$. Because $\varepsilon(x)$ belongs to the interval $[\varepsilon(a), \varepsilon(c)]$ of the lattice Fix ε and $\varepsilon(a) \leq \varepsilon(b) \leq \varepsilon(d) \leq \varepsilon(c)$, we have the following three situations:

i)
$$\varepsilon(x) \in [\varepsilon(a), \varepsilon(b)]$$

Then $\varepsilon(a) = \varepsilon(x)$ and $\varepsilon(c) = \varepsilon(d)$. It results $\varepsilon(a) \vee \varepsilon(d) = \varepsilon(c) = \varepsilon(b) \vee \varepsilon(c)$, and therefore $[a \vee_{\varepsilon} d] = [b \vee_{\varepsilon} c]$ and:

$$[a \lor_{\varepsilon} d] \cap [b \lor_{\varepsilon} c] \neq \emptyset.$$

ii)
$$\varepsilon(x) \in [\varepsilon(b), \varepsilon(d)]$$

Then $\varepsilon(a) = \varepsilon(b)$ and $\varepsilon(c) = \varepsilon(d)$. Clearly, we have $[a \wedge_{\varepsilon} d] = [b \wedge_{\varepsilon} c]$ (and also $[a \vee_{\varepsilon} d] = [b \vee_{\varepsilon} c]$), which shows that:

(9)
$$[a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c] \neq \emptyset$$
 (and also $[a \vee_{\varepsilon} d] \cap [b \vee_{\varepsilon} c] \neq \emptyset$).

iii)
$$\varepsilon(x) \in [\varepsilon(d), \varepsilon(c)]$$

Then $\varepsilon(a) = \varepsilon(b)$ and $\varepsilon(c) = \varepsilon(x)$. It results $\varepsilon(a) \wedge \varepsilon(d) = \varepsilon(a) = \varepsilon(b) \wedge \varepsilon(c)$, and therefore $[a \wedge_{\varepsilon} d] = [b \wedge_{\varepsilon} c]$ and:

$$(10) [a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c] \neq \emptyset.$$

Case 4. $a \in [x \vee_{\varepsilon} b]$ and $c \in [x \wedge_{\varepsilon} d]$

Dually to Case 3, we obtain the next relations:

$$[a \wedge_{\varepsilon} d] \cap [b \vee_{\varepsilon} c] \neq \emptyset,$$

$$[a \vee_{\varepsilon} d] \cap [b \vee_{\varepsilon} c] \neq \emptyset,$$

$$[a \vee_{\varepsilon} d] \cap [b \vee_{\varepsilon} c] \neq \emptyset \text{ (and also } [a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c] \neq \emptyset),$$

$$[a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c] \neq \emptyset.$$

Since $a * d \cap b * c = ([a \wedge_{\varepsilon} d] \cup [a \vee_{\varepsilon} d]) \cap ([b \wedge_{\varepsilon} c] \cup [b \vee_{\varepsilon} c]) = ([a \wedge_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c]) \cup ([a \wedge_{\varepsilon} d] \cap [b \vee_{\varepsilon} c]) \cup ([a \vee_{\varepsilon} d] \cap [b \wedge_{\varepsilon} c]) \cup ([a \vee_{\varepsilon} d] \cap [b \vee_{\varepsilon} c]),$ the above relations show that in all cases we have $a * d \cap b * c \neq \emptyset$. Hence, (L, *) is a join space.

For every element a of the previous join space (L, *), we have a * a = [a] and a/a = L. We infer that (L, *) is geometric iff |L| = 1.

If (L, \wedge, \vee) is a lattice which possesses an initial element, then, introducing on L the hyperoperation

$$a \circ b = \{x \in L \mid a \wedge b \le x\},\$$

we obtain that (L, \circ) is a commutative hypergroup. This construction can be generalized to \mathcal{E} -lattices. So, let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be an \mathcal{E} -lattice having a \wedge_{ε} initial element and, corresponding with the two \mathcal{E} -ordering relations $\leq'_{\varepsilon}, \leq''_{\varepsilon}$ on L, we define

$$a \circ' b = \{x \in L \mid a \wedge_{\varepsilon} b \leq'_{\varepsilon} x\} \text{ and } a \circ'' b = \{x \in L \mid a \wedge_{\varepsilon} b \leq''_{\varepsilon} x\},$$

for all $a, b \in L$. Mention that \circ'' is a hyperoperation on L (we have $\varepsilon(a \wedge_{\varepsilon} b) \in a \circ'' b$ and so the set $a \circ'' b$ is nonempty), in contrast with \circ' , which is

not necessarily well-defined (without some additional assumptions the set $a \circ' b$ can be empty). Under the above hypothesis, we obtain the following result.

Proposition 7 a) If L is a canonical \mathcal{E} -lattice, then (L, \circ') is a commutative hypergroup.

b) (L, \circ'') is a commutative hypergroup if and only if $L = \operatorname{Fix} \varepsilon$.

Proof. a) Let $a, b, c \in L$. Then

$$a \circ' (b \circ' c) = a \circ' \{x \in L \mid b \wedge_{\varepsilon} c \leq'_{\varepsilon} x\} =$$

$$= \bigcup_{\substack{x \in L \\ b \wedge_{\varepsilon} c \leq'_{\varepsilon} x}} a \circ' x = \bigcup_{\substack{x \in L \\ b \wedge_{\varepsilon} c \leq'_{\varepsilon} x}} \{y \in L \mid a \wedge_{\varepsilon} x \leq'_{\varepsilon} y\}$$

and

$$(a \circ' b) \circ' c = \{x \in L \mid a \wedge_{\varepsilon} b \leq'_{\varepsilon} x\} \circ' c =$$

$$= \bigcup_{\substack{x \in L \\ a \wedge_{\varepsilon} b \leq'_{\varepsilon} x}} x \circ' c = \bigcup_{\substack{x \in L \\ a \wedge_{\varepsilon} b \leq'_{\varepsilon} x}} \{y \in L \mid x \wedge_{\varepsilon} c \leq'_{\varepsilon} y\}.$$

Take $y \in a \circ' (b \circ' c)$. Then there exists an element $x \in L$ such that $b \wedge_{\varepsilon} c \leq'_{\varepsilon} x$ and $a \wedge_{\varepsilon} x \leq'_{\varepsilon} y$. It results $a \wedge_{\varepsilon} b \wedge_{\varepsilon} c \leq \varepsilon(y)$ and therefore, putting $x_1 = a \wedge_{\varepsilon} b$, we have $a \wedge_{\varepsilon} b \leq'_{\varepsilon} x_1$ and $x_1 \wedge_{\varepsilon} c \leq'_{\varepsilon} y$. These imply that $y \in (a \circ' b) \circ' c$, so $a \circ' (b \circ' c) \subseteq (a \circ' b) \circ' c$. The converse inclusion is analogous. Then \circ' is associative. Clearly, if a_0 is a \wedge_{ε} -initial element of L, then we have $b \in a \circ' a_0$, for all $a, b \in L$, which shows that (L, \circ') satisfies the reproductive law. Hence (L, \circ') is a hypergroup.

36 M. Tärnäuceanu

b) If (L, \circ'') is a hypergroup, then, for each $a \in L$, there is an element $x \in L$ such that $a \in a \circ'' x$. It follows $a \wedge_{\varepsilon} x \leq_{\varepsilon}'' a$, which implies that $a \in \operatorname{Fix} \varepsilon$. Hence $L = \operatorname{Fix} \varepsilon$. The converse is obvious.

A well-known result of J.C. Varlet (see [10]) states that if (L, \wedge, \vee) is a lattice and \square is the hyperoperation on L defined by:

$$a \square b = \{x \in L \mid a \land b \le x \le a \lor b\}, \text{ for all } a, b \in L,$$

then the lattice L is distributive iff (L, \square) is a join space. This can be naturally extended to the case of canonical \mathcal{E} -lattices in the next manner.

Proposition 8 Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a canonical \mathcal{E} -lattice and \square be the hyperoperation on L defined by:

$$a \square b = \{x \in L \mid a \wedge_{\varepsilon} b \le \varepsilon(x) \le a \vee_{\varepsilon} b\}, \text{ for all } a, b \in L.$$

Then the \mathcal{E} -lattice L is \wedge_{ε} -distributive (or \vee_{ε} -distributive) if and only if (L, \square) is a join space.

We finish our paper by mentioning that other algebraic structures (as fuzzy sets or rough sets) can be possibly connected to \mathcal{E} -lattices and investigated by using this method.

Acknowledgement

This work has been supported by the research grant GAR 88/2007-2008.

References

- [1] G. Birkhoff, Lattice theory, Amer. Math. Soc., Providence, R.I., 1967.
- [2] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [3] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, 2003.
- [4] G. Grätzer, General lattice theory, Academic Press, New York, 1978.
- [5] M. Tărnăuceanu, Actions of groups on lattices, An. Univ. "Ovidius", Constanța, vol. 10 (2002), fasc. 1, 135-148.
- [6] M. Tărnăuceanu, Actions of finite groups on lattices, Seminar Series in Mathematics, Algebra 4, Univ. "Ovidius", Constanţa, 2003.
- [7] M. Tărnăuceanu, Latticeal representations of groups, An. Univ. "Al.I. Cuza", Iaşi, tom L (2004), fasc. 1, 19-31.
- [8] M. Tărnăuceanu, \mathcal{E} lattices, Italian Journal of Pure and Applied Mathematics, vol. 22 (2007), 27-38.
- [9] M. Tărnăuceanu, On isomorphisms of canonical *E*-lattices, Fixed Point Theory, vol. 8 (2007), no. 1, 131-139.

[10] J.C. Varlet, Remarks on distributive lattices, Bull. de l'Acad. Polonnaise des Sciences, Série des Sciences Math., Astr. et Phys., vol. XXIII, no. 11, 1975.

Faculty of Mathematics

"Al.I. Cuza" University

Iași, Romania

e-mail: tarnauc@uaic.ro