Relation between Greek means and various means ${ }^{1}$

V.Lokesha, Padmanabhan.S, K.M.Nagaraja, Y. Simsek

Abstract

In this paper, we obtain some inequalities between Greek means and various means. Further, we deduced the best possible values of various means with $G n_{\mu, r}(a, b)$ and $g n_{\mu, r}(a, b)$. Also we studied the partial derivatives of important means and the value of α of second order partial derivatives.

2000 Mathematics Subject Classification:26D15, 26D10.
Key words and phrases: Greek means, Oscillatory mean and Logarithmic mean.

[^0]
1 Introduction

In ([1]), Ten Greek means are defined on the basis of proportions of which six means are named and four means are unnamed and some distinguished results are obtained. In ([5], [6]) authors defined Oscillatory, $r^{\text {th }}$ Oscillatory means and its duals and obtained some new inequalities and the best possible values with Logarithmic mean, Identric mean and Power mean. In ([7]) authors defined $G n_{\mu, r}(a, b), g n_{\mu, r}(a, b)$ deduced some important results and also shown applications to Ky-Fan inequalities. Here we find the best possible values of the parameters μ, r for which F_{4}, F_{5} and F_{6} are satisfied by the inequalities (15) to (22). Further in ([1]), the partial derivatives of means and some related results are given, using which we obtained parameter α for various means.

Let $a, b>0$, then

$$
\begin{equation*}
A(a, b)=F_{1}(a, b)=\frac{a+b}{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
G(a, b)=F_{2}(a, b)=\sqrt{a b} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
F_{3}(a, b)=\frac{2 a b}{a+b} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
C(a, b)=F_{4}(a, b)=\frac{a^{2}+b^{2}}{a+b} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& F_{5}(a, b)=\frac{a-b+\sqrt{(a-b)^{2}+4 b^{2}}}{2} \tag{5}\\
& F_{6}(a, b)=\frac{b-a+\sqrt{(a-b)^{2}+4 a^{2}}}{2}
\end{align*}
$$

are respestively called Arithmetic mean, Geometric mean, Harmonic mean, contra Harmonic mean, first contra Geometric mean, second contra Geometric mean. Above are called named six Greek means.

$$
L(a, b)=\left\{\begin{array}{cc}
\frac{a-b}{\ln a-\ln b} & a \neq b \tag{7}\\
a & a=b
\end{array}\right.
$$

$$
I(a, b)=\left\{\begin{array}{cl}
e^{\left(\frac{a \ln a-b \ln b}{a-b}-1\right)} & a \neq b \tag{8}\\
a & a=b
\end{array}\right.
$$

$$
M_{r}(a, b)=\left\{\begin{array}{cc}
\left(\frac{a^{r}+b^{r}}{2}\right)^{\frac{1}{r}} & r \neq 0 \tag{9}\\
\sqrt{a b} & r=0
\end{array}\right.
$$

$$
\begin{equation*}
H(a, b)=\frac{a+\sqrt{a b}+b}{3} \tag{10}
\end{equation*}
$$

are respectively called Logarithmic mean, Identric mean and Power mean and Heron mean.

Definition 1 ([r]) For positive numbers a and b, r be a positive real number and $\mu \in(-2, \infty)$. Then $G n_{\mu, r}(a, b)$ and $g n_{\mu, r}(a, b)$ are defined as

$$
G n_{\mu, r}(a, b)= \begin{cases}\frac{2}{\mu+2} A(a, b)+\frac{\mu}{\mu+2} M_{r}(a, b) & r \neq 0 \tag{11}\\ \frac{2}{\mu+2} A(a, b)+\frac{\mu}{\mu+2} G(a, b) & r=0\end{cases}
$$

and

$$
g n_{\mu, r}(a, b)=\left\{\begin{array}{cc}
M_{r}^{\frac{\mu}{\mu+2}}(a, b) A^{\frac{\mu}{\mu+2}}(a, b) & r \neq 0 \tag{12}\\
G^{\frac{\mu}{\mu+2}}(a, b) A^{\frac{\mu}{\mu+2}}(a, b) & r=0
\end{array} .\right.
$$

Definition 2 ([6]) Let $\alpha \in[0,1]$ and $r \geq 0$, then $r^{\text {th }}$ Oscillatory mean and its dual are defined by

$$
\begin{equation*}
O=O(a, b ; \alpha, r)=\alpha M_{r}(a, b)+(1-\alpha) A(a, b) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
o=o(a, b ; \alpha, r)=M_{r}^{\alpha}(a, b) A^{1-\alpha}(a, b) \tag{14}
\end{equation*}
$$

Let us conclude the introduction by a brief description of the contents of the paper. Section 2 contains new inequalities involving Greek means and other means and its proof are given. Also, we present table1 contain the best possible value of important means with $G n_{\mu, r}(a, b)$ and $g n_{\mu, r}(a, b)$, power mean, Oscillatory mean and $r^{\text {th }}$ Oscillatory mean.Finally, Section 3 contains partial derivatives and consequences of symmetric mean, α values for important means are tabulated in Table 2 and two remarks.

2 Some Inequalities

Theorem 1 For $\mu_{1}, \mu_{2} \neq-2, r \neq 0,3$ and if $\mu_{1} \leq \frac{4}{r-3} \leq \mu_{2}$, then

$$
\begin{equation*}
\text { (i) } g n_{\mu_{2}, r}(a, b) \leq F_{4}(a, b) \leq G n_{\mu_{1}, r}(a, b) \text {. } \tag{15}
\end{equation*}
$$

Furthermore $\mu_{1}=\mu_{2}=-\frac{4}{r-3}$ is the best possible for (15).

$$
\begin{equation*}
\text { (ii) } g n_{\mu_{2}, 0}(a, b) \leq F_{4}(a, b) \leq G n_{\mu_{1}, 0}(a, b) \text {. } \tag{16}
\end{equation*}
$$

Furthermore $\mu_{1}=\mu_{2}=-\frac{4}{3}$ is the best possible for (16).

Proof. Applying Taylor's theorem and by setting $a=x=t+1$ and $b=1$, we have

$$
\begin{gathered}
F_{4}(x, 1)=F_{4}(t+1,1)=1+\frac{t}{2}+\frac{t^{2}}{4}-\frac{t^{3}}{8}-\ldots \\
G n_{\mu_{1}, r}(x, 1)=G n_{\mu_{1}, r}(t+1,1)=1+\frac{t}{2}-\frac{(1-r) \mu_{1}}{\left(\mu_{1}+2\right) 8} t^{2}+\ldots \\
g n_{\mu_{2}, r}(x, 1)=g n_{\mu_{2}, r}(t+1,1)=1+\frac{t}{2}-\frac{(1-r) \mu_{2}}{\left(\mu_{2}+2\right) 8} t^{2}+\ldots
\end{gathered}
$$

Consider $g n_{\mu_{2}, r}(a, b) \leq F_{4}(a, b) \leq G n_{\mu_{1}, r}(a, b)-\frac{(1-r) \mu_{2}}{\left(\mu_{2}+2\right) 8} \leq \frac{1}{4} \leq \frac{(1-r) \mu_{1}}{\left(\mu_{1}+2\right) 8}$ with simple manipulation we have $\mu_{1} \leq \frac{4}{r-3} \leq \mu_{2}$, Hence the proof of (15) and (16).

Theorem 2 For $\mu_{1}, \mu_{2} \neq-2, r \neq 0,2$ and if $\mu_{1} \leq \frac{2}{r-2} \leq \mu_{2}$, then

$$
\begin{equation*}
\text { (i) } g n_{\mu_{2}, r}(a, b) \leq F_{5}(a, b) \leq G n_{\mu_{1}, r}(a, b) \text {. } \tag{17}
\end{equation*}
$$

Furthermore $\mu_{1}=\mu_{2}=\frac{2}{r-2}$ is the best possible for (17)

$$
\begin{equation*}
\text { (ii) } g n_{\mu_{2}, 0}(a, b) \leq F_{5}(a, b) \leq G n_{\mu_{1}, 0}(a, b) \text {. } \tag{18}
\end{equation*}
$$

Furthermore $\mu_{1}=\mu_{2}=-1$ is the best possible for (18).

Corollary 1 For $\mu_{1}, \mu_{2} \neq-2, r \neq 0,2$ and if $\mu_{1} \leq \frac{2}{r-2} \leq \mu_{2}$, then
(i) $g n_{\mu_{2}, r}(a, b) \leq F_{6}(a, b)=F_{5}(a, b) \leq G n_{\mu_{1}, r}(a, b)$.

Furthermore $\mu_{1}=\mu_{2}=\frac{2}{r-2}$ is the best possible for (19).
(ii) $g n_{\mu_{2}, 0}(a, b) \leq F_{6}(a, b)=F_{5}(a, b) \leq G n_{\mu_{1}, 0}(a, b)$.

Furthermore $\mu_{1}=\mu_{2}=-1$ is the best possible for (20).

Theorem 3 Let $\alpha_{1}, \alpha_{2} \in[0,1], r \neq 0,1$, if $\alpha_{1} \leq \frac{2}{r-1} \leq \alpha_{2}$, then

$$
\begin{equation*}
O\left(a, b ; \alpha_{1}, r\right) \geq F_{4}(a, b) \geq o\left(a, b ; \alpha_{2}, r\right) \tag{21}
\end{equation*}
$$

Furthermore $\alpha_{1}=\alpha_{2}=\frac{2}{r-1}$ is the best possible for (21).
Proof. Applying Taylor's theorem and by setting $a=x=t+1$ and $b=1$, we have

$$
\begin{gathered}
F_{4}(x, 1)=F_{4}(t+1,1)=1+\frac{t}{2}+\frac{t^{2}}{4}+\frac{t^{3}}{8}-\ldots \\
O(a, b ; \alpha, r)=1+\frac{t}{2}-\frac{\alpha(1-r)}{8} t^{2}+\ldots \\
o(a, b ; \alpha, r)=1+\frac{t}{2}-\frac{\alpha(1-r)}{8} t^{2}+\ldots
\end{gathered}
$$

Consider $\alpha_{1} \leq \frac{2}{r-1} \leq \alpha_{2}$. With simple manipulations we get

$$
\begin{aligned}
-\frac{\alpha_{1}(1-r)}{8} & \geq \frac{1}{4} \geq-\frac{\alpha_{2}(1-r)}{8} \\
1+\frac{t}{2}-\frac{\alpha_{1}(1-r)}{8} t^{2}+\ldots & \geq 1+\frac{t}{2}+\frac{1}{4} t^{2}+\ldots \geq 1+\frac{t}{2}-\frac{\alpha_{2}(1-r)}{8} t^{2}+\ldots \\
O\left(a, b ; \alpha_{1}, r\right) & \geq F_{4}(a, b) \geq o\left(a, b ; \alpha_{2}, r\right)
\end{aligned}
$$

Furthermore $\alpha_{1}=\alpha_{2}=\frac{2}{r-1}$ is the best possible (for 21).
Theorem 4 Let $\alpha_{1}, \alpha_{2} \in[0,1], r \neq 0,1$, if $\alpha_{1} \leq \frac{1}{r-1} \leq \alpha_{2}$, then

$$
\begin{equation*}
O\left(a, b ; \alpha_{1}, r\right) \geq F_{5}(a, b) \geq o\left(a, b ; \alpha_{2}, r\right) \tag{22}
\end{equation*}
$$

Furthermore $\alpha_{1}=\alpha_{2}=\frac{1}{r-1}$ is the best possible for (22).
Corollary 2 Let $\alpha_{1}, \alpha_{2} \in[0,1], r \neq 0,1$, if $\alpha_{1} \leq \frac{1}{r-1} \leq \alpha_{2}$, then

$$
\begin{equation*}
O\left(a, b ; \alpha_{1}, r\right) \geq F_{5}(a, b)=F_{6}(a, b) \geq o\left(a, b ; \alpha_{2}, r\right) . \tag{23}
\end{equation*}
$$

Furthermore $\alpha_{1}=\alpha_{2}=\frac{1}{r-1}$ is the best possible for (23).

The proofs of the following remarks are obvious.

Remark 1

$$
F_{3} \leq F_{2} \leq L \leq M_{1 / 3} \leq M_{1 / 2} \leq H \leq M_{2 / 3} \leq F_{1} \leq F_{6} \leq F_{5} \leq F_{4} .
$$

Remark 2

$$
F_{3} \leq F_{2} \leq L \leq I \leq F_{1} \leq F_{6} \leq F_{5} \leq F_{4}
$$

The following table gives the best possible value of important means with $G n_{\mu, r}(a, b)$ and $g n_{\mu_{2}, r}(a, b)$ power mean, oscillatory mean and $r^{\text {th }}$ oscillatory mean.

Table 1

Important means	$G n_{\mu, 0}(a, b)$	$G n_{\mu, r}(a, b)$	$O(a, b ; \alpha, r)$	$O(a, b ; \alpha)$	$M_{r}(a, b)$
Arithmetic mean	0	0	0	0	1
Geometric mean	∞	$\frac{-2}{r}$	$\frac{1}{1-r}$	1	0
Contra Harmonic mean	$\frac{-4}{3}$	$\frac{4}{r-3}$	$\frac{2}{r-1}$	-2	3
I Contra Geometric mean	-1	$\frac{2}{r-2}$	$\frac{1}{1-r}$	-1	2
II Contra Geometric mean	-1	$\frac{2}{r-2}$	$\frac{1}{1-r}$	-1	2
Logarithmic mean	4	$\frac{4}{1-3 r}$	$\frac{2}{3(1-r)}$	$\frac{2}{3}$	$\frac{1}{3}$
Identric Mean	1	$\frac{2}{2-3 r}$	$\frac{1}{3(1-r)}$	$\frac{1}{3}$	$\frac{2}{3}$
Heron Mean	1	$\frac{2}{2-3 r}$	$\frac{1}{3(1-r)}$	$\frac{1}{3}$	$\frac{2}{3}$
Power Mean	-1	$\frac{2(1-r)}{r}$	1	$1-r$.---

3 Partial Derivatives and Consequences

For a symmetric mean $M(a, b)$ the partial derivatives are exist, then we have

$$
\begin{equation*}
M_{a}(c, c)+M_{b}(c, c)=1 \tag{24}
\end{equation*}
$$

$$
\begin{gather*}
M_{a}(c, c) \geq 0 \text { and } M_{b}(c, c) \geq 0 \tag{25}\\
0 \leq M_{a}(c, c) \leq 1 \text { and } 0 \leq M_{b}(c, c) \leq 1
\end{gather*}
$$

(26) property does not hold for arbitrary point.

$$
\begin{gather*}
M_{a}(c, c)=M_{b}(c, c)=\frac{1}{2} \tag{27}\\
M_{a a}(c, c)+2 M_{a b}(c, c)+M_{b b}(c, c)=0 \\
M_{a a}(c, c)=-M_{a b}(c, c)=M_{b b}(c, c) \\
M_{a a}(c, c)=\frac{\alpha}{c} \text { where } \alpha \text { in } \mathbb{R} .
\end{gather*}
$$

The proofs of the above results are obtained by simple direct computations.

Table 2

Important means	Notation	The value of ' α '
Arithmetic Mean	$F_{1}(a, b)$	0
Geometric mean	$F_{2}(a, b)$	$\frac{-1}{4}$
Harmonic Mean	$F_{3}(a, b)$	$\frac{-1}{2}$
Logarithmic Mean	$L(a, b)$	$\frac{-1}{6}$
Heron Mean	$h(a, b)$	$\frac{-1}{12}$
Identric Mean	$\mathrm{I}(\mathrm{a}, \mathrm{b})$	$\frac{-1}{12}$
Power Mean	$M_{r}(a, b)$	$\frac{r-1}{4}$
Contra Harmonic mean	$F_{4}(a, b)$	$\frac{1}{2}$
First Contra Geometric mean	$F_{5}(a, b)$	$\frac{1}{4}$
Second Contra Geometric mean	$F_{6}(a, b)$	$\frac{1}{4}$
Oscillatory mean	$o(a, b ; \alpha)$	$\frac{-\alpha}{4}$
r ${ }^{\text {th }}$ Oscillatory mean	$o(a, b ; r, \alpha)$	$\frac{-\alpha(1-r)}{4}$
Definition1.	$G n_{\mu, r}(a, b)$ and $g n_{\mu, r}(a, b)(r=0)$	$\frac{-\mu(1-r)}{4(\mu+2)}$
Definition1.	$G n_{\mu, r}(a, b)$ and $g n_{\mu, r}(a, b)(r \neq 0)$	$\frac{-\mu}{4(\mu+2)}$

Acknowledgement

We would like to thank Professor Zhi-Hua-Zhang, China for his suggestions for improvements on this paper and Mr. Premnath Reddy, Chairman, Acharya Institutes, for constant encouragement and support.

References

[1] G. Toader and S. Toader, Greek means, Automat. Comut. Appl. Math. 11(1), 2002, 159-165.
[2] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998.
[3] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications (Dordrecht) 560, Kluwer Academic Publishers, Dordrecht, 2003.
[4] J. Rooin and M. Hassni, Some new inequalities between important means and applications to Ky Fan types inequalities, Math. Ineq.\&Appl. 10(3), 2007, 517-527.
[5] V. Lokesha, M.Saraj,Padmanabhan.S and .K. M. Nagaraja, Oscillatory mean for several positive arguments, Journal of Intelligent system Research. Vol.2, No. 2 Dec, 2008, 137-139.
[6] V. Lokesha, Zhi-Hua-Zhang and .K. M. Nagaraja, $r^{\text {th }}$ Oscillatory mean for several positive arguments, J. Ultra Sci. Phys. Sci. 18(3), 2006, 519522.
[7] V. Lokesha, K. M. Nagaraja and Y. Simsek, New Inequalities on the homogeneous functions, (communicated).
[8] V. Lokesha, K. M. Nagaraja, Relation between series and important means, Advances in theoretical and Applied and Mathematics 2(1), 2007, 193-202.
[9] V. Lokesha,.K. M. Nagaraja and S. Padmanabhan, A simple proof on strengthening and extension of Inequalities, Advanced Studies in contemporary Mathematics (ASCM)Vol. 17 (1), 2008, 97-103.
[10] V. Lokesha, Zhi-Hua-Zhang and .K. M. Nagaraja, Gnan mean for two variables, Far Fast Journal of Applied MathematicsVol. 31, No.2, 2008, 263-272.
[11] V. Lokesha, Z-G. Xiao, K. M. Nagaraja and Z-H. Zhang, Class of New three parameter generalized weighted means, International Journal of Applied Mathematics and Statistics 11(7), 2007, 193-202.
[12] Z-H. Zhang, V. Lokesha and Y-D. Wu, The new bounds of Logarithmic mean, Advan. Stud. Contem. Math. 11(2), 2005, 186-191.
V.Lokesha

Department of Mathematics
Acharya Institute of Techonology, Soldevanahalli, Hesaraghatta Main Road, Bangalore-90,India e-mail: lokiv@yahoo.com

Padmanabhan.S
Department of Mathematics
RNS, Institute of Techonology, Bangalore,India
e-mail: padmanabhan_apsce@rediffmail.com
K.M.Nagaraja

Department of Mathematics
Sri Krishna Institute of Techonology, chikkabanavara,
Hesaraghatta Main Road, Bangalore-90,India
e-mail: kmn_2406@yahoo.co.in

Yilmaz Simsek
University of Akdeniz
Faculty of Arts and Science, Department of Mathematics
07058 Antalya, Turkey
e-mail: ysimsek@akdeniz.edu.tr

[^0]: ${ }^{1}$ Received 12 March, 2008
 Accepted for publication (in revised form) 3 March, 2009

