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A sufficient condition for univalence1

Horiana Tudor

Abstract

In this paper we obtain sufficient conditions for univalence, which

generalize some well known univalence criteria for analytic functions

in the unit disk.
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1 Introduction

We denote by Ur = { z ∈ C : |z| < r} the disk of z-plane, where

r ∈ (0, 1], U1 = U and I = [0,∞). Let A be the class of functions f

analytic in U such that f(0) = 0, f ′(0) = 1.

Theorem 1.1. (see [2]) Let f ∈ A. If for all z ∈ U

(1) |{f ; z}| ≤
2

(1 − |z|2)2

where

(2) {f ; z} =

(

f ′′(z)

f ′(z)

)′

−
1

2

(

f ′′(z)

f ′(z)

)2

then the function f is univalent in U.
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Theorem 1.2. (see [1]) Let f ∈ A. If for all z ∈ U

(3) (1 − |z|2)

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1 ,

then the function f is univalent in U.

Theorem 1.3. (see [3]) Let f ∈ A. If for all z ∈ U

(4)

∣

∣

∣

∣

z2f ′(z)

f 2(z)
− 1

∣

∣

∣

∣

< 1

then the function f is univalent in U.

2 Preliminaries

Our considerations are based on the theory of Löwner chains; we first

recall the basic result of this theory, from Pommerenke.

Theorem 2.1. (see [4]) Let L(z, t) = a1(t)z + a2(t)z
2 + . . . , a1(t) 6= 0 be

analytic in Ur, for all t ∈ I, locally absolutely continuous in I and locally

uniformly with respect to Ur.For almost all t ∈ I, suppose that

z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, for all z ∈ Ur,

where p(z, t) is analytic in U and satisfies the condition Re p(z, t) > 0, for

all z ∈ U , t ∈ I. If |a1(t)| → ∞ for t → ∞ and {L(z, t)/a1(t)} forms a

normal family in Ur, then for each t ∈ I, the function L(z, t) has an analytic

and univalent extension to the whole disk U .

3 Main results

Theorem 3.1. Let β be a real number, β > 1/2 and f ∈ A. If there exist

the analytic functions g and h in U , g(z) = 1+b1z+. . . , h(z) = c0+c1z+. . .,

such that the inequalities

(5)

∣

∣

∣

∣

f ′(z)

g(z)
− β

∣

∣

∣

∣

< β
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and

(6)

∣

∣

∣

∣

(

f ′(z)

g(z)
− β

)

|z|2β + (1 − |z|2β)

(

2zf ′(z)h(z)

g(z)
+

zg′(z)

g(z)
+ 1 − β

)

+
(1 − |z|2β)2

|z|2β

(

z2f ′(z)h2(z)

g(z)
+

z2g′(z)h(z)

g(z)
− z2h′(z)

)∣

∣

∣

∣

≤ β

are true for all z ∈ U , then the function f is univalent in U .

Proof. The functions f, g, h being analytic in U , it is easy to see that

there is a real number r1 ∈ (0, 1] such that the function

(7) L(z, t) = f(e−tz) +
(e2βt − 1) · e−tz · g(e−tz)

1 + (e2βt − 1) · e−tz · h(e−tz)

is analytic in Ur1
, for all t ∈ I. If L(z, t) = a1(t)z+a2(t)z

2 + . . . is the power

series expansion of L(z, t) in the neighborhood Ur1
, it can be checked that

we have a1(t) = e(2β−1)t and therefore a1(t) 6= 0 for all t ∈ I. From β > 1/2,

it follows that limt→∞ |a1(t)| = ∞.

Since L(z, t)/a1(t) is the summation between z and an analytic func-

tion,we conclude that {L(z, t)/a1(t)}t∈I is a normal family in Ur2
, 0 < r2 <

r1. By elementary computations, it can be shown that ∂L(z,t)
∂t

can be ex-

pressed as the summation between (2β−1)e(2β−1)tz and an analytic function

in Ur, 0 < r < r2, and hence we obtain the absolute continuity requirement

of Theorem 2.1. Let p(z, t) be the analytic function defined in Ur by

p(z, t) = z
∂L(z, t)

∂z

/

∂L(z, t)

∂t

In order to prove that the function p(z, t) has an analytic extension,

with positive real part in U , for all t ∈ I, it is sufficient to show that the

function w(z, t) defined in Ur by

w(z, t) =
p(z, t) − 1

p(z, t) + 1
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can be continued analytically in U and that |w(z, t)| < 1 for all z ∈ U and

t ∈ I.

By simple calculations, we obtain

(8) w(z, t) =
1

β

(

f ′(e−tz)

g(e−tz)
− β

)

e−2βt+

1 − e−2βt

β

(

2e−tzf ′(e−tz)h(e−tz)

g(e−tz)
+

e−tzg′(e−tz)

g(e−tz)
+ 1 − β

)

+

(1 − e−2βt)2e−2tz2

βe−2βt

(

f ′(e−tz)h2(e−tz)

g(e−tz)
+

g′(e−tz)h(e−tz)

g(e−tz)
− h′(e−tz)

)

From (5) and (6) we deduce that the function w(z, t) is analytic in the

unit disk U . From (5) and since β > 1/2 we have

(9) |w(z, 0)| =
1

β

∣

∣

∣

∣

f ′(z)

g(z)
− β

∣

∣

∣

∣

< 1

(10) |w(0, t)| =

∣

∣

∣

∣

1 − β

β

∣

∣

∣

∣

< 1.

Let t be a fixed number, t > 0 and observing that |e−tz| ≤ e−t < 1 for all

z ∈ U = {z ∈ C : |z| ≤ 1} we conclude that the function w(z, t) is analytic

in U . Using the maximum modulus principle it follows that for each t > 0,

arbitrary fixed, there exists θ = θ(t) ∈ R such that

(11) |w(z, t)| < max
|ξ|=1

|w(ξ, t)| = |w(eiθ, t)|,

We denote u = e−t · eiθ . Then |u| = e−t < 1 and from (8) we get

|w(eiθ, t)| =
1

β

∣

∣

∣

∣

(

f ′(u)

g(u)
− β

)

|u|2β + (1 − |u|2β)

(

2uf ′(u)h(u)

g(u)
+

ug′(u)

g(u)
+ 1 − β

)

+
(1 − |u|2β)2u2

|u|2β

(

f ′(u)h2(u)

g(u)
+

g′(u)h(u)

g(u)
− h′(u)

)∣

∣

∣

∣
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The inequality (6) implies |w(eiθ, t)| ≤ 1 and by using (9), (10) and (11)

it follows that |w(z, t)| < 1 for all z ∈ U and t ≥ 0. From Theorem 2.1 we

obtain that the function L(z, t) has an analytic and univalent extension to

the whole unit disk U , for all t ≥ 0. For t = 0 we have L(z, 0) = f(z) ,

z ∈ U and therefore the function f is univalent in U .

Suitable choises of the functions g and h in Theorem 3.1 gives us various

univalence criteria, between them being the very known Nehari’s criterion,

Becker’s criterion and also Ozaki-Nunokawa’s criterion.

Corollary 1. Let β be a real number, β > 1/2 and f ∈ A. If for all z ∈ U

(12)

∣

∣

∣

∣

(1 − |z|2β)2

|z|2β
·
z2{f ; z}

2
+ 1 − β

∣

∣

∣

∣

≤ β

where {f ; z} is defined by (2), then the function f is univalent in U .

Proof. It results from Theorem 3.1 with g = f ′ and h = −1
2

f ′′

f ′
.

Remark 1. If we consider β = 1 in Corollary 1, the inequality (12) becomes

(1) and then we obtain the univalence criterion due to Nehari [2].

Corollary 2. Let β be a real number, β > 1/2 and f ∈ A. If for all z ∈ U

(13)

∣

∣

∣

∣

(1 − |z|2β)
zf ′′(z)

f ′(z)
+ 1 − β

∣

∣

∣

∣

≤ β

then the function f is univalent in U .

Proof. It results from Theorem 3.1 with g = f ′ and h = 0.

Remark 2. If we consider β = 1 in Corollary 2, the inequality (13) becomes

(3) and then we obtain the univalence criterion due to Becker [1].

Corollary 3. Let β be a real number, β > 1/2 and f ∈ A. If for all z ∈ U

(14)

∣

∣

∣

∣

(

z2f ′(z)

f 2(z)
− 1

)

− (β − 1)

∣

∣

∣

∣

< β
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(15)

∣

∣

∣

∣

(

z2f ′(z)

f 2(z)
− 1

)

− (β − 1)|z|2β

∣

∣

∣

∣

< β|z|2β

then the function f is univalent in U .

Proof. It results from Theorem 3.1 with g(z) =
(

f(z)
z

)2

and h(z) = 1
z
− f(z)

z2 .

Remark 3. If we consider β = 1 in Corollary 3, the inequalities (14)

and (15) become (4) and then we obtain the univalence criterion due to

Ozaki and Nunokawa [3].
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