General Mathematics Vol. 17, No. 1 (2009), 105–112

On some subclasses of starlike and convex $functions^1$

Alina Totoi

Abstract

Throughout this paper, in the second section, we prove that if $f \in A$, $\alpha \ge 0$ and $F(z) = zf'(z)\left(\alpha + \frac{zf'(z)}{f(z)}\right)$ is starlike then f is a starlike function and, in the third section, we prove that if $\alpha \in [0, 1)$, $f \in A$ and $F(z) = zf'(z)\left(1 + \frac{zf''(z)}{f'(z)}\right)$ is starlike of order α then f is a convex function of order α .

2000 Mathematics Subject Classification: 30C45 Key words and phrases: meromorphic starlike functions, meromorphic convex functions

1 Introduction and preliminaries

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane and $H(U) = \{f : U \to \mathbb{C} : f \text{ is holomorphic in } U\}.$ We will also use the following notations: $H[a, n] = \{f \in H(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots\}$ for $a \in \mathbb{C}, n \in \mathbb{N}^*$,

 $^{^1}Received \ 8 \ March, \ 2008$

Accepted for publication (in revised form) 10 September, 2008

 $A_n = \{f \in H(U) : f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \ldots\}, n \in \mathbb{N}^*$, and for n = 1 we denote A_1 by A and this set is called **the class of analytic functions normalized in the origin**.

Let S be the class of holomorphic and univalent functions on the unit disc which are normalized with the conditions f(0) = 0, f'(0) = 1, so

$$S = \{ f \in A : f \text{ is univalent in } U \}.$$

Definition 1.1. ([3]) Let $f : U \to \mathbb{C}$ be a holomorphic function with f(0) = 0. We say that f is starlike in U with respect to zero(or, in brief, starlike) if the function f is univalent in U and f(U) is a starlike domain with respect to zero, meaning that for each $z \in U$ the segment between the origin and f(z) lies in f(U).

Theorem 1.1. ([3]) (the theorem of analytical characterization of starlikeness) Let $f \in H(U)$ be a function with f(0) = 0. Then f is starlike if and only if $f'(0) \neq 0$ and

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0, \quad z \in U.$$

Let S^* be the class of normalized starlike functions on the unit disc U, so

$$S^* = \left\{ f \in A : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in U \right\}.$$

Definition 1.2. ([3]) Let $f : U \to \mathbb{C}$ be a holomorphic function. We say that f is convex on U(or, in brief, convex) if f is univalent in U and f(U) is a convex domain.

Theorem 1.2. ([3]) (the theorem of analytical characterization of convexity) Let $f \in H(U)$. Then f is convex if and only if $f'(0) \neq 0$ and

Re
$$\frac{zf''(z)}{f'(z)} + 1 > 0, \ z \in U$$
.

On some subclasses of ...

Let K be the class of normalized convex functions on the unit disc U and $K(\alpha)$ be the class of normalized convex functions of order α , i.e.

$$K(\alpha) = \left\{ f \in A : \operatorname{Re} \frac{zf''(z)}{f'(z)} + 1 > \alpha, \ z \in U \right\}.$$

Lemma 1.1. ([2]) Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ be a function that satisfies the condition

$$\operatorname{Re}\psi(\rho i, \sigma, \mu + i\nu; z) \le 0$$

when $\rho, \sigma, \mu, \nu \in \mathbb{R}, \sigma \leq -\frac{n}{2}(1+\rho^2), \sigma + \mu \leq 0, \text{ for } z \in U, n \geq 1.$ If $p \in H[1, n]$ and

Re
$$\psi(p(z), zp'(z), z^2 p''(z); z) > 0, \quad z \in U$$

then

$$\operatorname{Re} p(z) > 0, \quad z \in U.$$

Definition 1.3 (1). Let $\alpha, \beta \in \mathbb{R}, n \in \mathbb{N}^*, f \in A_n$ with

$$\frac{f(z)f'(z)}{z} \neq 0, \ 1 - \alpha + \alpha \frac{zf'(z)}{f(z)} \neq 0, \ z \in U.$$

We say that the function f is in the class $M^n_{\alpha,\beta}$ if the function $F: U \to \mathbb{C}$, defined as

$$F(z) = f(z) \left[\frac{zf'(z)}{f(z)} \right]^{\alpha(1-\beta)} \cdot \left[1 - \alpha + \alpha \frac{zf'(z)}{f(z)} \right]^{\beta}$$

is a starlike function on the unit disc U.

Remark 1.1. ([1])

- 1. If $\beta = 0$ then $F(z) = f(z) \left[\frac{zf'(z)}{f(z)} \right]^{\alpha}$, $z \in \mathcal{U}$ and $M^{1}_{\alpha,0} = M_{\alpha}$ (the class of α -convex functions).
- 2. If $\beta = 1$ then $F(z) = (1 \alpha)f(z) + \alpha z f'(z), z \in \mathcal{U}$ and $M^1_{\alpha,1} = P_{\alpha}$ (the class of α -starlike functions defined by N.N. Pascu).

- 3. If $\alpha = 0$ then $F(z) = f(z), z \in \mathcal{U}$ and $M^1_{0,\beta} = S^*$ (the class of starlike functions).
- 4. If $\alpha = 1$ then $F(z) = zf'(z), z \in \mathcal{U}$ and $M^1_{1,\beta} = K$ (the class of convex functions).

Remark 1.2. ([1]) For all real numbers α, β satisfying the condition $\alpha\beta(1-\alpha) \geq 0$ we have

$$M^n_{\alpha,\beta} \subset S^*.$$

2 A subclass of starlike functions

Definition 2.1. Let $\alpha \geq 0$ and $f \in A$ such that

$$\frac{f(z)f'(z)}{z} \neq 0, \ \alpha + \frac{zf'(z)}{f(z)} \neq 0, z \in U.$$

We say that the function f is in the class N_{α} if the function $F: U \to \mathbb{C}$ given by

$$F(z) = zf'(z)\left(\alpha + \frac{zf'(z)}{f(z)}\right)$$

is starlike in U.

Theorem 2.1. For each real number $\alpha \geq 0$ we have

Proof. Let $f \in N_{\alpha}$, $f \in A$ with $\frac{f(z)f'(z)}{z} \neq 0$ and $\alpha + \frac{zf'(z)}{f(z)} \neq 0, z \in U$. We denote $\frac{zf'(z)}{f(z)} = p(z), z \in U$. We have $p \in H[1,1]$ and $F(z) = zf'(z) \cdot (\alpha + p(z))$. (We make the remark that F(0) = 0 and $F'(0) = \alpha + 1 \neq 0$).

 $N_{\alpha} \subset S^*$.

For $z \in U \setminus \{0\}$ we apply the logarithm to the equality $F(z) = zf'(z)(\alpha + p(z))$ and we obtain:

$$\log F(z) = \log z + \log f'(z) + \log(\alpha + p(z)).$$

If we derive the above equality (with respect to the independent variable z) and, afterwards, we multiply the result with z, we will obtain:

(1)
$$\frac{zF'(z)}{F(z)} = 1 + \frac{zf''(z)}{f'(z)} + \frac{zp'(z)}{\alpha + p(z)}$$

But $\frac{zf'(z)}{f(z)} = p(z)$ implies that zf'(z) = p(z)f(z) and deriving this equality we obtain

$$f'(z) + zf''(z) = p'(z)f(z) + p(z)f'(z) \mid : f'(z) \neq 0,$$

 \mathbf{SO}

$$1 + \frac{zf''(z)}{f'(z)} = p'(z) \cdot z \cdot \frac{1}{p(z)} + p(z).$$

We will replace the last equality in (1) and we will have:

$$\frac{zF'(z)}{F(z)} = \frac{zp'(z)}{p(z)} + p(z) + \frac{zp'(z)}{\alpha + p(z)}, \ z \in U \setminus \{0\}.$$

We make the remark that the above equality is also verified for z = 0. We denote

(2)
$$\psi(p(z), zp'(z); z) = p(z) + zp'(z) \left(\frac{1}{p(z)} + \frac{1}{\alpha + p(z)}\right)$$

From Definition 2.1 we know that the function F is starlike, so

(3)
$$\operatorname{Re} \frac{zF'(z)}{F(z)} > 0, z \in U.$$

Using the notation (2) the condition (3) is equivalent with

$$\operatorname{Re}\psi(p(z), zp'(z); z) > 0, \quad z \in U.$$

Making the calculus we have:

$$\operatorname{Re}\psi(is,t) = \operatorname{Re}\left[is + t\left(\frac{1}{is} + \frac{1}{\alpha + is}\right)\right] =$$

$$= \operatorname{Re}\left[is + t\left(\frac{-is}{s^{2}} + \frac{\alpha - is}{\alpha^{2} + s^{2}}\right)\right] = \frac{t\alpha}{\alpha^{2} + s^{2}} \le \frac{-\alpha(1 + s^{2})}{2(\alpha^{2} + s^{2})} \le 0,$$

for all $t \leq -\frac{1}{2}(1+s^2)$ and $s \in \mathbb{R}$. Consequently, we have obtained $\operatorname{Re} \psi(is,t) \leq 0$ for all $s \in \mathbb{R}$ and $t \leq 1$ $-\frac{1+s^2}{2}$ and

$$\operatorname{Re} \psi(p(z), zp'(z); z) > 0, \ z \in U, \ p \in H[1, 1],$$

from where it results that

$$\operatorname{Re} p(z) > 0, \ z \in U.$$

So, returning to the notation $\frac{zf'(z)}{f(z)} = p(z)$ we obtain

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0, z \in U,$$

and that means that $f \in S^*$. So, $N_{\alpha} \subset S^*$.

3 A subclass of convex functions of order α

Definition 3.1. Let $\alpha \in [0, 1)$ and $f \in A$ with

$$\frac{f(z)f'(z)}{z} \neq 0, \quad 1 + \frac{zf''(z)}{f'(z)} \neq 0, \ z \in U.$$

We say that the function f is in the class $N(\alpha)$ if the function $F: U \to \mathbb{C}$ given by

$$F(z) = zf'(z)\left(1 + \frac{zf''(z)}{f'(z)}\right),$$

is starlike of order α .

Theorem 3.1. For $\alpha \in [0, 1)$ we have

$$N(\alpha) \subset K(\alpha).$$

 $On \ some \ subclasses \ of \ \ldots$

Proof. Let $f \in N(\alpha)$. We denote $1 + \frac{zf''(z)}{f'(z)} = (1 - \alpha)p(z) + \alpha p(z)$. We have $p \in H[1, 1]$ and $F(z) = zf'(z)[(1 - \alpha)p(z) + \alpha]$. Using the logarithmic derivation and the multiplying with z we obtain:

$$\frac{zF'(z)}{F(z)} = 1 + \frac{zf''(z)}{f'(z)} + \frac{(1-\alpha)p'(z)\cdot z}{(1-\alpha)p(z)+\alpha} = (1-\alpha)p(z) + \alpha + \frac{zp'(z)(1-\alpha)}{(1-\alpha)p(z)+\alpha}$$

which is equivalent with

(4)
$$\frac{zF'(z)}{F(z)} - \alpha = (1 - \alpha)p(z) + \frac{(1 - \alpha)zp'(z)}{(1 - \alpha)p(z) + \alpha}.$$

We denote

(5)
$$\psi(p(z), zp'(z); z) = (1 - \alpha)p(z) + \frac{zp'(z)(1 - \alpha)}{(1 - \alpha)p(z) + \alpha}, z \in U.$$

We know that $f \in N(\alpha)$, so F is starlike of order α , and hence

(6)
$$\operatorname{Re} \frac{zF'(z)}{F(z)} > \alpha, z \in U.$$

Using (4) and the notation (5), the condition (6) is equivalent with

$$\operatorname{Re}\psi(p(z), zp'(z); z) > 0, \ z \in U.$$

Making the calculus we have

$$\operatorname{Re}\psi(is,t) = \operatorname{Re}\left[(1-\alpha)is + \frac{t(1-\alpha)}{(1-\alpha)is + \alpha}\right] = \frac{\alpha(1-\alpha)t}{(1-\alpha)^2s^2 + \alpha^2} \leq -\frac{\alpha(1-\alpha)(1+s^2)}{2[(1-\alpha)^2s^2 + \alpha^2]} \leq 0$$
for $\alpha \in [0,1), s \in \mathbb{R}$ and $t \leq -\frac{1}{2}(1+s^2)$.

Consequently, we have obtained $\operatorname{Re} \psi(is,t) \leq 0$ for all $s \in \mathbb{R}$ and $t \leq -\frac{1+s^2}{2}$ and

$$\operatorname{Re}\psi(p(z), zp'(z); z) > 0, \ z \in U, \ p \in H[1, 1],$$

from where it results that

$$\operatorname{Re} p(z) > 0, z \in U.$$

Returning to the notation $1 + \frac{zf''(z)}{f'(z)} = (1 - \alpha)p(z) + \alpha$ and using the inequality $\operatorname{Re} p(z) > 0, z \in U$ we obtain $\operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)}\right) = (1 - \alpha)\operatorname{Re} p(z) + \alpha > \alpha$ for $\alpha \in [0, 1)$, so $f \in K(\alpha)$. Finally we have $N(\alpha) \subset K(\alpha)$.

References

- Georgia Irina Oros, Utilizarea subordonărilor diferențiale în studiul unor clase de funcții univalente, Casa Cărții de Știință, Cluj-Napoca, 2008 (in Romanian).
- [2] S.S.Miller, P.T.Mocanu, *Differential subordinations. Theory and applications*, Marcel Dekker Inc. New York, Basel, 2000.
- [3] P.T.Mocanu, T.Bulboacă, Gr.Şt. Sălăgean, Teoria geometrică a funcțiilor univalente, Casa Cărții de Ştiință, Cluj-Napoca, 2006 (in Romanian).

Department of Mathematics, Faculty of Science, University "Lucian Blaga" Sibiu, Romania E-mail: totoialina@yahoo.com