General Mathematics Vol. 17, No. 1 (2009), 105-112

On some subclasses of starlike and convex functions ${ }^{1}$

Alina Totoi

Abstract

Throughout this paper, in the second section, we prove that if $f \in A, \alpha \geq 0$ and $F(z)=z f^{\prime}(z)\left(\alpha+\frac{z f^{\prime}(z)}{f(z)}\right)$ is starlike then f is a starlike function and, in the third section, we prove that if $\alpha \in[0,1)$, $f \in A$ and $F(z)=z f^{\prime}(z)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)$ is starlike of order α then f is a convex function of order α.

2000 Mathematics Subject Classification: 30C45
Key words and phrases: meromorphic starlike functions, meromorphic convex functions

1 Introduction and preliminaries

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane and $H(U)=\{f: U \rightarrow \mathbb{C}: f$ is holomorphic in $U\}$.
We will also use the following notations:
$H[a, n]=\left\{f \in H(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots\right\}$ for $a \in \mathbb{C}, n \in \mathbb{N}^{*}$,

[^0]$A_{n}=\left\{f \in H(U): f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots\right\}, n \in \mathbb{N}^{*}$, and for $n=1$ we denote A_{1} by A and this set is called the class of analytic functions normalized in the origin.

Let S be the class of holomorphic and univalent functions on the unit disc which are normalized with the conditions $f(0)=0, f^{\prime}(0)=1$, so

$$
S=\{f \in A: f \text { is univalent in } U\}
$$

Definition 1.1. ([3]) Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function with $f(0)=$ 0 . We say that f is starlike in \mathbf{U} with respect to zero(or, in brief, starlike) if the function f is univalent in U and $f(U)$ is a starlike domain with respect to zero, meaning that for each $z \in U$ the segment between the origin and $f(z)$ lies in $f(U)$.

Theorem 1.1. ([3]) (the theorem of analytical characterization of starlikeness) Let $f \in H(U)$ be a function with $f(0)=0$. Then f is starlike if and only if $f^{\prime}(0) \neq 0$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in U
$$

Let S^{*} be the class of normalized starlike functions on the unit disc U, so

$$
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in U\right\}
$$

Definition 1.2. ([3]) Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. We say that f is convex on U (or, in brief, convex) if f is univalent in U and $f(U)$ is a convex domain.

Theorem 1.2. ([3]) (the theorem of analytical characterization of convexity) Let $f \in H(U)$. Then f is convex if and only if $f^{\prime}(0) \neq 0$ and

$$
\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>0, z \in U
$$

Let K be the class of normalized convex functions on the unit disc U and $K(\alpha)$ be the class of normalized convex functions of order α, i.e.

$$
K(\alpha)=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1>\alpha, z \in U\right\} .
$$

Lemma 1.1. ([2]) Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ be a function that satisfies the condition

$$
\operatorname{Re} \psi(\rho i, \sigma, \mu+i \nu ; z) \leq 0
$$

when $\rho, \sigma, \mu, \nu \in \mathbb{R}, \sigma \leq-\frac{n}{2}\left(1+\rho^{2}\right), \sigma+\mu \leq 0$, for $z \in U, n \geq 1$.
If $p \in H[1, n]$ and

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)>0, \quad z \in U
$$

then

$$
\operatorname{Re} p(z)>0, \quad z \in U .
$$

Definition 1.3 (1). Let $\alpha, \beta \in \mathbb{R}, n \in \mathbb{N}^{*}, f \in A_{n}$ with

$$
\frac{f(z) f^{\prime}(z)}{z} \neq 0,1-\alpha+\alpha \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in U .
$$

We say that the function f is in the class $M_{\alpha, \beta}^{n}$ if the function $F: U \rightarrow \mathbb{C}$, defined as

$$
F(z)=f(z)\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha(1-\beta)} \cdot\left[1-\alpha+\alpha \frac{z f^{\prime}(z)}{f(z)}\right]^{\beta}
$$

is a starlike function on the unit disc U.
Remark 1.1. ([1])

1. If $\beta=0$ then $F(z)=f(z)\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha}, z \in \mathcal{U}$ and $M_{\alpha, 0}^{1}=M_{\alpha}$ (the class of α-convex functions).
2. If $\beta=1$ then $F(z)=(1-\alpha) f(z)+\alpha z f^{\prime}(z), z \in \mathcal{U}$ and $M_{\alpha, 1}^{1}=P_{\alpha}$ (the class of α-starlike functions defined by N.N. Pascu).
3. If $\alpha=0$ then $F(z)=f(z), z \in \mathcal{U}$ and $M_{0, \beta}^{1}=S^{*}$ (the class of starlike functions).
4. If $\alpha=1$ then $F(z)=z f^{\prime}(z), z \in \mathcal{U}$ and $M_{1, \beta}^{1}=K$ (the class of convex functions).

Remark 1.2. ([1]) For all real numbers α, β satisfying the condition $\alpha \beta(1-$ $\alpha) \geq 0$ we have

$$
M_{\alpha, \beta}^{n} \subset S^{*}
$$

2 A subclass of starlike functions

Definition 2.1. Let $\alpha \geq 0$ and $f \in A$ such that

$$
\frac{f(z) f^{\prime}(z)}{z} \neq 0, \alpha+\frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in U
$$

We say that the function f is in the class N_{α} if the function $F: U \rightarrow \mathbb{C}$ given by

$$
F(z)=z f^{\prime}(z)\left(\alpha+\frac{z f^{\prime}(z)}{f(z)}\right)
$$

is starlike in U.
Theorem 2.1. For each real number $\alpha \geq 0$ we have

$$
N_{\alpha} \subset S^{*}
$$

Proof. Let $f \in N_{\alpha}, f \in A$ with $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ and $\alpha+\frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in U$.
We denote $\frac{z f^{\prime}(z)}{f(z)}=p(z), z \in U$. We have $p \in H[1,1]$ and $F(z)=z f^{\prime}(z)$. $(\alpha+p(z))$. (We make the remark that $F(0)=0$ and $\left.F^{\prime}(0)=\alpha+1 \neq 0\right)$.

For $z \in U \backslash\{0\}$ we apply the logarithm to the equality $F(z)=z f^{\prime}(z)(\alpha+$ $p(z))$ and we obtain:

$$
\log F(z)=\log z+\log f^{\prime}(z)+\log (\alpha+p(z))
$$

If we derive the above equality (with respect to the independent variable z) and, afterwards, we multiply the result with z, we will obtain:

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z p^{\prime}(z)}{\alpha+p(z)} \tag{1}
\end{equation*}
$$

But $\frac{z f^{\prime}(z)}{f(z)}=p(z)$ implies that $z f^{\prime}(z)=p(z) f(z)$ and deriving this equality we obtain

$$
f^{\prime}(z)+z f^{\prime \prime}(z)=p^{\prime}(z) f(z)+p(z) f^{\prime}(z) \mid: f^{\prime}(z) \neq 0
$$

so

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p^{\prime}(z) \cdot z \cdot \frac{1}{p(z)}+p(z)
$$

We will replace the last equality in (1) and we will have:

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{z p^{\prime}(z)}{p(z)}+p(z)+\frac{z p^{\prime}(z)}{\alpha+p(z)}, z \in U \backslash\{0\}
$$

We make the remark that the above equality is also verified for $z=0$.
We denote

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z) ; z\right)=p(z)+z p^{\prime}(z)\left(\frac{1}{p(z)}+\frac{1}{\alpha+p(z)}\right) \tag{2}
\end{equation*}
$$

From Definition 2.1 we know that the function F is starlike, so

$$
\text { (3) } \quad \operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0, z \in U
$$

Using the notation (2) the condition (3) is equivalent with

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0, \quad z \in U
$$

Making the calculus we have:

$$
\operatorname{Re} \psi(i s, t)=\operatorname{Re}\left[i s+t\left(\frac{1}{i s}+\frac{1}{\alpha+i s}\right)\right]=
$$

$$
=\operatorname{Re}\left[i s+t\left(\frac{-i s}{s^{2}}+\frac{\alpha-i s}{\alpha^{2}+s^{2}}\right)\right]=\frac{t \alpha}{\alpha^{2}+s^{2}} \leq \frac{-\alpha\left(1+s^{2}\right)}{2\left(\alpha^{2}+s^{2}\right)} \leq 0
$$

for all $t \leq-\frac{1}{2}\left(1+s^{2}\right)$ and $s \in \mathbb{R}$.
Consequently, we have obtained $\operatorname{Re} \psi(i s, t) \leq 0$ for all $s \in \mathbb{R}$ and $t \leq$ $-\frac{1+s^{2}}{2}$ and

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0, z \in U, p \in H[1,1]
$$

from where it results that

$$
\operatorname{Re} p(z)>0, z \in U
$$

So, returning to the notation $\frac{z f^{\prime}(z)}{f(z)}=p(z)$ we obtain

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U
$$

and that means that $f \in S^{*}$. So, $N_{\alpha} \subset S^{*}$.

3 A subclass of convex functions of order α

Definition 3.1. Let $\alpha \in[0,1)$ and $f \in A$ with

$$
\frac{f(z) f^{\prime}(z)}{z} \neq 0, \quad 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \neq 0, z \in U
$$

We say that the function f is in the class $N(\alpha)$ if the function $F: U \rightarrow \mathbb{C}$ given by

$$
F(z)=z f^{\prime}(z)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

is starlike of order α.
Theorem 3.1. For $\alpha \in[0,1)$ we have

$$
N(\alpha) \subset K(\alpha)
$$

Proof. Let $f \in N(\alpha)$. We denote $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\alpha) p(z)+\alpha p(z)$. We have $p \in H[1,1]$ and $F(z)=z f^{\prime}(z)[(1-\alpha) p(z)+\alpha]$. Using the logarithmic derivation and the multiplying with z we obtain:

$$
\begin{aligned}
& \frac{z F^{\prime}(z)}{F(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{(1-\alpha) p^{\prime}(z) \cdot z}{(1-\alpha) p(z)+\alpha}= \\
& \quad=(1-\alpha) p(z)+\alpha+\frac{z p^{\prime}(z)(1-\alpha)}{(1-\alpha) p(z)+\alpha}
\end{aligned}
$$

which is equivalent with

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}-\alpha=(1-\alpha) p(z)+\frac{(1-\alpha) z p^{\prime}(z)}{(1-\alpha) p(z)+\alpha} \tag{4}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z) ; z\right)=(1-\alpha) p(z)+\frac{z p^{\prime}(z)(1-\alpha)}{(1-\alpha) p(z)+\alpha}, z \in U \tag{5}
\end{equation*}
$$

We know that $f \in N(\alpha)$, so F is starlike of order α, and hence

$$
\text { (6) } \operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>\alpha, z \in U \text {. }
$$

Using (4) and the notation (5), the condition (6) is equivalent with

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0, z \in U
$$

Making the calculus we have

$$
\begin{aligned}
& \operatorname{Re} \psi(i s, t)=\operatorname{Re}\left[(1-\alpha) i s+\frac{t(1-\alpha)}{(1-\alpha) i s+\alpha}\right]= \\
& =\frac{\alpha(1-\alpha) t}{(1-\alpha)^{2} s^{2}+\alpha^{2}} \leq-\frac{\alpha(1-\alpha)\left(1+s^{2}\right)}{2\left[(1-\alpha)^{2} s^{2}+\alpha^{2}\right]} \leq 0
\end{aligned}
$$

for $\alpha \in[0,1), s \in \mathbb{R}$ and $t \leq-\frac{1}{2}\left(1+s^{2}\right)$.

Consequently, we have obtained $\operatorname{Re} \psi(i s, t) \leq 0$ for all $s \in \mathbb{R}$ and $t \leq$ $-\frac{1+s^{2}}{2}$ and

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0, z \in U, p \in H[1,1]
$$

from where it results that

$$
\operatorname{Re} p(z)>0, z \in U
$$

Returning to the notation $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\alpha) p(z)+\alpha$ and using the inequality $\operatorname{Re} p(z)>0, z \in U$ we obtain $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=(1-\alpha) \operatorname{Re} p(z)+$ $\alpha>\alpha$ for $\alpha \in[0,1)$, so $f \in K(\alpha)$.
Finally we have $N(\alpha) \subset K(\alpha)$.

References

[1] Georgia Irina Oros, Utilizarea subordonărilor diferenţiale in studiul unor clase de funcţii univalente, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2008 (in Romanian).
[2] S.S.Miller, P.T.Mocanu, Differential subordinations. Theory and applications, Marcel Dekker Inc. New York,Basel,2000.
[3] P.T.Mocanu, T.Bulboacă, Gr.St. Sălăgean, Teoria geometrică a funcţiilor univalente, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2006 (in Romanian).

Department of Mathematics, Faculty of Science, University "Lucian Blaga" Sibiu, Romania
E-mail: totoialina@yahoo.com

[^0]: ${ }^{1}$ Received 8 March, 2008
 Accepted for publication (in revised form) 10 September, 2008

