Multiplier Transformations and K-Uniformly P-Valent Starlike Functions ${ }^{1}$
 H.A.Al-Kharsani

Abstract

Let $A(p)$ denote the class of functions of the form $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p}$, which are analytic in the open unit disk $D=\{z: z \in C ;|z|<1\}$.Using the multiplier transformation, the auther introduce new subclasses of k-uniformly p-valent starlike functions and investigate thier inclusion relations and the closure properties of the above classes of functions under integral operators. These results also extend to k-uniformly close-to-convex functions.

2000 Mathematics Subject Classification: 30C45

1 Introduction

Let $A(p)$ denote the class of functions of the form $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p}$, which are analytic in the open unit disk $D=\{z: z \in C ;|z|<1\}$. If f and g are analytic in D, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwartz function w in D such

[^0]that $f(z)=g(w(z))$. A function $f(z) \in A(p)$ is said to be in $U S T_{p}(k, \alpha)$, the class of k-uniformly p-valent starlike functions of order if it satisfies the condition
\[

$$
\begin{equation*}
\Re e\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}-\alpha \geq k\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|, k \geq 0,0 \leq \alpha<1 . \tag{1.1}
\end{equation*}
$$

\]

Replacing f in (1.1) by $z f^{\prime}(z)$ we obtain the condition

$$
\begin{equation*}
\Re e\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}-\alpha \geq k\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(p-1)\right|, k \geq 0,0 \leq \alpha<1 \tag{1.2}
\end{equation*}
$$

required for the function f to be in the subclass $U C V_{p}(k, \alpha)$ of k-uniformly p-valent convex functions of order α.

Uniformly p-valent starlike and p-valent convex functions were first introduced [4] when $p=1$, and [1] when $p \geq 1, p \in \mathbb{N}$, and then studied by various authors.

Setting

$$
\Omega_{k, \alpha}=\left\{u+i v, u-\alpha>k \sqrt{(u-p)^{2}+v^{2}}\right\}
$$

with $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ or $p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ and considering the functions which map D onto the conic domain $\Omega_{k, \alpha}$ such that $p(z) \in \Omega_{k, \alpha}$, we may rewrite the conditions (1.1) or (1.2) in the form

$$
\begin{equation*}
p(z) \prec Q_{k, \alpha}(z) . \tag{1.3}
\end{equation*}
$$

We note that the explicit forms of function $Q_{k, \alpha}(z)$ for $k=0$ and $k=1$ are $Q_{0, \alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z}$ and $Q_{1, \alpha}(z)=p+\frac{2(p-\alpha)}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}$. For $0<k<1$, we obtain

$$
\Omega_{k, \alpha}=\left\{u+i v,\left(\frac{\left(1-k^{2}\right) u+\left(k^{2} p-\alpha\right)}{k(p-\alpha)}\right)^{2}-\left(\frac{\left(1-k^{2}\right) v}{(p-\alpha) \sqrt{1-k^{2}}}\right)^{2}=1\right\}
$$

and

$$
Q_{k, \alpha}(z)=\frac{(p-\alpha)}{1-k^{2}} \cos \left\{\frac{2}{\pi} \arccos (k) i \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right\}-\frac{\left(k^{2} p-\alpha\right)}{1-k^{2}}
$$

For $k>1$,

$$
\Omega_{k, \alpha}=\left\{u+i v,\left(\frac{\left(k^{2}-1\right) u+\left(k^{2} p-\alpha\right)}{k(p-\alpha)}\right)^{2}+\left(\frac{\left(k^{2}-1\right) v}{(p-\alpha) \sqrt{k^{2}-1}}\right)^{2}=1\right\}
$$

and

$$
Q_{k, \alpha}(z)=\frac{(p-\alpha)}{k^{2}-1} \sin \left\{\frac{\pi}{2 K(x)} \int_{0}^{\frac{u(z)}{\sqrt{x}}} \frac{d t}{\sqrt{1-t^{2} \sqrt{1-k^{2} t^{2}}}}\right\}+\frac{\left(k^{2} p-\alpha\right)}{k^{2}-1}
$$

where $u(z)=\frac{z-\sqrt{x}}{1-\sqrt{x} z}, x \in(0,1)$ and K is such that $k=\cos h \frac{\pi K^{\prime}(x)}{4 K(x)}$.
By virtue of (1.3) and the properties of the domains, we have

$$
\begin{equation*}
\Re e(p(z))>\Re e\left(Q_{k, \alpha}(z)\right)>\frac{k p+\alpha}{k+1} . \tag{1.4}
\end{equation*}
$$

Define $U C C_{p}(k, \alpha, \beta)$ to be the family of functions $f(z) \in A(p)$ such that

$$
\frac{z f^{\prime}(z)}{g(z)} \prec Q_{k, \alpha}(z)
$$

for some $g(z) \in U S T_{p}(k, \beta)$.
Similarly, we define $U Q C_{p}(k, \alpha, \beta)$ to be the family of functions $f(z) \in$ $A(p)$ such that

$$
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \prec Q_{k, \alpha}(z)
$$

for some $g(z) \in U C V_{p}(k, \beta)$.
We note that $U C C_{p}(0, \alpha, \beta)$ is the class of close-to-convex p-valent functions of order α and type β and $U Q C_{p}(0, \alpha, \beta)$ is the class of quasi-convex p-valent functions of order α and type β.

For any integer n, we define the multiplier transformations $I_{n, p}^{\lambda}$ of functions $f(z) \in A(p)$ by

$$
I_{n, p}^{\lambda} f(z)=z^{p}+\sum_{k=1}^{\infty}(k+p)\left(\frac{\lambda+p}{\lambda+p+k}\right)^{n} a_{k+p} z^{k+p}, \lambda \geq 0
$$

The operators $I_{n, p}^{\lambda}$ are closely related to the Komatu integral operators[5] and the differential and integral operators defined by Sălăgean[9]. We also note that $I_{0, p}^{0} f(z)=z f^{\prime}(z)$ and $I_{n, 1}^{\lambda} f(z)=I_{n}^{\lambda} f(z)$ the operator defined by Cho and Kim[2].

2 Main Results

In this section, we prove some results on the linear operator $I_{n+1, p}^{\lambda}$. In order to give our theorems, we need following lemmas.

Lemma 1. If $f(z) \in A(p)$, then

$$
\begin{equation*}
(\lambda+p) I_{n, p}^{\lambda} f(z)=z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}+(\lambda) I_{n+1, p}^{\lambda} f(z) \tag{2.1}
\end{equation*}
$$

First is the inclusion theorem.
Theorem 2. Let $f(z) \in A(p)$. If $I_{n, p}^{\lambda} f(z) \in U S T_{p}(k, \alpha)$.
Then $I_{n+1, p}^{\lambda} f(z) \in U S T_{p}(k, \alpha)$.ma which is due to Eenigenburg, Miller, Mocanu, and Reade [3].

Lemma 3. Let γ, β be complex constants and $h(z)$ be univalently convex in the unit disk D with $h(0)=p$
and $\Re e(\beta h(z)+\gamma)>0$. Let $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$ be analytic in D. Then

$$
g(z)+\frac{z g^{\prime}(z)}{\beta g(z)+\gamma} \prec h(z) \text { implies } g(z) \prec h(z)
$$

Proof of Theorem 2. Setting $s(z)=\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} f(z)}$ in (2.1), we can write

$$
\begin{equation*}
\frac{(\lambda+p)\left(I_{n, p}^{\lambda} f(z)\right)}{I_{n+1, p}^{\lambda} f(z)}=\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} f(z)}+(\lambda)=s(z)+(\lambda) . \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) yields

$$
\begin{equation*}
\frac{z\left(I_{n, p}^{\lambda} f(z)\right)^{\prime}}{I_{n, p}^{\lambda} f(z)}=s(z)+\frac{z s^{\prime}(z)}{s(z)+(\lambda)} . \tag{2.3}
\end{equation*}
$$

From this and the argument given in Section 1, we may write

$$
s(z)+\frac{z s^{\prime}(z)}{s(z)+(\lambda)} \prec Q_{k, \alpha}(z)
$$

Therefore, the theorem follows by Lemma A and the condition (1.4) since $Q_{k, \alpha}(z)$ is univalent and convex in D and $\Re e\left(Q_{k, \alpha}(z)\right)>\frac{k p+\alpha}{k+1}$.

Multiplier Transformations...

Theorem 4. Let $f(z) \in A(p)$. If $I_{n, p}^{\lambda} f(z) \in U C V_{p}(k, \alpha)$ then $I_{n+1, p}^{\lambda} f(z) \in$ $U C V_{p}(k, \alpha)$.

Proof. By virtue of (1.1), (1.2) and Theorem 2.1, we have

$$
\begin{aligned}
I_{n, p}^{\lambda} f(z) & \in U C V_{p}(k, \alpha) \Leftrightarrow z\left(I_{n, p}^{\lambda} f(z)\right)^{\prime} \in U S T_{p}(k, \alpha) \\
& \Leftrightarrow I_{n, p}^{\lambda} z f^{\prime}(z) \in U S T_{p}(k, \alpha) \\
& \Rightarrow I_{n+1, p}^{\lambda} z f^{\prime}(z) \in U S T_{p}(k, \alpha) \\
& \Leftrightarrow I_{n+1, p}^{\lambda} f(z) \in U C V_{p}(k, \alpha)
\end{aligned}
$$

and the proof is complete.
We next prove:
Theorem 5. Let $f(z) \in A(p)$. If $I_{n, p}^{\lambda} f(z) \in U C C_{p}(k, \alpha, \beta)$. Then $I_{n+1, p}^{\lambda} f(z) \in$ $U C C_{p}(k, \alpha, \beta)$.

To prove the above theorem, we shall need the following lemma which is due to Miller and Mocanu [6].

Lemma 6. Let $h(z)$ be convex in the unit disk D and let $E \geq 0$. Suppose $B(z)$ is analytic in D with $\Re e(B(z))>0$. If $g(z)$ is analytic in D and $h(0)=$ $g(0)$. Then

$$
E z^{2} g^{\prime \prime}(z)+B(z) g(z) \prec h(z) \text { implies } g(z) \prec h(z) .
$$

Proof of Theorem 5. Since $I_{n, p}^{\lambda} f(z) \in U C C_{p}(k, \alpha, \beta)$, by definition, we can write

$$
\frac{z\left(I_{n, p}^{\lambda} f(z)\right)^{\prime}}{k(z)} \prec Q_{k, \alpha}(z)
$$

for some $k(z) \in U S T_{p}(k, \beta)$. For $g(z)$ such that $I_{n, p}^{\lambda} g(z)=k(z)$, we have

$$
\begin{equation*}
\frac{z\left(I_{n, p}^{\lambda} f(z)\right)^{\prime}}{I_{n, p}^{\lambda} g(z)} \prec Q_{k, \alpha}(z) \tag{2.4}
\end{equation*}
$$

Letting $h(z)=\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)}$ and $H(z)=\frac{z\left(I_{n+1, p}^{\lambda} g(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)}$, we observe that h and H are analytic in D and $h(0)=H(0)=p$. Now, by Theorem 2.1, $I_{n+1, p}^{\lambda} g(z) \in U S T_{p}(k, \beta)$ and so $\Re e\{H(z)\}>\frac{k p+\beta}{k+1}$. Also, note that

$$
\begin{equation*}
z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}=\left(I_{n+1, p}^{\lambda} g(z)\right) h(z) . \tag{2.5}
\end{equation*}
$$

Differentiating both sides of (2.5) yields

$$
z \frac{\left(z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)}=\frac{z\left(I_{n+1, p}^{\lambda} g(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)} h(z)+z h^{\prime}(z)=H(z) h(z)+z h^{\prime}(z)
$$

Now using the identity (2.1), we obtain

$$
\begin{align*}
\frac{z\left(I_{n, p}^{\lambda} f(z)\right)^{\prime}}{I_{n, p}^{\lambda} g(z)} & =\frac{I_{n, p}^{\lambda}\left(z f^{\prime}(z)\right)}{I_{n, p}^{\lambda} g(z)} \\
& =\frac{z\left(I_{n+1, p}^{\lambda}\left(z f^{\prime}(z)\right)\right)^{\prime}+(\lambda) I_{n+1, p}^{\lambda}\left(z f^{\prime}(z)\right)}{z\left(I_{n+1, p}^{\lambda} g(z)\right)^{\prime}+(\lambda) I_{n+1, p}^{\lambda} g(z)} \\
& =\frac{\frac{z\left(I_{n+1, p}^{\lambda}\left(z f^{\prime}(z)\right)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)}+(\lambda) \frac{I_{n+1, p}^{\lambda}\left(z f^{\prime}(z)\right)}{I_{n+1, p}^{\lambda} g(z)}}{\frac{z\left(I_{n+1, p}^{\lambda} g(z)\right)^{\prime}}{I_{n+1, p} g(z)}+(\lambda)} \\
& =\frac{H(z) h(z)+z h^{\prime}(z)+(\lambda) h(z)}{H(z)+(\lambda)} \\
& =h(z)+\frac{z h^{\prime}(z)}{H(z)+(\lambda)} . \tag{2.6}
\end{align*}
$$

From (2.4), (2.5), and (2.6), we conclude that

$$
h(z)+\frac{z h^{\prime}(z)}{H(z)+(\lambda)} \prec Q_{k, \alpha}(z)
$$

On letting $E=0$ and $B(z)=\frac{1}{H(z)+(\lambda)}$, we obtain

$$
\Re e(B(z))=\frac{1}{|H(z)+(\lambda)|^{2}} \Re e(H(z)+(\lambda))>0
$$

The above inequality satisfies the conditions required by Lemma B. Hence $h(z) \prec Q_{k, \alpha}(z)$ and so the proof is complete.

Using a similar argument to that in Theorem 4, we can prove

Theorem 7. Let $f(z) \in A(p)$. If $I_{n, p}^{\lambda} f(z) \in U Q C_{p}(k, \alpha, \beta)$ then $I_{n+1, p}^{\lambda} f(z) \in$ $U Q C_{p}(k, \alpha, \beta)$.

Finally, we examine the closure properties of the above classes of functions under the generalized Bernardi-Libera-Livingston integral operator $F_{c}(f)$ which is defined by

$$
\begin{equation*}
F_{c}(f)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t,(c+p \geq 0), f(z) \in A(p) \tag{2.7}
\end{equation*}
$$

Theorem 8. Let $c>\frac{-(k p+\alpha)}{k+1}$. If $I_{n+1, p}^{\lambda} f(z) \in U S T_{p}(k, \alpha)$, then $I_{n+1, p}^{\lambda} F_{c}(f(z)) \in U S T_{p}(k, \alpha)$ where F_{c} is the integral operator defined by (2.7).

Proof. From (2.1), we have

$$
\begin{equation*}
z\left(I_{n+1, p}^{\lambda} F_{c} f(z)\right)^{\prime}=(c+p) I_{n+1, p}^{\lambda} f(z)-c I_{n+1, p}^{\lambda} F_{c} f(z) \tag{2.8}
\end{equation*}
$$

Substituting $s(z)=\frac{z\left(I_{n+1, p}^{\lambda} F_{c} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} F_{c} f(z)}$ in (2.8), we can write

$$
\begin{equation*}
\frac{z\left(I_{n+1, p}^{\lambda} F_{c} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} F_{c} f(z)}+c=(c+p) \frac{I_{n+1, p}^{\lambda} f(z)}{I_{n+1, p}^{\lambda} F_{c} f(z)} . \tag{2.9}
\end{equation*}
$$

Differentiating (2.9) yields

$$
s(z)+\frac{z s^{\prime}(z)}{s(z)+c}=\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} f(z)} .
$$

Applying Lemma A, it follows that $s(z) \prec Q_{k, \alpha}(z)$, that is, $\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} f(z)} \prec$ $Q_{k, \alpha}(z)$.

A similar argument leads to:
Theorem 9. Let $c>\frac{-(k p+\alpha)}{k+1}$. If $I_{n+1, p}^{\lambda} f(z) \in U C V_{p}(k, \alpha)$, then $I_{n+1, p}^{\lambda} F_{c}(f(z)) \in U C V_{p}(k, \alpha)$.

Theorem 10. Let $c>\frac{-(k p+\alpha)}{k+1}$. If $I_{n+1, p}^{\lambda} f(z) \in U C C_{p}(k, \alpha, \beta)$ then $I_{n+1, p}^{\lambda} F_{c}(f(z)) \in U C C_{p}(k, \alpha, \beta)$.

Proof. By definition, there exists a function $k(z) \in U S T_{p}(k, \beta)$. For $g(z)$ such that $I_{n+1, p}^{\lambda} g(z)=k(z)$, we have

$$
\begin{equation*}
\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)} \prec Q_{k, \alpha}(z) \tag{2.10}
\end{equation*}
$$

Now from (2.8) we have

$$
\begin{align*}
\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)} & =\frac{z\left(I_{n+1, p}^{\lambda} F_{c}\left(z f^{\prime}(z)\right)\right)^{\prime}+c I_{n+1, p}^{\lambda} F_{c}\left(z f^{\prime}(z)\right)}{z\left(I_{n+1, p}^{\lambda} F_{c} g(z)\right)^{\prime}+(\lambda) I_{n+1, p}^{\lambda} F_{c} g(z)} \\
& =\frac{\frac{z\left(I_{n+1, p}^{\lambda} F_{c}\left(z f^{\prime}(z)\right)\right)^{\prime}}{I_{n+1, p}^{\lambda} F_{c} g(z)}+c \frac{I_{n+1, p}^{\lambda} F_{c}\left(z f^{\prime}(z)\right)}{I_{n+1, p}^{\lambda} F_{c} g(z)}}{\frac{z\left(I_{n+1, p}^{\lambda} F_{c} g(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} F_{c} g(z)}+c} . \tag{2.11}
\end{align*}
$$

Since $I_{n+1, p}^{\lambda} g(z) \in U S T_{p}(k, \beta)$, by Theorem 8, we have $F_{c}\left(I_{n+1, p}^{\lambda} g(z)\right) \in$ $U S T_{p}(k, \beta)$. Letting $H(z)=\frac{z\left(I_{n+1, p}^{\lambda} F_{c} g(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} F_{c} g(z)}$, we observe that $\Re e\{H(z)\}>$ $\frac{k p+\beta}{k+1}$. Now, let h be defined by

$$
\begin{equation*}
z\left(I_{n+1, p}^{\lambda} F_{c} f(z)\right)^{\prime}=\left(I_{n+1, p}^{\lambda} F_{c} g(z)\right) h(z) \tag{2.12}
\end{equation*}
$$

Differentiating both sides of (2.12) yields

$$
\begin{equation*}
\frac{z\left(I_{n+1, p}^{\lambda}\left(z F_{c} f\right)^{\prime}\right)^{\prime}(z)}{\left(I_{n+1, p}^{\lambda} F_{c} g\right)(z)}=\frac{z\left(I_{n+1, p}^{\lambda} F_{c} g\right)^{\prime}(z)}{\left(I_{n+1, p}^{\lambda} F_{c} g\right)(z)} h(z)+z h^{\prime}(z)=H(z) h(z)+z h^{\prime}(z) \tag{2.13}
\end{equation*}
$$

Therefore from (2.11) and (2.13), we obtain

$$
\frac{z\left(I_{n+1, p}^{\lambda} f(z)\right)^{\prime}}{I_{n+1, p}^{\lambda} g(z)}=\frac{H(z) h(z)+z h^{\prime}(z)+\operatorname{ch}(z)}{H(z)+c}
$$

that is,

$$
h(z)+\frac{z h^{\prime}(z)}{H(z)+c} \prec Q_{k, \alpha}(z) .
$$

On letting $B(z)=\frac{1}{H(z)+c}$, we note that $\Re e\{B(z)\}>0$ if $c>-\frac{k p+\beta}{k+1}$. Now for $E=0$ and $B(z)$ as described, we conclude the proof since the required conditions of Lemma B are satisfied. A similar argument yields

Theorem 11. Let $c>\frac{-(k p+\alpha)}{k+1}$. If $I_{n+1, p}^{\lambda} f(z) \in U Q C_{p}(k, \alpha, \beta)$, then $I_{n+1, p}^{\lambda} F_{c}(f(z)) \in U Q C_{p}(k, \alpha, \beta)$.

References

[1] H.A.Al-Kharsani and S.S.Al-Hajiry, Subordination results for the family of uniformly convex p-valent functions,J.inequal. pure and Appl.math.,7(1)(2006),ART 20.
[2] N.E.Cho and T.H.Kim, Multiplier transformation and strongly close-toconvex functions,Bull.korean Math. Soc., 40 (2003), 399-410.
[3] P.Eeinigenburg,S.S.Miller,P.T.Mocanu and M.D.Reade, General Inequalities, 64 (1983), (Birkhauseverlag-Basel) ISNM,339-348.
[4] A.W.Goodman, On uniformly starlike functions, J.Math. Anal. Appl.,155(1991),364-370.
[5] Y.Komatu, Distortion theorems in relation to linner integral operators, Kluwer Acadimic Puplishers, Dordrecht,Boston, and London,1996
[6] S.S.Miller and P.T. Mocanu, Differential subordination and inequalities in the compelex plane, J.differential equations,67(1978),199-211.
[7] S.Owa, on the distortion theorem i, Kyungpook Math j.,18 (1978), 53-58.
[8] F.Ronning, A survey on uniformly convex starlike functions ann univ, mariae-curie-skoldowska,47(13) (1993),123-134.
[9] G.S.Sălăgean, Subclasses of univalent functions, Lecture notes in math 1013, Springer,Berlin (1983), 362-372

E-mail: ssmh1@hotmail.com

[^0]: ${ }^{1}$ Received 25 September, 2008
 Accepted for publication (in revised form) 22 October, 2008

