A lower bound for the second moment of Schoenberg operator

Gancho T. Tachev

Abstract

In this paper we represent a new lower bound for the second moment for Schoenberg variation-diminishing spline operator. We apply this estimate for $f \in C^{2}[0,1]$ and generalize the results obtained earlier by Gonska, Pitul and Rasa.

2000 Mathematics Subject Classification: 41A10, 41A15, 41A17, 41A25, 41A36

1 Main result

We start with the definition of variation-diminishing operator, introduced by I.Schoenberg. For the case of equidistant knots we denote it by $S_{n, k}$. Consider the knot sequence $\Delta_{n}=\left\{x_{i}\right\}_{-k}^{n+k}, n \geq 1, k \geq 1$ with equidistant "interior knots", namely

$$
\Delta_{n}: x_{-k}=\cdots=x_{0}=0<x_{1}<x_{2}<\cdots<x_{n}=\cdots=x_{n+k}=1
$$

and $x_{i}=\frac{i}{n}$ for $0 \leq i \leq n$. For a bounded real-valued function f defined over the interval $[0,1]$ the variation-diminishing spline operator of degree k w.r.t. Δ_{n} is given by

$$
\begin{equation*}
S_{n, k}(f, x)=\sum_{j=-k}^{n-1} f\left(\xi_{j, k}\right) \dot{N}_{j, k}(x) \tag{1}
\end{equation*}
$$

for $0 \leq x<1$ and

$$
S_{n, k}(f, 1)=\lim _{y \rightarrow 1, y<1} S_{n, k}(f, y)
$$

with the nodes (Greville abscissas)

$$
\begin{equation*}
\xi_{j, k}:=\frac{x_{j+1}+\cdots+x_{j+k}}{k},-k \leq j \leq n-1, \tag{2}
\end{equation*}
$$

and the normalized B - splines as fundamental functions

$$
\left.N_{j, k}(x):=\left(x_{j+k+1}-x_{j}\right) \dot{[} x_{j}, x_{j+1}, \ldots, x_{j+k+1}\right](\cdot-x)_{+}^{k}
$$

The first quantitative variant of Voronovskaja's Theorem for a broad class of linear positive operators L was obtained very recently by H.Gonska, P.Pitul and I.Rasa in [3](see the proof of Theorem 6.2). We cite this result in the following

Theorem A. Let $L: C[0,1] \rightarrow C[0,1]$ be a positive, linear operator reproducing linear functions. If $f \in C^{2}[0,1]$ and $x \in[0,1]$ then

$$
\begin{align*}
& \left|L(f ; x)-f(x)-\frac{1}{2} \cdot f^{\prime \prime}(x) \cdot L\left(\left(e_{1}-x\right)^{2} ; x\right)\right| \tag{3}\\
\leq & \frac{1}{2} \cdot L\left(\left(e_{1}-x\right)^{2} ; x\right) \cdot \tilde{\omega}\left(f^{\prime \prime}, \frac{1}{3} \cdot \sqrt{\frac{L\left(\left(e_{1}-x\right)^{4} ; x\right)}{L\left(\left(e_{1}-x\right)^{2} ; x\right)}}\right) .
\end{align*}
$$

Here $e_{n}: x \in[0,1] \rightarrow x^{n}, n=0,1, \ldots$ are the monomial functions and $\tilde{\omega}(f, \cdot)$ denotes the least concave majorant of $\omega(f, \cdot)$ given by

$$
\tilde{\omega}(f, \varepsilon)=\sup _{0 \leq x \leq \varepsilon \leq y \leq 1, x \neq y} \frac{(\varepsilon-x) \omega(f, y)+(y-\varepsilon) \omega(f, x)}{y-x},
$$

for $0 \leq \varepsilon \leq 1$.
Here we point out that to estimate the argument of $\tilde{\omega}\left(f^{\prime \prime}, \cdot\right)$ we need a "good" upper bound for $L\left(\left(e_{1}-x\right)^{4} ; x\right)$ and a "good" lower bound for the second moment $L\left(\left(e_{1}-x\right)^{2} ; x\right)$. If f is convex function it is known that

$$
S_{n, k}(f, x) \leq B_{k}(f, x),
$$

where $B_{k}(f, x)$ is the Bernstein operator of degree k. Therefore from the well-known representation of the fourth moment of $B_{k}(f, x)$ we have

$$
\begin{equation*}
S_{n, k}\left(\left(e_{1}-x\right)^{4}, x\right) \leq B_{k}\left(\left(e_{1}-x\right)^{4}, x\right)=\frac{x(1-x)}{k^{2}} \cdot\left[3\left(1-\frac{2}{k}\right) x(1-x)+\frac{1}{k}\right] \tag{4}
\end{equation*}
$$

Next we are going to prove a lower bound for the second moment of $S_{n, k}$. We can not use the estimate established in Theorem 12 in [2] because it is valid only when $2 \leq k \leq n-1$. Here we point out that the new lower bound for the second moment of $S_{n, k}$ is valid for all $k \geq 2, n \geq 2$. In Theorem 3 in [1] it was proved that

$$
\begin{equation*}
S_{n, k}\left(\left(e_{1}-x\right)^{2}, x\right)=S_{n, k}\left(g_{2}, x\right), \tag{5}
\end{equation*}
$$

where the function g_{2} is given by
$g_{2}(y)= \begin{cases}\frac{1}{k-1} \cdot\left(-y^{2}+\frac{y}{3} \sqrt{\frac{8 k}{n} \cdot y+\frac{1}{n^{2}}}\right), & 0 \leq y \leq \min \left\{\frac{k+1}{2 n}, \frac{n-1}{2 k}\right\}, \\ \frac{1}{k-1} \cdot\left(y-y^{2}-\frac{n^{2}-1}{6 n k}\right), & \frac{n-1}{2 k} \leq y \leq \frac{1}{2}, \\ \frac{1}{k-1} \cdot \frac{(k+1)(k-1)}{12 n^{2}}, & \frac{k+1}{2 n} \leq y \leq \frac{1}{2}, \\ g_{2}(1-y), & \frac{1}{2} \leq y \leq 1 .\end{cases}$
The function $g_{2}(y)$ is not concave and our goal is to bound it from below by an appropriate concave function $h_{2}(y)$. If this is possible it is easy to calculate

$$
S_{n, k}\left(g_{2}, x\right) \geq S_{n, k}\left(h_{2}, x\right) \geq B_{k}\left(h_{2}, x\right)
$$

and consequently

$$
\begin{equation*}
\frac{1}{S_{n, k}\left(\left(e_{1}-x\right)^{2}, x\right)}=\frac{1}{S_{n, k}\left(g_{2}, x\right)} \leq \frac{1}{B_{k}\left(h_{2}, x\right)} . \tag{6}
\end{equation*}
$$

To define the function h_{2} we observe that

$$
g_{2}^{\prime}(0)=\frac{1}{3 n(k-1)}
$$

for all $n, k \geq 2$. If

$$
\begin{equation*}
h_{2}(y)=\frac{1}{3 n(k-1)} y(1-y), y \in[0,1] \tag{7}
\end{equation*}
$$

we verify that

$$
g_{2}(y) \geq h_{2}(y)
$$

Further we compute

$$
\begin{align*}
B_{k}\left(h_{2}, x\right) & =\frac{1}{3 n(k-1)} \cdot\left[x-\left(x^{2}+\frac{x(1-x)}{k}\right)\right] \tag{8}\\
& =\frac{x(1-x)\left(1-\frac{1}{k}\right)}{3 n(k-1)}
\end{align*}
$$

The last estimate is our lower bound for the second moment valid for all $n \geq 2, k \geq 2$. Thus we obtain
$\frac{S_{n, k}\left(\left(e_{1}-x\right)^{4}, x\right)}{S_{n, k}\left(\left(e_{1}-x\right)^{2}, x\right)} \leq \frac{x(1-x)}{k^{2}} \cdot \frac{3 n(k-1)}{x(1-x)\left(1-\frac{1}{k}\right)} \cdot\left[3\left(1-\frac{2}{k}\right) x(1-x)+\frac{1}{k}\right]=$

$$
\begin{equation*}
3 \frac{n}{k} \cdot\left[3\left(1-\frac{2}{k}\right) x(1-x)+\frac{1}{k}\right]:=\Delta_{n, k}(x) . \tag{9}
\end{equation*}
$$

When $\frac{k}{n} \rightarrow \infty$ (the polynomial case) then $\lim _{\frac{k}{n} \rightarrow \infty} \Delta_{n, k}(x)=0$. We apply Theorem A to arrive at

Theorem 1 For $f \in C^{2}[0,1]$ we have

$$
\begin{align*}
& \left|S_{n, k}(f, x)-f(x)-\frac{1}{2} S_{n, k}\left(\left(e_{1}-x\right)^{2}, x\right) f^{\prime \prime}(x)\right| \\
& \leq \frac{1}{2} S_{n, k}\left(\left(e_{1}-x\right)^{2}, x\right) \cdot \tilde{\omega}\left(f^{\prime \prime}, \frac{1}{3} \cdot \sqrt{\Delta_{n, k}(x)}\right), \tag{10}
\end{align*}
$$

where $\Delta_{n, k}(x)$ is defined in (8).

Corollary 1 If we set $n=1$ in (9) and (10) we get exactly the result of Gonska in [4].

Acknowledgment. This work was done during my stay in January 2008 as DAAD Fellow by Prof. H.Gonska at the University of Duisburg-Essen.

References

[1] L.Beutel, H.H.Gonska, D.Kacso, G.Tachev, On variation-diminishing Schoenberg operators: new quantitative statements, Multivariate Approximation and Interpoltaion with Applications (ed. by M.Gasca), Monogr. Academia Ciencas de Zaragoza 20 (2002), 9-58.
[2] L.Beutel, H.H.Gonska, D.Kacso, G.Tachev, On the Second Moments of Variation-Diminishing Splines, J. of Concr. and Appl. Math., vol.2,1 (2004), 91-117.
[3] H.Gonska,P.Pitul and I.Rasa, On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators, "Numerical Analysis and Approximation Theory" -Proceedings of the Int. Conf. 2006 in Cluj-Napoca, (2006), 55-80.
[4] H.Gonska, On the degree of Approximation in Voronovskaja's theorem, Studia Univ. "Babes-Bolyai", Mathematica, vol.LII,3(2007), 103-115.

Gancho T. Tachev
University of Architecture, Civil Engineering and Geodesy
Department of Mathematics
BG-1046, Sofia, Bulgaria
e-mail: gtt_fte@uacg.acad.bg

