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On some constants in approximation by

Bernstein operators

Radu Păltănea

Abstract

We estimate the constants sup
x∈(0,1)

sup
f∈C[0,1]\Π1

|Bn(f,x)−f(x)|
ω2

�
f,
�

x(1−x)
n

� and

inf
x∈(0,1)

sup
f∈C[0,1]\Π1

|Bn(f,x)−f(x)|
ω2

�
f,
�

x(1−x)
n

� , where Bn is the Bernstein operator

of degree n and ω2 is the second order modulus of continuity.

2000 Mathematical Subject Classification: 41A36, 41A10, 41A25,
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1 Introduction

Denote by B[0, 1], the space of bounded real functions on the interval [0, 1],

with the sup-norm: ‖·‖ and by C[0, 1], the subspace of continuous functions.

The Bernstein operators Bn : B[0, 1]→ R[0,1], n ∈ N are given by:

(1) Bn(f, x) =
n∑

j=0

pn,j(x) · f
(

j

n

)
, f ∈ B[0, 1], x ∈ [0, 1],
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where

(2) pn,j(x) =

(
n

j

)
xj(1− x)n−j .

Consider the monomial functions ej(t) = tj , t ∈ [0, 1], j = 0, 1, 2 . . ..

The set of linear functions is denoted by Π1.

In this paper we are interested in estimating the degree of approxima-

tion by Bernstein operators in terms of the second order modulus and the

argument
√

x(1−x)
n

. The quantity
√

x(1−x)
n

, n ∈ N, x ∈ [0, 1] plays an im-

portant role in such estimates, since Bn((e1−xe0)
2, x) = x(1−x)

n
. Recall that

the second order modulus of a function f ∈ B[0, 1] is defined for h > 0 by:

(3) ω2(f, h) = sup{|f(x+ρ)−2f(x)+f(x−ρ)|, x±ρ ∈ [0, 1], 0 < ρ ≤ h}.

More precisely we are concerning with the evaluation of the constants:

Csup
n = sup

x∈(0,1)

sup
f∈C[0,1]\Π1

|Bn(f, x)− f(x)|

ω2

(
f,
√

x(1−x)
n

) ;(4)

C inf
n = inf

x∈(0,1)
sup

f∈C[0,1]\Π1

|Bn(f, x)− f(x)|

ω2

(
f,
√

x(1−x)
n

) .(5)

In the definitions of these constants we can replace the space C[0, 1], by the

space B[0, 1], since sup
f∈C[0,1]\Π1

|Bn(f,x)−f(x)|
ω2

�
f,
�

x(1−x)
n

� = sup
f∈B[0,1]\Π1

|Bn(f,x)−f(x)|
ω2

�
f,
�

x(1−x)
n

� .

In connection with these constants, mention the constant

(6) sup
f∈C[0,1]\Π1

‖Bn(f)− f‖
ω2

(
f, 1√

n

) = 1,

proved in [5] and also the constant studied in [1].
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2 The estimate of Csup
n

In order to derive an upper inequality for Csup
n we use a general result for

estimating the positive linear operators, [2], [6]. Here we give it only in a

particular form as follows:

Theorem A If L : C[0, 1] → R[0,1] is a linear positive operator, satisfying

the properties: L(ej) = ej, j = 0, 1, then for any f ∈ C[0, 1], x ∈ [0, 1] and

0 < h ≤ 1
2
, we have:

(7) |L(f, x)− f(x)| ≤
(

1 +
1

2h2
· L((e1 − xe0)

2, x)

)
ω2(f, h).

Lemma 1 For any n ∈ N we have

(8) sup
x∈(0,1)

sup
f∈C[0,1]\Π1

|Bn(f, x)− f(x)|

ω2

(
f,
√

x(1−x)
n

) ≤ 3

2
.

Proof. We apply Theorem A to the operator L = Bn and the argument

h =
√

x(1−x)
n

.

Remark 1 In [3], see also [6], it is given, in the same conditions like in

Theorem A, the following estimate:

|L(f, x)− f(x)| ≤
[
1 +

1

2(1− b)2
L

((∣∣∣∣e1 − xe0

h

∣∣∣∣p − b

)2

, x

)]
· ω2(f, h),

for f ∈ B[0, 1], x ∈ [0, 1], 0 < h ≤ 1
2
, p ≥ 1, b ∈ [0, 1) and it was shown that

in certain cases it leads to better estimates then applying (7). However it is

not possible to derive from it a better estimate for Bernstein operators, using

ω2

(
f,
√

x(1−x)
n

)
. From this estimate, for p = 2 and b = 0 and from the

relation Bn((e1−xe0)
4, x) =

(
3
n2 − 6

n3

)
(x(1−x))2+ 1

n3 ·x(1−x) we can obtain,



On some constants in approximation by Bernstein operators 140

immediately, only the inequality: |Bn(f, x) − f(x)| ≤ 11
8
· ω2

(
f,

4
√

x(1−x)√
n

)
,

n ≥ 2. This is the correct form of the misprinted formula |Bn(f, x)−f(x)| ≤
11
8
· ω2

(
f,
√

x(1−x)
n

)
, appearing in [6].

In order to obtain an inverse inequality we fix n ∈ N and take a variable

number p ∈ N, p ≥ 2. Denote m = np. There is an unique number

0 < xp < 1
2
, such that

√
xp(1−xp)

n
= 1

m
. We have xp < 1

m
.

Consider the linear piecewise function fp ∈ C[0, 1] with the knots: 0 <

xp < 1
m

< 2
m

< . . . < 1, which take in the knots the following values:

fp

(
k
m

)
= k2−2k

2
, 0 ≤ k ≤ m, fp(xp) = m

2
·xp−1 and is linear on the intervals

[0, xp],
[
xp,

1
m

]
,
[

1
m

, 2
m

]
, . . . ,

[
m−1

m
, 1
]
. Note that fp is linear on the whole

interval
[
xp,

2
m

]
. More explicitly we have the representation:

(9) fp(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

m
2
− 1

xp

)
t, t ∈ [0, xp],

m
2
· t− 1, t ∈

[
xp,

2
m

]
,

2k−1
2
·mt− k2+k

2
, t ∈

[
k
m

, k+1
m

]
, 2 ≤ k ≤ m− 1.

Lemma 2 For all n, p ∈ N, p ≥ 2 we have

(10) ω2

(
fp,

√
xp(1− xp)

n

)
= 1.

Proof. The relation is equivalent to ω2

(
fp,

1
m

)
= 1. Consider a number

0 < ρ ≤ 1
m

and consider three points 0 ≤ u < v < w ≤ 1, such that

u = v− ρ, w = v + ρ. Denote Δ2
ρfp(u) = fp(w)− 2fp(v) + fp(u). We ignore

the case when the three points u, v, w belong to a same interval ended by

the knots 0 < xp < 2
m

< 3
m

< . . . < 1, because, then Δ2
ρfp(u) = 0. It

remains the following seven cases:
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Case 1: u, v ∈ [0, xp], w ∈
[
xp,

2
m

]
. We have:

Δ2
ρfp(u) =

(
m

2
− 1

xp

)
(v− ρ)− 2

(
m

2
− 1

xp

)
v +

m

2
· (v + ρ)− 1 =

w

xp
− 1.

Hence Δ2
ρfp(u) = 2v−u

xp
− 1 ≤ 2v

xp
− 1 ≤ 1 and Δ2

ρfp(u) ≥ 0.

Case 2: u ∈ [0, xp], v, w ∈
[
xp,

2
m

]
. We have:

Δ2
ρfp(u) =

(
m

2
− 1

xp

)
(v− ρ)− 2

(m

2
· v − 1

)
+

m

2
· (v + ρ)− 1 = − u

xp
+1.

Hence Δ2
ρfp(u) ≤ 1 and Δ2

ρfp(u) ≥ 0.

Case 3: u ∈ [0, xp], v ∈
[
xp,

2
m

]
, w ∈

[
2
m

, 3
m

]
. We have:

Δ2
ρfp(u) =

(
m

2
− 1

xp

)
(v−ρ)−2

(m

2
· v − 1

)
+

3m

2
·(v+ρ)−3 = mw− u

xp

−1.

Hence Δ2
ρfp(u) ≤ m

(
u + 2

m

)
− u

xp
−1 =

(
m− 1

xp

)
u+1 ≤ 1 and Δ2

ρfp(u) ≥

m · 2
m
− 1− 1 = 0.

Case 4: u, v ∈
[
xp,

2
m

]
, w ∈

[
2
m

, 3
m

]
. We have:

Δ2
ρfp(u) =

m

2
(v − ρ)− 1− 2

(m

2
· v − 1

)
+

3

2
·m(v + ρ)− 3 = mw − 2.

Hence Δ2
ρfp(u) ≤ 1 and Δ2

ρfp(u) ≥ 0.

Case 5: There is an integer 1 ≤ k ≤ n − 2, such that u, v ∈
[

k
m

, k+1
m

]
,

w ∈
[

k+1
m

, k+2
m

]
. We have:

Δ2
ρfp(u) =

2k − 1

2
·m(v − ρ)− k2 + k

2
− 2

(
2k − 1

2
·mv − k2 + k

2

)
+

2k + 1

2
·m(v + ρ)− k2 + 3k + 2

2

= mw − k − 1.

Hence Δ2
ρfp(u) ≤ 1 and Δ2

ρfp(u) ≥ 0.
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Case 6: There is an integer 1 ≤ k ≤ n − 2, such that u ∈
[

k
m

, k+1
m

]
,

v, w ∈
[

k+1
m

, k+2
m

]
. We have:

Δ2
ρfp(u) =

2k − 1

2
·m(v − ρ)− k2 + k

2
− 2

(
2k + 1

2
·mv − k2 + 3k + 2

2

)
+

2k + 1

2
·m(v + ρ)− k2 + 3k + 2

2

= −mu + k + 1.

Hence Δ2
ρfp(u) ≤ 1 and Δ2

ρfp(u) ≥ 0.

Case 7: There is an integer 1 ≤ k ≤ n − 3, such that u ∈
[

k
m

, k+1
m

]
,

v ∈
[

k+1
m

, k+2
m

]
, w ∈

[
k+2
m

, k+3
m

]
. We have:

Δ2
ρfp(u) =

2k − 1

2
·m(v − ρ)− k2 + k

2
− 2

(
2k + 1

2
·mv − k2 + 3k + 2

2

)
+

2k + 3

2
·m(v + ρ)− k2 + 5k + 6

2

= 2mρ− 1.

Hence Δ2
ρfp(u) ≤ 1. Also, since in this case ρ ≥ 1

2m
, it follows Δ2

ρfp(u) ≥ 0.

Since in all the cases we obtain 0 ≤ Δ2
ρfp(u) ≤ 1, relation (10) is proved.

Lemma 3 For all n, p ∈ N, p ≥ 2 we have:

(11) Bn(fp, xp)− fp(xp) =
3

2
− 3

2
· npxp +

1

2
(npxp)

2.

Proof. Consider the function gp(t) = 1
2
(mt)2 − mt, t ∈ [0, 1]. Since fp

coincides with gp on the knots k
n

= kp
m

, 0 ≤ k ≤ n, we have Bn(fp) = Bn(gp).

We obtain

Bn(fp, xp)− fp(xp) =
m2

2

(
x2

p +
xp(1− xp)

n

)
−mxp −

m

2
· xp + 1

=
3

2
− 3

2
·mxp +

1

2
(mxp)

2.
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The main result is the following:

Theorem 1 For any n ∈ N we have

(12) Csup
n =

3

2
.

Proof. Fix n ∈ N. From the definition of xp and from m = np we obtain

npxp = 1
p(1−xp)

. Since xp < 1
m
≤ 1

2
, it follows lim

p→∞
npxp = 0. Then, from

Lemma 2 and Lemma 3 we obtain

lim
p→∞

|Bn(fp, xp)− fp(xp)|

ω2

(
fp,
√

xp(1−xp)
n

) =
3

2
.

Since fp ∈ C[0, 1] it follows

sup
x∈(0,1)

sup
f∈C[0,1]\Π1

|Bn(f, x)− f(x)|

ω2

(
f,
√

x(1−x)
n

) ≥ 3

2
.

By taking into account Lemma 1 the theorem is proved.

3 The estimate of C inf
n

First we mention two auxiliary results:

Theorem B([3]) Let F : B[0, 1]→ R be o functional with equidistant knots

of the form F (f) :=
n∑

k=0

f
(

k
n

)
νk, f ∈ B[0, 1], where νk ∈ R, 0 ≤ k ≤ n.

For any irrational number x ∈ (0, 1) and any h > 0 we have

(13) sup
f∈C[0,1]\Π1

|F (f)− f(x)|
ω2(f, h)

≥ 1.
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For any function f : [0, 1] → R and any points a < b < c from [0, 1],

denote:

(14) Δ(f ; a, b, c) =
b− a

c− a
· f(c) +

c− b

c− a
· f(a)− f(b).

Theorem C ([2]) For any f ∈ B[0, 1] and any points a < b < c from the

interval [0, 1], if we denote h = c−a
2

we have:

(15) |Δ(f ; a, b, c)| ≤ ω2(f, h).

The main result of this section is the following

Theorem 2 For any n ∈ N, we have

(16) C inf
n ≥ 1.

and

(17) lim sup
n→∞

C inf
n ≤

3

2
− 1

e
= 1, 13 . . . .

Proof. Relation (16) follows from Theorem B. For proving relation (17) we

consider n ∈ N, n ≥ 4 and define yn to be the unique point yn ∈
(
0, 1

2

)
,

such that
√

yn(1−yn)
n

= 1
n
. We obtain yn =

1−
√

1− 4
n

2
= 2

n
�
1+
√

1− 4
n

� . Hence

1
n

< yn < 2
n

and lim
n→∞

nyn = 1.

Let an arbitrary function f ∈ C[0, 1]. In order to estimate the fraction

|Bn(f,yn)−f(yn)|
ω2(f, 1

n)
it is sufficient to consider that f(0) = 0 = f

(
1
n

)
. Indeed,

otherwise we can replace the function f by the function g(t) = f(t) +

n
(
f(0)− f

(
1
n

))
t − f(0), t ∈ [0, 1], since Bn(f) − f = Bn(g) − g and

ω2(f, h) = ω2(g, h), for any 0 ≤ h ≤ 1
2
. Moreover we have g(0) = 0 = g

(
1
n

)
.
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Also we can suppose that Bn(f, yn)− f(yn) ≥ 0, since otherwise we can

replace f by the function g = −f .

Let a ∈ R be such that f
(

2
n

)
= aω2

(
f, 1

n

)
.

The following relation can be proved easily by induction.

(18) f

(
k + 1

n

)
− f

(
k

n

)
≤ (k − 1 + a)ω2

(
f,

1

n

)
, 1 ≤ k ≤ n− 1.

Indeed, for k = 1 we take into account that f
(

1
n

)
= 0 and the definition of

a. Then, if we suppose (18) true for 1 ≤ k ≤ n− 2, we have

f

(
k + 2

n

)
− f

(
k + 1

n

)
= f

(
k + 1

n

)
− f

(
k

n

)
+

(
f

(
k + 2

n

)
− 2f

(
k + 1

n

)
+ f

(
k

n

))
≤ (k + a)ω2

(
f,

1

n

)
.

Then, for 2 ≤ k ≤ n we obtain

f

(
k

n

)
= f

(
1

n

)
+

k−1∑
j=1

(
f

(
j + 1

n

)
− f

(
j

n

))

≤
k−1∑
j=1

(j − 1 + a)ω2

(
f,

1

n

)
=

(
k2 − k

2
+ (k − 1)(a− 1)

)
ω2

(
f,

1

n

)
.

It follows

Bn(f, yn)

ω2

(
f, 1

n

) ≤
n∑

k=2

(
k2 − k

2
+ (k − 1)(a− 1)

)
pn,k(yn)

= Bn

(
n2

2
· e2−

n

2
· e1, yn

)
+(a−1)[Bn(ne1−e0, yn)+pn,0(yn)]

=
(nyn)2

2
+

1

2
− nyn

2
+ (a− 1)(nyn − 1 + pn,0(yn)).



On some constants in approximation by Bernstein operators 146

We consider now two cases.

Case 1: a ≥ 0. From the relation

Δ

(
f ; 0, yn,

2

n

)
=

nyn

2
· f
(

2

n

)
+
(
1− nyn

2

)
f(0)− f(yn)

and from Theorem C we obtain f(yn) ≥
(

nyn

2
· a− 1

)
ω2

(
f, 1

n

)
. Conse-

quently we obtain

Bn(f, yn)− f (yn)

ω2

(
f, 1

n

) ≤ (nyn)2

2
+

3

2
− nyn + (a− 1)

(nyn

2
− 1 + pn,0(yn)

)
.

Since lim
n→∞

nyn = 1 it follows lim
n→∞

(1 − yn)n = 1
e
. Hence lim

n→∞
nyn

2
− 1 +

pn,0(yn) = −1
2

+ 1
e

< 0. Then there is n0 ∈ N, sufficiently greater such that

nyn

2
−1+pn,0(yn) < 0, for all n ≥ n0. Since a ≥ 0 and Bn(f, yn)−f (yn) ≥ 0,

we obtain, for n ≥ n0:

|Bn(f, yn)− f (yn)|
ω2

(
f, 1

n

) ≤ (nyn)2

2
+

3

2
− nyn −

(nyn

2
− 1 + pn,0(yn)

)
=

(nyn)2

2
+

5

2
− 3

2
· nyn − pn,0(yn).

Case 2: a ≤ 0. From the relation

Δ

(
f ;

1

n
, yn,

2

n

)
= (2− nyn)f

(
1

n

)
+ (nyn − 1)f

(
2

n

)
− f(yn)

and from Theorem C we obtain: f(yn) ≥ ((nyn− 1)a− 1)ω2

(
f, 1

n

)
. Conse-

quently we arrive to

Bn(f, yn)− f (yn)

ω2

(
f, 1

n

) ≤ (nyn)
2

2
+

5

2
− 3

2
· nyn + (a− 1)pn,0(yn).

Since a ≤ 0 and Bn(f, yn)− f (yn) ≥ 0 we obtain the same upper bound as

in Case 1:

|Bn(f, yn)− f (yn)|
ω2

(
f, 1

n

) ≤ (nyn)2

2
+

5

2
− 3

2
· nyn − pn,0(yn).
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Finally, since

lim
n→∞

(
(nyn)2

2
+

5

2
− 3

2
· nyn − pn,0(yn)

)
=

3

2
− 1

e
,

we obtain relation (17).
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[4] R. Păltănea, Estimates with second order moduli, Rend. Circ. Mat.

Palermo, 68 Suppl., 2002, 727-738.
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