Quantitative estimates for positive linear operators in weighted spaces

Adrian Holhoş

Abstract

We give some quantitative estimates for positive linear operators in weighted spaces by introducing a new modulus of continuity and then apply these results to the Bernstein-Chlodowsky polynomials.

2000 Mathematical Subject Classification: 41A36, 41A25.

1 Introduction

Let $\mathbb{R}_{+}=[0, \infty)$ and let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an unbounded strictly increasing continuous function such there exist $M>0$ and $\alpha \in(0,1]$ with the property

$$
\begin{equation*}
|x-y| \leq M|\varphi(x)-\varphi(y)|^{\alpha}, \text { for every } x, y \geq 0 \tag{1}
\end{equation*}
$$

Let $\rho(x)=1+\varphi^{2}(x)$ be a weight function and let $B_{\rho}\left(\mathbb{R}_{+}\right)$be the space defined by

$$
B_{\rho}\left(\mathbb{R}_{+}\right)=\left\{f: \mathbb{R}_{+} \rightarrow \mathbb{R} \left\lvert\,\|f\|_{\rho}=\sup _{x \geq 0} \frac{f(x)}{\rho(x)}<+\infty\right.\right\}
$$

We define also the spaces

$$
\begin{aligned}
& C_{\rho}\left(\mathbb{R}_{+}\right)=\left\{f \in B_{\rho}\left(\mathbb{R}_{+}\right), f \text { is continuous }\right\}, \\
& C_{\rho}^{k}\left(\mathbb{R}_{+}\right)=\left\{f \in C_{\rho}\left(\mathbb{R}_{+}\right), \lim _{x \rightarrow+\infty} \frac{f(x)}{\rho(x)}=K_{f}<+\infty\right\}, \\
& U_{\rho}\left(\mathbb{R}_{+}\right)=\left\{f \in C_{\rho}\left(\mathbb{R}_{+}\right), f / \rho \text { is uniformly continuous }\right\} .
\end{aligned}
$$

We have the inclusions $C_{\rho}^{k}\left(\mathbb{R}_{+}\right) \subset U_{\rho}\left(\mathbb{R}_{+}\right) \subset C_{\rho}\left(\mathbb{R}_{+}\right) \subset B_{\rho}\left(\mathbb{R}_{+}\right)$.
We consider $\left(A_{n}\right)_{n \geq 1}$ a sequence of positive linear operators acting from $C_{\rho}\left(\mathbb{R}_{+}\right)$to $B_{\rho}\left(\mathbb{R}_{+}\right)$. In [1] is given the following

Theorem 1 If $A_{n}: C_{\rho}\left(\mathbb{R}_{+}\right) \rightarrow B_{\rho}\left(\mathbb{R}_{+}\right)$is a sequence of linear operators such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A_{n} \varphi^{i}-\varphi^{i}\right\|_{\rho}=0, \quad i=0,1,2 \tag{2}
\end{equation*}
$$

then for any function $f \in C_{\rho}^{k}\left(\mathbb{R}_{+}\right)$we have

$$
\lim _{n \rightarrow \infty}\left\|A_{n} f-f\right\|_{\rho}=0
$$

Remark 1 The conditions (2) can be replaced with:

$$
\lim _{n \rightarrow \infty}\left\|A_{n} \rho^{i / 2}-\rho^{i / 2}\right\|_{\rho}=0, \quad i=0,1,2
$$

and the theorem remains valid. (see [2])

Remark 2 Taking $f^{*}(x)=\varphi^{2}(x) \cos \pi x$, we notice that $f^{*} \in U_{\rho}\left(\mathbb{R}_{+}\right)$. But it was proved in [1] that there is a sequence A_{n} of positive linear operators such that $\lim _{n \rightarrow \infty}\left\|A_{n} f^{*}-f^{*}\right\|_{\rho} \geq 1$. So, the space $C_{\rho}^{k}\left(\mathbb{R}_{+}\right)$, from Theorem 1 cannot be replaced by $U_{\rho}\left(\mathbb{R}_{+}\right)$.

In [2] it was introduced a weighted modulus of continuity to estimate the rate of approximation in these spaces: for every $\delta \geq 0$ and for every $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$

$$
\Omega_{\rho}(f, \delta)=\sup _{\substack{x, y \in \mathbb{R}_{+} \\|\rho(x)-\rho(y)| \leq \delta}} \frac{|f(x)-f(y)|}{[|\rho(x)-\rho(y)|+1] \rho(x)}
$$

where ρ was defined as a continuously differentiable function on \mathbb{R}_{+}with $\rho(0)=1$ and $\inf _{x \geq 0} \rho^{\prime}(x) \geq 1$. For this modulus, it was proved

Theorem 2 Let A_{n} be a sequence of positive linear operators such that

$$
\begin{aligned}
& \left\|A_{n} \rho^{0}-\rho^{0}\right\|_{\rho}=\alpha_{n} \\
& \left\|A_{n} \rho-\rho\right\|_{\rho}=\beta_{n} \\
& \left\|A_{n} \rho^{2}-\rho^{2}\right\|_{\rho^{2}}=\gamma_{n}
\end{aligned}
$$

where α_{n}, β_{n} and γ_{n} tend to zero as n goes to the infinity. Then

$$
\left\|A_{n} f-f\right\|_{\rho^{4}} \leq 16 \cdot \Omega_{\rho}\left(f, \sqrt{\alpha_{n}+2 \beta_{n}+\gamma_{n}}\right)+\|f\|_{\rho} \alpha_{n}
$$

for all $f \in C_{\rho}^{k}\left(\mathbb{R}_{+}\right)$and n large enough.
We want to improve this result and give an application.

2 A new weighted modulus of continuity

For each $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$and for every $\delta \geq 0$ we introduce

$$
\omega_{\varphi}(f, \delta)=\sup _{\substack{x, y \geq 0 \\|\varphi(x)-\varphi(y)| \leq \delta}} \frac{|f(x)-f(y)|}{\rho(x)+\rho(y)} .
$$

Remark 3 Because of the symmetry we have

$$
\omega_{\varphi}(f, \delta)=\sup _{\substack{y \geq x \geq 0 \\|\varphi(y)-\varphi(x)| \leq \delta}} \frac{|f(x)-f(y)|}{\rho(x)+\rho(y)}
$$

We observe that $\omega_{\varphi}(f, 0)=0$ and $\omega_{\varphi}(f, \cdot)$ is a nonnegative, increasing function for all $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$. Moreover, $\omega_{\varphi}(f, \cdot)$ is bounded, which follows from the inequality $|f(y)-f(x)| \leq\|f\|_{\rho}(\rho(y)+\rho(x))$.

Remark 4 If $\varphi(x)=x$, then ω_{φ} is equivalent with Ω defined by

$$
\Omega(f, \delta)=\sup _{x \geq 0,|h| \leq \delta} \frac{|f(x+h)-f(x)|}{\left(1+h^{2}\right)\left(1+x^{2}\right)}
$$

in the sense that

$$
\omega_{\varphi}(f, \delta) \leq \Omega(f, \delta) \leq 3 \cdot \omega_{\varphi}(f, \delta)
$$

the first inequality being true for $\delta \leq \frac{1}{\sqrt{2}}$ and the second for all $\delta \geq 0$. Indeed, $\omega_{\varphi}(f, \delta) \leq \Omega(f, \delta)$ is equivalent with the inequality

$$
1+x^{2}+h^{2}+x^{2} h^{2} \leq 1+x^{2}+1+x^{2}+2 x h+h^{2}, \forall x \geq 0
$$

or $x^{2}\left(1-h^{2}\right)+2 x h+1 \geq 0, \forall x \geq 0$, which is true if $2 h^{2}-1 \leq 0$.
The inequality $\Omega(f, \delta) \leq 3 \cdot \omega_{\varphi}(f, \delta)$ is equivalent with

$$
1+x^{2}+1+x^{2}+2 x h+h^{2} \leq 3\left(1+x^{2}+h^{2}+x^{2} h^{2}\right), \forall x \geq 0
$$

or $x^{2}+2 h^{2}+2 x^{2} h^{2}+(x h-1)^{2} \geq 0$, which is true for all $h, x \in \mathbb{R}$.

Lemma $1 \lim _{\delta \searrow 0} \omega_{\varphi}(f, \delta)=0$, for every $f \in U_{\rho}\left(\mathbb{R}_{+}\right)$.

Proof. Let $y \geq x \geq 0$ such that $0 \leq \varphi(y)-\varphi(x) \leq \delta$. Then

$$
\begin{aligned}
\frac{|f(x)-f(y)|}{\rho(x)+\rho(y)} & \leq\left|\frac{f(x)}{\rho(x)}-\frac{f(y)}{\rho(y)}\right| \cdot \frac{\rho(x)}{\rho(x)+\rho(y)}+\frac{|f(y)|}{\rho(y)} \cdot \frac{|\rho(x)-\rho(y)|}{\rho(x)+\rho(y)} \\
& \leq \omega\left(\frac{f}{\rho},|x-y|\right) \cdot \frac{1}{2}+\|f\|_{\rho} \cdot \frac{|\varphi(x)-\varphi(y)| \cdot[\varphi(x)+\varphi(y)]}{2+\varphi^{2}(x)+\varphi^{2}(y)} \\
& \leq \frac{1}{2} \cdot \omega\left(\frac{f}{\rho}, M|\varphi(x)-\varphi(y)|^{\alpha}\right)+\|f\|_{\rho} \cdot \frac{|\varphi(x)-\varphi(y)|}{2} \\
& \leq \frac{M+1}{2} \cdot \omega\left(\frac{f}{\rho}, \delta^{\alpha}\right)+\|f\|_{\rho} \cdot \frac{\delta}{2},
\end{aligned}
$$

where $\omega(f, \delta)$ is the usual modulus of continuity. We obtain

$$
\omega_{\varphi}(f, \delta) \leq \frac{M+1}{2} \cdot \omega\left(\frac{f}{\rho}, \delta^{\alpha}\right)+\|f\|_{\rho} \cdot \frac{\delta}{2}
$$

The right-hand side tend to zero when δ tend to zero, because f / ρ is uniformly continuous, so the lemma is proved.

Lemma 2 For every $\delta \geq 0$ and $\lambda \geq 0$ we have

$$
\omega_{\varphi}(f, \lambda \delta) \leq(2+\lambda) \cdot \omega_{\varphi}(f, \delta)
$$

Proof. We prove that $\omega_{\varphi}(f, m \delta) \leq(m+1) \cdot \omega_{\varphi}(f, \delta)$, for every nonnegative integer m. The property for $\lambda \in \mathbb{R}_{+}$can be easily obtained by using the inequalities $[\lambda] \leq \lambda \leq[\lambda]+1$, where $[\lambda]$ denotes the greatest integer less or equal to λ.
For $m=0$ and $m=1$ the inequality is obvious. For $m \geq 2$, let $y>x \geq 0$ such that $\varphi(y)-\varphi(x) \leq m \delta$. We construct, inductively, the sequence of points $x=x_{0}<x_{1}<\cdots<x_{m}=y$ such that for each $k \in\{1, \ldots, m\}$,

$$
\varphi\left(x_{k}\right)-\varphi\left(x_{k-1}\right)=c=\frac{\varphi(y)-\varphi(x)}{m} \leq \delta .
$$

For simplifying the computations we set $a_{k}=\varphi\left(x_{k}\right) \geq 0$. We have

$$
\sum_{k=1}^{m} a_{k}^{2}+a_{k-1}^{2}-2 \sum_{k=1}^{m} a_{k} a_{k-1}=\sum_{k=1}^{m}\left(a_{k}-a_{k-1}\right)^{2}=m c^{2}
$$

and

$$
\sum_{k=1}^{m} a_{k}^{2}+a_{k} a_{k-1}+a_{k-1}^{2}=\frac{1}{c} \sum_{k=1}^{m} a_{k}^{3}-a_{k-1}^{3}=\frac{a_{m}^{3}-a_{0}^{3}}{c}=m\left(a_{m}^{2}+a_{m} a_{0}+a_{0}^{2}\right) .
$$

We deduce

$$
\begin{aligned}
3 \sum_{k=1}^{m} a_{k}^{2}+a_{k-1}^{2} & =2 \sum_{k=1}^{m} a_{k}^{2}+a_{k} a_{k-1}+a_{k-1}^{2}+\sum_{k=1}^{m} a_{k}^{2}-2 a_{k} a_{k-1}+a_{k-1}^{2} \\
& =2 m\left(a_{m}^{2}+a_{m} a_{0}+a_{0}^{2}\right)+m c^{2} \\
& \leq 3 m\left(a_{m}^{2}+a_{0}^{2}\right)+\left(a_{m}-a_{0}\right)^{2} \\
& \leq 3(m+1)\left(a_{m}^{2}+a_{0}^{2}\right)
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
\frac{|f(y)-f(x)|}{\rho(y)+\rho(x)} & \leq \sum_{k=1}^{m} \frac{\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|}{\rho\left(x_{k}\right)+\rho\left(x_{k-1}\right)} \cdot \frac{2+\varphi^{2}\left(x_{k}\right)+\varphi^{2}\left(x_{k-1}\right)}{\rho(y)+\rho(x)} \\
& \leq \omega_{\varphi}(f, \delta) \sum_{k=1}^{m} \frac{2+a_{k}^{2}+a_{k-1}^{2}}{2+a_{m}^{2}+a_{0}^{2}} \\
& \leq(m+1) \omega_{\varphi}(f, \delta) .
\end{aligned}
$$

The supremum being the least upper bound, we obtain

$$
\omega_{\varphi}(f, m \delta) \leq(m+1) \omega_{\varphi}(f, \delta)
$$

Lemma 3 For every $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$, for $\delta>0$ and for all $x, y \geq 0$

$$
|f(y)-f(x)| \leq(\rho(y)+\rho(x))\left(2+\frac{|\varphi(y)-\varphi(x)|}{\delta}\right) \omega_{\varphi}(f, \delta)
$$

Proof. From the definition of the modulus we deduce

$$
|f(y)-f(x)| \leq[\rho(y)+\rho(x)] \cdot \omega_{\varphi}(f,|\varphi(y)-\varphi(x)|)
$$

If $|\varphi(y)-\varphi(x)| \leq \delta$ then by the monotony of the modulus we have

$$
\omega_{\varphi}(f,|\varphi(y)-\varphi(x)|) \leq \omega_{\varphi}(f, \delta)
$$

If $|\varphi(y)-\varphi(x)| \geq \delta$ then by the previous lemma

$$
\begin{aligned}
\omega_{\varphi}(f,|\varphi(y)-\varphi(x)|) & =\omega_{\varphi}\left(f, \frac{|\varphi(y)-\varphi(x)|}{\delta} \cdot \delta\right) \\
& \leq\left(2+\frac{|\varphi(y)-\varphi(x)|}{\delta}\right) \omega_{\varphi}(f, \delta)
\end{aligned}
$$

Theorem 3 Let $A_{n}: C_{\rho}\left(\mathbb{R}_{+}\right) \rightarrow B_{\rho}\left(\mathbb{R}_{+}\right)$be a sequence of positive linear operators with

$$
\begin{aligned}
& \left\|A_{n} \varphi^{0}-\varphi^{0}\right\|_{\rho^{0}}=a_{n} \\
& \left\|A_{n} \varphi-\varphi\right\|_{\rho^{\frac{1}{2}}}=b_{n} \\
& \left\|A_{n} \varphi^{2}-\varphi^{2}\right\|_{\rho}=c_{n} \\
& \left\|A_{n} \varphi^{3}-\varphi^{3}\right\|_{\rho^{\frac{3}{2}}}=d_{n}
\end{aligned}
$$

where a_{n}, b_{n}, c_{n} and d_{n} tend to zero as n goes to the infinity. Then

$$
\left\|A_{n} f-f\right\|_{\rho^{\frac{3}{2}}} \leq\left(7+4 a_{n}+2 c_{n}\right) \cdot \omega_{\varphi}\left(f, \delta_{n}\right)+\|f\|_{\rho} a_{n}
$$

for all $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$, where

$$
\delta_{n}=2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+a_{n}+3 b_{n}+3 c_{n}+d_{n} .
$$

Proof. By the previous lemma and by the fact that

$$
[\rho(x)+\rho(y)]|\varphi(y)-\varphi(x)| \leq\left[2 \rho(x)+\left|\varphi^{2}(y)-\varphi^{2}(x)\right|\right]|\varphi(y)-\varphi(x)|
$$

we obtain

$$
\begin{aligned}
& \left|A_{n} f(x)-f(x)\right| \leq|f(x)| \cdot\left|A_{n} \varphi^{0}(x)-\varphi^{0}(x)\right|+A_{n}(|f(y)-f(x)|, x) \\
(3) \quad \leq & \|f\|_{\rho} a_{n} \rho(x)+\omega_{\varphi}\left(f, \delta_{n}\right) \cdot\left[2 A_{n} \rho(x)+2 \rho(x) A_{n} \varphi^{0}(x)\right. \\
& \left.+\frac{2 \rho(x) A_{n}(|\varphi(y)-\varphi(x)|, x)+A_{n}\left([\varphi(y)+\varphi(x)][\varphi(y)-\varphi(x)]^{2}, x\right)}{\delta_{n}}\right]
\end{aligned}
$$

Applying Cauchy-Schwarz inequality we have

$$
A_{n}(|\varphi(y)-\varphi(x)|, x) \leq\left(A_{n}\left([\varphi(y)-\varphi(x)]^{2}, x\right)\right)^{\frac{1}{2}} \cdot\left(A_{n} \varphi^{0}(x)\right)^{\frac{1}{2}}
$$

and using

$$
\begin{aligned}
& A_{n}\left([\varphi(y)-\varphi(x)]^{2}, x\right) \\
& =A_{n} \varphi^{2}(x)-\varphi^{2}(x)-2 \varphi(x)\left[A_{n} \varphi(x)-\varphi(x)\right]+\varphi^{2}(x)\left[A_{n} \varphi^{0}(x)-\varphi^{0}(x)\right] \\
& \leq \rho(x) c_{n}+2 \rho^{\frac{1}{2}}(x) \varphi(x) b_{n}+a_{n} \varphi^{2}(x)
\end{aligned}
$$

we obtain

$$
A_{n}(|\varphi(y)-\varphi(x)|, x) \leq \rho^{\frac{1}{2}}(x) \cdot \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)} .
$$

Because

$$
\begin{aligned}
& A_{n}\left(\varphi(y)[\varphi(y)-\varphi(x)]^{2}, x\right) \\
& =A_{n} \varphi^{3}(x)-\varphi^{3}(x)-2 \varphi(x)\left[A_{n} \varphi^{2}(x)-\varphi^{2}(x)\right]+\varphi^{2}(x)\left[A_{n} \varphi(x)-\varphi(x)\right] \\
& \leq \rho^{\frac{3}{2}}(x) d_{n}+2 \rho(x) \varphi(x) c_{n}+b_{n} \varphi^{2}(x) \rho^{\frac{1}{2}}(x),
\end{aligned}
$$

we obtain

$$
A_{n}\left([\varphi(y)+\varphi(x)][\varphi(y)-\varphi(x)]^{2}, x\right) \leq \rho^{\frac{3}{2}}(x) \cdot\left(d_{n}+2 c_{n}+b_{n}+a_{n}+2 b_{n}+c_{n}\right)
$$

Choosing $\delta_{n}=2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+a_{n}+3 b_{n}+3 c_{n}+d_{n}$

$$
\left|A_{n} f(x)-f(x)\right| \leq\left[2 \rho(x)\left(2 a_{n}+c_{n}+3\right)+\rho^{\frac{3}{2}}(x)\right] \omega_{\varphi}\left(f, \delta_{n}\right)+\|f\|_{\rho} a_{n} \rho(x)
$$

So,

$$
\left\|A_{n} f-f\right\|_{\rho^{\frac{3}{2}}} \leq\left(7+4 a_{n}+2 c_{n}\right) \cdot \omega_{\varphi}\left(f, \delta_{n}\right)+\|f\|_{\rho} a_{n}
$$

Remark 5 In the conditions of the Theorem 3, using Lemma 1 we have

$$
\lim _{n \rightarrow \infty}\left\|A_{n} f-f\right\|_{\rho^{\frac{3}{2}}}=0
$$

for all $f \in U_{\rho^{\frac{3}{2}}}^{k}\left(\mathbb{R}_{+}\right)$.
Corollary 1 Let $A_{n}: C_{\rho}\left(\mathbb{R}_{+}\right) \rightarrow B_{\rho}\left(\mathbb{R}_{+}\right)$be a sequence of positive linear operators with

$$
\begin{aligned}
& \left\|A_{n} \varphi^{0}-\varphi^{0}\right\|_{\rho^{0}}=a_{n} \\
& \left\|A_{n} \varphi-\varphi\right\|_{\rho^{\frac{1}{2}}}=b_{n} \\
& \left\|A_{n} \varphi^{2}-\varphi^{2}\right\|_{\rho}=c_{n} \\
& \left\|A_{n} \varphi^{3}-\varphi^{3}\right\|_{\rho^{\frac{3}{2}}}=d_{n}
\end{aligned}
$$

where a_{n}, b_{n}, c_{n} and d_{n} tend to zero as n goes to the infinity. Let η_{n} be a sequence of real numbers such that

$$
\lim _{n \rightarrow \infty} \eta_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \rho^{\frac{1}{2}}\left(\eta_{n}\right) \delta_{n}=0
$$

where $\delta_{n}=2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+a_{n}+3 b_{n}+3 c_{n}+d_{n}$. Then for every $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$

$$
\sup _{0 \leq x \leq \eta_{n}} \frac{\left|A_{n} f(x)-f(x)\right|}{\rho(x)} \leq\left(7+4 a_{n}+2 c_{n}\right) \cdot \omega_{\varphi}\left(f, \rho^{\frac{1}{2}}\left(\eta_{n}\right) \delta_{n}\right)+\|f\|_{\rho} a_{n} .
$$

Proof. Replacing δ_{n} from (3) with $\rho^{\frac{1}{2}}\left(\eta_{n}\right) \delta_{n}$ we obtain the result.

3 Application

We want to apply the result obtained in the Corollary 1 for the weight $\rho(x)=1+x^{2}$ and the Bernstein-Chlodowsky operators defined by

$$
B_{n} f(x)=\sum_{k=0}^{n} f\left(\frac{k}{n} b_{n}\right)\binom{n}{k}\left(\frac{x}{b_{n}}\right)^{k}\left(1-\frac{x}{b_{n}}\right)^{n-k}
$$

for $0 \leq x \leq b_{n}$ and $B_{n} f(x)=f(x)$, for $x>b_{n}$, where b_{n} is a sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} b_{n}=\infty \text { and } \lim _{n \rightarrow \infty} \frac{b_{n}}{n}=0
$$

The condition (1) over $\varphi(x)=x$ is verified for $\alpha=1$ and $M=1$.
Theorem 4 If $B_{n}: C_{\rho}\left(\mathbb{R}_{+}\right) \rightarrow B_{\rho}\left(\mathbb{R}_{+}\right)$is the sequence of BernsteinChlodowsky operators, then for all $f \in C_{\rho}\left(\mathbb{R}_{+}\right)$

$$
\begin{equation*}
\left\|B_{n} f-f\right\|_{\rho} \leq\left(7+\frac{b_{n}}{n}\right) \cdot \omega_{\varphi}\left(f, \sqrt{1+b_{n}^{2}}\left(\sqrt{\frac{2 b_{n}}{n}}+3 \frac{b_{n}}{n}+\frac{b_{n}^{2}}{2 n^{2}}\right)\right) \tag{4}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& B_{n} e_{0}(x)=1 \\
& B_{n} e_{1}(x)=x \\
& B_{n} e_{2}(x)=x^{2}+\frac{x\left(b_{n}-x\right)}{n} \\
& B_{n} e_{3}(x)=x^{3}+\frac{x\left(b_{n}-x\right)\left[(3 n-2) x+b_{n}\right]}{n^{2}}
\end{aligned}
$$

We obtain

$$
\begin{aligned}
a_{n} & =\left\|B_{n} e_{0}-e_{0}\right\|_{\rho^{0}}
\end{aligned}=0, ~ \begin{aligned}
& b_{n}=\left\|B_{n} e_{1}-e_{1}\right\|_{\rho^{\frac{1}{2}}}=0, \\
& c_{n}=\left\|B_{n} e_{2}-e_{2}\right\|_{\rho}=\sup _{0 \leq x \leq b_{n}} \frac{x\left(b_{n}-x\right)}{n\left(1+x^{2}\right)}=\frac{b_{n}^{2}}{2 n\left(\sqrt{1+b_{n}^{2}}+1\right)} \leq \frac{b_{n}}{2 n}, \\
& d_{n}=\left\|B_{n} e_{3}-e_{3}\right\|_{\rho^{\frac{3}{2}}} \leq \sup _{0 \leq x \leq b_{n}} \frac{x\left(b_{n}-x\right)}{n\left(1+x^{2}\right)} \cdot \sup _{0 \leq x \leq b_{n}} \frac{(3 n-2) x+b_{n}}{n \sqrt{1+x^{2}}} \\
& \leq \frac{b_{n}}{2 n}\left(3+\frac{b_{n}}{n}\right) .
\end{aligned}
$$

Setting $\eta_{n}=b_{n}$ in the Corollary 1, and considering

$$
2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+a_{n}+3 b_{n}+3 c_{n}+d_{n} \leq \sqrt{\frac{2 b_{n}}{n}}+3 \frac{b_{n}}{n}+\frac{b_{n}^{2}}{2 n^{2}},
$$

we obtain the estimation from the theorem.

Remark 6 In order to obtain

$$
\lim _{n \rightarrow \infty}\left\|B_{n} f-f\right\|_{\rho}=0
$$

in the relation (4) from Theorem 4, we must have $f \in U_{\rho}\left(\mathbb{R}_{+}\right)$and

$$
\lim _{n \rightarrow \infty} \frac{b_{n}^{3}}{n}=0
$$

References

[1] A.D.Gadzhiev, On P.P.Korovkin type theorems, Math.Zamet. 20, 5, 1976, 781-786. Transl. in Math. Notes 20, 5, 1976, 996-998.
[2] A.D.Gadjiev, A.Aral, The estimates of approximation by using a new type of weighted modulus of continuity, Comput. Math. Appl. 54, 2007, 127-135.

Adrian Holhoş
Technical University of Cluj-Napoca, Department of Mathematics,

Str. C.Daicoviciu, nr.15, 400020, Cluj-Napoca, Romania
e-mail: Adrian.Holhos@math.utcluj.ro

