Remarks on Voronovskaya's theorem

Heiner Gonska and Ioan Raşa

Abstract

The present note discusses various quantitative forms of Vorvonovskaya's 1932 result dealing with the asymptotic behavior of the classical Bernstein operators. In particular the relationship between a result of Sikkema and van der Meer and an alternative approach of the authors ist discussed.

2000 Mathematical Subject Classification: 41A10, 41A17, 41A25, 41A36

In a recent paper [4] the well-known theorem of Voronovskaya for the classical Bernstein operators B_n was stated in the following form.

Theorem 1 For $f \in C^2[0,1], x \in [0,1]$ and $n \in \mathbb{N}$ one has

$$\left| n \cdot [B_n(f;x) - f(x)] - \frac{x(1-x)}{2} \cdot f''(x) \right| \le \frac{x(1-x)}{2} \cdot \tilde{\omega} \left(f''; \sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}} \right)$$

Here $\tilde{\omega}$ is the least concave majorant of ω , the first order modulus of continuity, satisfying

$$\omega(f;\epsilon) \le \tilde{\omega}(f;\epsilon) \le 2\omega(f;\epsilon), \epsilon \ge 0.$$

The above inequality follows from a more general asymptotic statement which was inspired by results of Bernstein [2] and Mamedov [6]. This is given in

Theorem 2 Let $q \in \mathbb{N}_0$, $f \in C^q[0,1]$ and $L : C[0,1] \to C[0,1]$ be a positive linear operator. Then

$$\left| L(f;x) - \sum_{r=0}^{q} L((e_1 - x)^r;x) \cdot \frac{f^{(r)}(x)}{r!} \right|$$

$$\leq \frac{L(|e_1 - x|^q;x)}{q!} \tilde{\omega} \left(f^{(q)}; \frac{L(|e_1 - x|^{q+1};x)}{(q+1)L(|e_1 - x|^q;x)} \right)$$

The following remarks are obvious:

Remark 1 Both asymptotic statements (supposing $L = L_n$, $n \in \mathbb{N}$, in Theorem 2) are in quantitative from due to the appearence of $\tilde{\omega}$.

Remark 2 In Theorem 1 the (absolute) moments $L((e_1 - x)^r; x)$ and $L(|e_1 - x|^r; x)$ are computed and/or manipulated in order to arrive at more instructive quantities. Of course this is not possible in Theorem 2 unless one makes additional assumptions on L.

Remark 3 In Theorem 1 the limit $\frac{x(1-x)}{2} \cdot f''(x)$ is explicitly given. The inequality of Theorem 2 requires extra considerations to arrive at a comparable statement.

Remark 4 Thinking of Theorem 2 as an asymptotic expansion (supposing again that $L = L_n$, $n \in \mathbb{N}$), this expansion is "complete" in the sense that $q \in \mathbb{N}_0$ is arbitrary.

In contrast to that, the expansion of Theorem 1 is "non-complete".

Remark 5 Both inequalities above do not give information about the asymptotic behaviour of quantities such as

$$n[(B_n f)^{(k)}(x) - f^{(k)}(x)]$$
 for $k \ge 1$.

That this is also a meaningful problem was shown in recent papers by Floater [3] and Abel and Heilmann [1], Theorem 3.3, for example.

A very interesting complete asymptotic expansion (in quantitative form) was already given some 30 years ago by Sikkema and van der Meer [8].

Theorem 3 Let $WC^{q}[0,1]$ denote the set of all functions on [0,1] whose q-th derivative is piecewise continuous, $q \ge 0$. Moreover, let (L_n) be a sequence of positive linear operators $L_n : WC^{q}[0,1] \to C[0,1]$ satisfying $L_n(e_0; x) = 1$. Then for all $f \in fC^{q}[0,1], q \in \mathbb{N}_0, x \in [0,1], n \in \mathbb{N}$ and $\delta > 0$ one has

$$\left| L_n(f;x) - f(x) - \sum_{r=1}^q \frac{L_n((e_1 - x)^r;x)}{r!} \cdot f^{(r)}(x) \right| \le c_{n,q}(x,\delta) \cdot \omega(f^{(q)};\delta).$$

Here $c_{n,q}(x,\delta) = \delta^q \cdot L_n\left(s_{q,\mu}\left(\frac{e_1-x}{\delta}\right);x\right),$

$$\mu = \frac{1}{2} \text{ if } L_n((e_1 - x)^q; x) \ge 0,$$

$$\mu = -\frac{1}{2} \text{ if } L_n((e_1 - x)^q; x) < 0.$$

$$s_{q,\mu}(u) = \frac{1}{q!} \left(\frac{1}{2} \cdot |u|^q + \mu u^q \right) + \frac{1}{(q+1)!} \{ b_{q+1}(|u|) - b_{q+1}(|u| - [|u|]) \}.$$

 b_{q+1} is the Bernoulli polynomial of degree q+1 and $[t] = \max\{z \in Z : z \le t\}$.

Moreover, the functions $c_{n,q}(x, \delta)$ are best possible for each $f \in C^q[0, 1]$, $x \in [0, 1], n \in \mathbb{N}$ and $\delta > 0$.

In the sequel we will deal with the case q = 2 only and furthermore assume that $L_n(e_1; x) = x$. The above theorem then implies the inequality given in

Corollary 1

$$\left| L_n(f;x) - f(x) - \frac{1}{2} \cdot L_n((e_1 - x)^2; x) \cdot f''(x) \right| \le c_{n,2}(x,\delta) \cdot \omega(f'',\delta),$$

where

$$c_{n,2}(x;\delta) = \delta^2 \cdot L_n\left(s_{2,\frac{1}{2}}\left(\frac{e_1-x}{\delta}\right);x\right)$$

$$s_{2,\frac{1}{2}}(u) = \frac{1}{2}u^2 + \frac{1}{6}\{b_3(|u|) - b_3(|u| - [|u|])\},$$

$$b_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x.$$

As an alternative inequality we propose the one given in

Theorem 4 Let $L: C[0,1] \to C[0,1]$ be a positive linear operator satisfying $Le_i = e_i, i = 0, 1$. Then for any $f \in C^2[0,1], x \in [0,1]$ and $\delta > 0$ we have

$$\left| L(f;x) - f(x) - \frac{1}{2} \cdot L((e_1 - x)^2; x) \cdot f''(x) \right|$$

$$\leq \frac{1}{2} \cdot \max\left\{ L((e_1 - x)^2; x), \frac{1}{3\delta} L(|e_1 - x|^3; x) \right\} \cdot \tilde{\omega}(f''; \delta)$$

$$\leq \max\left\{ L((e_1 - x)^2; x), \frac{1}{3\delta} \cdot L(|e_1 - x|^3; x) \right\} \cdot \omega(f'', \delta).$$

Proof Proceeding as in the considerations preceding Theorem 6.2 in [5] it can be seen that for $f \in C^2[0, 1]$ fixed and $g \in C^3[0, 1]$ arbitrary one gets

$$\begin{aligned} \left| L(f;x) - f(x) - \frac{1}{2}L((e_1 - x)^2; x) \cdot f''(x) \right| \\ &\leq L((e_1 - x)^2; x) \cdot \left\{ ||(f - g)''|| + \frac{1}{6} \cdot \frac{L(|e_1 - x|^3; x)}{L((e_1 - x)^2; x)} \cdot \frac{2}{\delta} \cdot \frac{\delta}{2} \cdot ||g'''|| \right\} \\ &\leq L((e_1 - x)^2; x) \cdot \max\left\{ 1; \frac{1}{3\delta} \cdot \frac{L(|e_1 - x|^3; x)}{L((e_1 - x)^2; x)} \right\} \cdot \left\{ ||(f - g)''|| + \frac{\delta}{2} ||g'''|| \right\}. \end{aligned}$$

Passing to the infimum over $g \in C^3[0,1]$ then implies

$$\begin{aligned} \left| L(f;x) - f(x) - \frac{1}{2}L((e_1 - x)^2; x) \cdot f''(x) \right| \\ &\leq \max\left\{ L((e_1 - x)^2; x); \frac{1}{3\delta} \cdot L(|e_1 - x|^3; x) \right\} \cdot K\left(\frac{\delta}{2}, f''; C[0, 1], C^1[0, 1]\right) \\ &= \frac{1}{2} \max\left\{ |L((e_1 - x)^2; x); \frac{1}{3\delta}L(|e_1 - x|^3; x) \right\} \cdot \tilde{\omega}(f''; \delta). \end{aligned}$$

Here we used the fact that for $f \in C[0, 1]$ and $\delta > 0$ one has

$$K\left(\frac{\delta}{2}, f; C[0,1], C^{1}[0,1]\right) := \inf\left\{||f-g|| + \frac{\delta}{2} \cdot ||g'|| : g \in C^{1}[0,1]\right\} = \frac{1}{2}\tilde{\omega}(f;\delta)$$

See [7] for a proof of this. The second inequality of Theorem 4 is a consequence of $\tilde{\omega}(f;\delta) \le 2 \cdot \omega(f;\delta)$.

In order to compare the quality of our estimate with that of Sikkema and van der Meer we consider the classical Bernstein operators as an example.

Example 1 For the Bernstein operators B_n there holds

$$c_{n,2}(x,\delta) = \delta^2 \cdot B_n\left(s_{2,\frac{1}{2}}\left(\frac{e_1 - x}{\delta}\right); x\right) \le \frac{1}{2} \cdot \frac{x(1-x)}{n} \left\{1 + \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}\right\}$$

Proof. First recall that

$$s_{2,\frac{1}{2}}(u) = \frac{1}{2}u^2 + \frac{1}{6} \cdot \{b_3(|u|) - b_3(|u| - [|u|])\}.$$

We put $t = |u| \ge 0$ and claim that

$$b_3(t) - b_3(t - [t]) = 3t^2[t] - 3t[t]^2 + [t]^3 - 3t[t] + \frac{3}{2}[t]^2 + \frac{1}{2}[t] \le t^2[t].$$

Clearly this is true of $0 \le t < 1$. So let $t \ge 1$.

We divide the two sides of the inequality by $[t] \ge 1$ and multiply by 2. Then the above inequality is equivalent to

$$6t^{2} - 6t[t] + 2[t]^{2} - 6t + 3[t] + 1 \le 2t^{2},$$

or

$$4t^2 - 6t + 1 \le 6t[t] - 2[t]^2 - 3[t].$$

Now choose $k \in \mathbb{N}$ such that $k \leq t < k + 1$, then [t] = k, and the above reads

$$4t^2 - 6t + 1 \le 6kt - 2k^2 - 3k.$$

It remains to check if this is true for all $t \in [k, k+1)$.

For t = k we get

$$4k^2 - 6k + 1 \le 6k^2 - 2k^2 - 3k,$$

which is equivalent to $1 \leq 3k$ (fulfilled).

For t = k + 1 we have to show that

$$4(k+1)^2 - 6(k+1) + 1 \le 6k(k+1) - 2k^2 - 3k,$$

being equivalent to $-1 \leq k$ (fulfilled).

Hence the parabola $4t^2 - 6t + 1$ lies below the straight line $6kt - 2k^2 - 3k$ for $t \in [k, k + 1]$ which is what we claimed above.

This implies that

$$\begin{split} s_{2,\frac{1}{2}}(u) &\leq \quad \frac{1}{2}u^2 + \frac{1}{6}u^2[|u|] \\ &\leq \quad \frac{1}{2}u^2 + \frac{1}{6}|u|^3. \end{split}$$

Hence

$$c_{n,2}(x,\delta) \leq \delta^2 \cdot B_n \left(\frac{1}{2} \cdot \frac{(e_1 - x)^2}{\delta^2} + \frac{1}{6\delta^3} \cdot |e_1 - x|^3; x \right)$$
$$= \frac{1}{2} \left\{ \frac{x(1 - x)}{n} + \frac{1}{3\delta} \cdot B_n(|e_1 - x|^3; x) \right\}$$

Using the inequality (see [4])

$$B_n(|e_1 - x|^3; x) \le 3 \cdot \sqrt{\frac{1}{n^2} + \frac{x(1 - x)}{n}} \cdot B_n((e_1 - x)^2; x)$$

we obtain

$$c_{n,2}(x,\delta) \le \frac{1}{2} \cdot \frac{x(1-x)}{n} \left\{ 1 + \frac{1}{\delta} \cdot \sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}} \right\}.$$

-	
_	

Example 2. Choose $\delta = \sqrt{\frac{2}{n}}$. Then the theorem of Sikkema and van der Meer implies

$$\left| B_n(f;x) - f(x) - \frac{x(1-x)}{2n} f''(x) \right|$$

$$\leq \frac{x(1-x)}{2n} \left\{ 1 + \sqrt{\frac{n}{2}} \cdot \sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}} \right\} \cdot \omega \left(f''; \sqrt{\frac{2}{n}} \right)$$

$$\leq \left\{ 1 + \frac{1}{\sqrt{2}} \cdot \sqrt{1 + \frac{1}{4}} \right\} \cdot \frac{1}{2} \cdot \frac{x(1-x)}{n} \cdot \omega \left(f''; \sqrt{\frac{2}{n}} \right)$$

$$\leq 0.9 \cdot \frac{x(1-x)}{n} \omega \left(f''; \sqrt{\frac{2}{n}} \right).$$

This is better than the corresponding result of Videnskii [9] published in 1985 and only for the Bernstein operators. In Videnskii's book instead of 0.9 the constant is one.

We now apply Theorem 4 and arrive at

Corollary 2

$$\left| B_n(f;x) - f(x) - \frac{x(1-x)}{2n} \cdot f''(x) \right|$$

$$\leq \frac{x(1-x)}{2n} \cdot \max\left\{ 1, \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}} \right\} \cdot \tilde{\omega}(f'';\delta)$$

$$\leq \frac{x(1-x)}{2n} \cdot \max\left\{ 2, \frac{2}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}} \right\} \cdot \omega(f'';\delta).$$

If the modulus $\omega(f''; \cdot)$ is concave, then the first inequality is better than what can be derived from Sikkema's and van der Meer's result because

$$\max\left\{1, \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}\right\} \le 1 + \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}.$$

However, in the general case

$$\max\left\{2, \frac{2}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}\right\} \ge 1 + \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}},$$

and equality is attained if and only if

$$\delta = \sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}.$$

If we put $\hat{c}_{n,2}(x,\delta) := 1 + \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}$ and

$$d_{n,2}(x,\delta) := \max\left\{1, \frac{1}{\delta}\sqrt{\frac{1}{n^2} + \frac{x(1-x)}{n}}\right\},\$$

then a possible outcome of this discussion is the following

Theorem 5 For the Bernstein operators $B_n, n \in \mathbb{N}, f \in C[0, 1], x \in [0, 1]$ and $\delta > 0$ there holds

$$\left| B_n(f;x) - f(x) - \frac{x(1-x)}{2n} f''(x) \right|$$

$$\leq \frac{x(1-x)}{2n} \cdot \min\left\{ \hat{c}_{n,2}(x,\delta) \cdot \omega(f'',\delta); d_{n,2}(x,\delta) \cdot \tilde{\omega}(f'',\delta) \right\}.$$

All previous quantitative Voronovskaya theorems for the Bernstein operators and $f \in C^2[0, 1]$ can be derived from Theorem 5.

References

 U. Abel and M. Heilmann, The complete asymptotic expansion for Bernstein-Durrmeyer operators with Jacobi weights, Mediterr. J. Math., 1 (2004), 487–499.

- [2] S.N. Bernstein, Complément à l'article de E. Voronovskaya "Détermination de la forme asymptotique de l'approximation des fonctions par les polynômes de M. Bernstein", C. R. (Dokl.) Acad. Sci. URSS A (1932), no.4, 86–92.
- [3] M.S. Floater, On the convergence of derivatives of Bernstein approximation, J. Approx. Theory, 134 (2005), 130–135.
- [4] H. Gonska, On the degree of approximation in Voronovskaja's theorem, Studia Univ. Babeş-Bolyai, Mathematica 52 (2007), no. 3, 103–116.
- [5] H. Gonska, P. Piţul and I. Raşa, On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators, In: "Numerical Analysis and Approximation Theory" (Proc. Int. Conf. Cluj-Napoca 2006; ed. by O. Agratini & P. Blaga), 55-80. Cluj-Napoca: Casa Carţii de Ştiinţă 2006.
- [6] R.G. Mamedov, On the asymptotic value of the approximation of repeatedly differentiable functions by positive linear operators (Russian), Dokl. Akad. Nauk, 146 (1962), 1013–1016. Translated in Soviet Math. Dokl., 3 (1962), 1435–1439.
- [7] J. Peetre, Exact interpolation theorems for Lipschitz continuous functions, Ricerche Mat., 18 (1969), 239–259.
- [8] P.C. Sikkema and P.J.C. van der Meer, The exact degree of local approximation by linear positive operators involving the modulus of continuity of the p-th derivative, Indag. Math., 41 (1979), 63-76.

[9] V.S. Videnskii, Linear Positive Operators of Finite Rank (Russian), Leningrad: "A.I. Gerzen" State Pedagogical Institute 1985.

Heiner Gonska University of Duisburg-Essen Department of Mathematics D-47048 Duisburg Germany e-mail: heiner.gonska@uni-due.de Ioan Raşa Technical University Department of Mathematics RO-400020 Cluj-Napoca Romania e-mail: Ioan.Rasa@math.utcluj.ro