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Remarks on Voronovskaya’s theorem

Heiner Gonska and Ioan Raşa

Abstract

The present note discusses various quantitative forms of Vor-

vonovskaya’s 1932 result dealing with the asymptotic behavior of the

classical Bernstein operators. In particular the relationship between

a result of Sikkema and van der Meer and an alternative approach

of the authors ist discussed.

2000 Mathematical Subject Classification: 41A10, 41A17, 41A25,

41A36

In a recent paper [4] the well-known theorem of Voronovskaya for the

classical Bernstein operators Bn was stated in the following form.

Theorem 1 For f ∈ C2[0, 1], x ∈ [0, 1] and n ∈ N one has∣∣∣∣n · [Bn(f ; x)−f(x)]−x(1−x)

2
· f ′′(x)

∣∣∣∣ ≤ x(1−x)

2
·ω̃
(

f ′′;

√
1

n2
+

x(1−x)

n

)
.
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Here ω̃ is the least concave majorant of ω, the first order modulus of

continuity, satisfying

ω(f ; ε) ≤ ω̃(f ; ε) ≤ 2ω(f ; ε), ε ≥ 0.

The above inequality follows from a more general asymptotic statement

which was inspired by results of Bernstein [2] and Mamedov [6]. This is

given in

Theorem 2 Let q ∈ N0, f ∈ Cq[0, 1] and L : C[0, 1]→ C[0, 1] be a positive

linear operator. Then∣∣∣∣∣L(f ; x)−
q∑

r=0

L((e1 − x)r; x) · f
(r)(x)

r!

∣∣∣∣∣
≤ L(|e1 − x|q; x)

q!
ω̃

(
f (q);

L(|e1 − x|q+1; x)

(q + 1)L(|e1 − x|q; x)

)
.

The following remarks are obvious:

Remark 1 Both asymptotic statements (supposing L = Ln, n ∈ N, in

Theorem 2) are in quantitative from due to the appearence of ω̃.

Remark 2 In Theorem 1 the (absolute) moments L((e1 − x)r; x) and

L(|e1− x|r; x) are computed and/or manipulated in order to arrive at more

instructive quantities. Of course this is not possible in Theorem 2 unless

one makes additional assumptions on L.

Remark 3 In Theorem 1 the limit x(1−x)
2
·f ′′(x) is explicitely given. The in-

equality of Theorem 2 requires extra considerations to arrive at a comparable

statement.
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Remark 4 Thinking of Theorem 2 as an asymptotic expansion (supposing

again that L = Ln, n ∈ N), this expansion is ”complete” in the sense that

q ∈ N0 is arbitrary.

In contrast to that, the expansion of Theorem 1 is ”non-complete”.

Remark 5 Both inequalities above do not give information about the asymp-

totic behaviour of quantities such as

n[(Bnf)(k)(x)− f (k)(x)] for k ≥ 1.

That this is also a meaningful problem was shown in recent papers by Floater

[3] and Abel and Heilmann [1], Theorem 3.3, for example.

A very interesting complete asymptotic expansion (in quantitative form)

was already given some 30 years ago by Sikkema and van der Meer [8].

Theorem 3 Let WCq[0, 1] denote the set of all functions on [0, 1] whose

q-th derivative is piecewise continuous, q ≥ 0. Moreover, let (Ln) be a

sequence of positive linear operators Ln : WCq[0, 1] → C[0, 1] satisfying

Ln(e0; x) = 1. Then for all f ∈ fCq[0, 1], q ∈ N0, x ∈ [0, 1], n ∈ N and

δ > 0 one has∣∣∣∣∣Ln(f ; x)− f(x)−
q∑

r=1

Ln((e1 − x)r; x)

r!
· f (r)(x)

∣∣∣∣∣ ≤ cn,q(x, δ) · ω(f (q); δ).

Here cn,q(x, δ) = δq · Ln

(
sq,μ

(
e1−x

δ

)
; x
)
,

μ =
1

2
if Ln((e1 − x)q; x) ≥ 0,

μ = −1

2
if Ln((e1 − x)q; x) < 0,
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sq,μ(u) =
1

q!

(
1

2
· |u|q + μuq

)
+

1

(q + 1)!
{bq+1(|u|)− bq+1(|u| − [|u|])}.

bq+1 is the Bernoulli polynomial of degree q+1 and [t] = max{z ∈ Z : z ≤ t}.

Moreover, the functions cn,q(x, δ) are best possible for each f ∈ Cq[0, 1],

x ∈ [0, 1], n ∈ N and δ > 0.

In the sequel we will deal with the case q = 2 only and furthermore

assume that Ln(e1; x) = x. The above theorem then implies the inequality

given in

Corollary 1∣∣∣∣Ln(f ; x)− f(x)− 1

2
· Ln((e1 − x)2; x) · f ′′(x)

∣∣∣∣ ≤ cn,2(x, δ) · ω(f ′′, δ),

where

cn,2(x; δ) = δ2 · Ln

(
s2, 1

2

(
e1 − x

δ

)
; x

)

s2, 1
2
(u) =

1

2
u2 +

1

6
{b3(|u|)− b3(|u| − [|u|])},

b3(x) = x3 − 3

2
x2 +

1

2
x.

As an alternative inequality we propose the one given in

Theorem 4 Let L : C[0, 1]→ C[0, 1] be a positive linear operator satisfying

Lei = ei, i = 0, 1. Then for any f ∈ C2[0, 1], x ∈ [0, 1] and δ > 0 we have∣∣∣∣L(f ; x)− f(x)− 1

2
· L((e1 − x)2; x) · f ′′(x)

∣∣∣∣
≤ 1

2
·max

{
L((e1 − x)2; x),

1

3δ
L(|e1 − x|3; x)

}
· ω̃(f ′′; δ)

≤ max

{
L((e1 − x)2; x),

1

3δ
· L(|e1 − x|3; x)

}
· ω(f ′′, δ).
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Proof Proceeding as in the considerations preceding Theorem 6.2 in [5] it

can be seen that for f ∈ C2[0, 1] fixed and g ∈ C3[0, 1] arbitrary one gets∣∣∣∣L(f ; x)− f(x)− 1

2
L((e1 − x)2; x) · f ′′(x)

∣∣∣∣
≤ L((e1 − x)2; x) ·

{
||(f − g)′′||+ 1

6
· L(|e1 − x|3; x)

L((e1 − x)2; x)
· 2
δ
· δ
2
· ||g′′′||

}

≤ L((e1 − x)2; x) ·max

{
1;

1

3δ
· L(|e1 − x|3; x)

L((e1 − x)2; x)

}
·
{
||(f − g)′′||+ δ

2
||g′′′||

}
.

Passing to the infimum over g ∈ C3[0, 1] then implies∣∣∣∣L(f ; x)− f(x)− 1

2
L((e1 − x)2; x) · f ′′(x)

∣∣∣∣
≤ max

{
L((e1 − x)2; x);

1

3δ
· L(|e1 − x|3; x)

}
·K

(
δ

2
, f ′′; C[0, 1], C1[0, 1]

)

=
1

2
max

{
|L((e1 − x)2; x);

1

3δ
L(|e1 − x|3; x)

}
· ω̃(f ′′; δ).

Here we used the fact that for f ∈ C[0, 1] and δ > 0 one has

K

(
δ

2
, f ; C[0, 1], C1[0, 1]

)
:=inf

{
||f−g||+ δ

2
· ||g′|| :g ∈ C1[0, 1]

}
=

1

2
ω̃(f ; δ).

See [7] for a proof of this. The second inequality of Theorem 4 is a conse-

quence of ω̃(f ; δ) ≤ 2 · ω(f ; δ). �

In order to compare the quality of our estimate with that of Sikkema and

van der Meer we consider the classical Bernstein operators as an example.

Example 1 For the Bernstein operators Bn there holds

cn,2(x, δ)=δ2·Bn

(
s2, 1

2

(
e1−x

δ

)
; x

)
≤ 1

2
·x(1−x)

n

{
1+

1

δ

√
1

n2
+

x(1−x)

n

}
.
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Proof. First recall that

s2, 1
2
(u) =

1

2
u2 +

1

6
· {b3(|u|)− b3(|u| − [|u|])} .

We put t = |u| ≥ 0 and claim that

b3(t)− b3(t− [t]) = 3t2[t]− 3t[t]2 + [t]3 − 3t[t] +
3

2
[t]2 +

1

2
[t] ≤ t2[t].

Clearly this is true of 0 ≤ t < 1. So let t ≥ 1.

We divide the two sides of the inequality by [t] ≥ 1 and multiply by 2.

Then the above inequality is equivalent to

6t2 − 6t[t] + 2[t]2 − 6t + 3[t] + 1 ≤ 2t2,

or

4t2 − 6t + 1 ≤ 6t[t]− 2[t]2 − 3[t].

Now choose k ∈ N such that k ≤ t < k + 1, then [t] = k, and the above

reads

4t2 − 6t + 1 ≤ 6kt− 2k2 − 3k.

It remains to check if this is true for all t ∈ [k, k + 1).

For t = k we get

4k2 − 6k + 1 ≤ 6k2 − 2k2 − 3k,

which is equivalent to 1 ≤ 3k (fulfilled).

For t = k + 1 we have to show that

4(k + 1)2 − 6(k + 1) + 1 ≤ 6k(k + 1)− 2k2 − 3k,

being equivalent to −1 ≤ k (fulfilled).
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Hence the parabola 4t2−6t+1 lies below the straight line 6kt−2k2−3k

for t ∈ [k, k + 1] which is what we claimed above.

This implies that

s2, 1
2
(u) ≤ 1

2
u2 +

1

6
u2[|u|]

≤ 1

2
u2 +

1

6
|u|3.

Hence

cn,2(x, δ) ≤ δ2 · Bn

(
1

2
· (e1 − x)2

δ2
+

1

6δ3
· |e1 − x|3; x

)

=
1

2

{
x(1− x)

n
+

1

3δ
·Bn(|e1 − x|3; x)

}
Using the inequality (see [4])

Bn(|e1 − x|3; x) ≤ 3 ·
√

1

n2
+

x(1− x)

n
· Bn((e1 − x)2; x)

we obtain

cn,2(x, δ) ≤ 1

2
· x(1− x)

n

{
1 +

1

δ
·
√

1

n2
+

x(1− x)

n

}
.

�
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Example 2. Choose δ =
√

2
n
. Then the theorem of Sikkema and van der

Meer implies∣∣∣∣Bn(f ; x)− f(x)− x(1− x)

2n
f ′′(x)

∣∣∣∣
≤ x(1− x)

2n

{
1 +

√
n

2
·
√

1

n2
+

x(1− x)

n

}
· ω
(

f ′′;

√
2

n

)

≤
{

1 +
1√
2
·
√

1 +
1

4

}
· 1
2
· x(1− x)

n
· ω
(

f ′′;

√
2

n

)

≤ 0.9 · x(1− x)

n
ω

(
f ′′;

√
2

n

)
.

This is better than the corresponding result of Videnskǐı [9] published in 1985

and only for the Bernstein operators. In Videnskǐı’s book instead of 0.9 the

constant is one.

We now apply Theorem 4 and arrive at

Corollary 2∣∣∣∣Bn(f ; x)− f(x)− x(1− x)

2n
· f ′′(x)

∣∣∣∣
≤ x(1− x)

2n
·max

{
1,

1

δ

√
1

n2
+

x(1− x)

n

}
· ω̃(f ′′; δ)

≤ x(1− x)

2n
·max

{
2,

2

δ

√
1

n2
+

x(1− x)

n

}
· ω(f ′′; δ).

If the modulus ω(f ′′; ·) is concave, then the first inequality is better than

what can be derived from Sikkema’s and van der Meer’s result because

max

{
1,

1

δ

√
1

n2
+

x(1− x)

n

}
≤ 1 +

1

δ

√
1

n2
+

x(1− x)

n
.
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However, in the general case

max

{
2,

2

δ

√
1

n2
+

x(1− x)

n

}
≥ 1 +

1

δ

√
1

n2
+

x(1− x)

n
,

and equality is attained if and only if

δ =

√
1

n2
+

x(1− x)

n
.

If we put ĉn,2(x, δ) := 1 + 1
δ

√
1
n2 + x(1−x)

n
and

dn,2(x, δ) := max

{
1,

1

δ

√
1

n2
+

x(1− x)

n

}
,

then a possible outcome of this discussion is the following

Theorem 5 For the Bernstein operators Bn, n ∈ N, f ∈ C[0, 1], x ∈ [0, 1]

and δ > 0 there holds∣∣∣∣Bn(f ; x)− f(x)− x(1− x)

2n
f ′′(x)

∣∣∣∣
≤ x(1− x)

2n
·min {ĉn,2(x, δ) · ω(f ′′, δ); dn,2(x, δ) · ω̃(f ′′, δ)} .

All previous quantitative Voronovskaya theorems for the Bernstein op-

erators and f ∈ C2[0, 1] can be derived from Theorem 5. �
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tions par les polynômes de M. Bernstein”, C. R. (Dokl.) Acad. Sci.

URSS A (1932), no.4, 86–92.

[3] M.S. Floater, On the convergence of derivatives of Bernstein approxi-

mation, J. Approx. Theory, 134 (2005), 130–135.

[4] H. Gonska, On the degree of approximation in Voronovskaja’s theorem,

Studia Univ. Babeş-Bolyai, Mathematica 52 (2007), no. 3, 103–116.

[5] H. Gonska, P. Piţul and I. Raşa, On Peano’s form of the Taylor re-

mainder, Voronovskaja’s theorem and the commutator of positive linear

operators, In: ”Numerical Analysis and Approximation Theory” (Proc.

Int. Conf. Cluj-Napoca 2006; ed. by O. Agratini & P. Blaga), 55-80.

Cluj-Napoca: Casa Carţii de Ştiinţǎ 2006.
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