The method of the variation of constants for Riccati equations ${ }^{1}$

Cristinel Mortici

Abstract

The classical method for solving Riccati equations uses a change which leads to a first order linear equation. We give here a new method of the variation of constants which leads directly to a equation with separable variables. Finally an example is given.

2000 Mathematics Subject Classification: 34A05, 34A34;
Key words: linear equations, Riccati equations, Bernoulli equations.

1 Introduction

One method for solving linear equations of the form

$$
\begin{equation*}
y^{\prime}=b(x) y+c(x), \quad \text { with } b, c: I \subseteq \mathbb{R} \rightarrow \mathbb{R} \text { continuous } \tag{1.1}
\end{equation*}
$$

is the Lagrange method of the variation of the constants. First, the corresponding equation with separable variables

$$
y^{\prime}=b(x) y
$$

[^0]has solutions of the form $y=c e^{B(x)}$, where $B \in \int b$ and $c \in \mathbb{R}$. Hence the general solution of the linear equation (1.1) is $y=c(x) e^{B(x)}$, where $c(x)$ is deduced by substituting in (1.1).

Using this idea, we will give a simpler method for solving Riccati equations of the form
(1.2) $y^{\prime}=a(x) y^{2}+b(x) y+c(x), \quad$ with $a, b, c: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ continuous
than the classical method which we remember here. If y_{0} is a particular solution of the equation (1.2), then

$$
\begin{equation*}
u=y-y_{0} \tag{1.3}
\end{equation*}
$$

satisfies the Bernoulli equation

$$
u^{\prime}=\left(2 a(x) y_{0}+b(x)\right) u+a(x) u^{2} \quad, \quad \text { with } r=2 .
$$

On the natural way, denote further

$$
\begin{equation*}
u=z^{-1} \tag{1.4}
\end{equation*}
$$

to obtain the linear equation

$$
\begin{equation*}
z^{\prime}=-\left(2 a(x) y_{0}+b(x)\right) z-a(x) . \tag{1.5}
\end{equation*}
$$

Now by substitute z in (1.3), we derive

$$
\frac{1}{z}=y-y_{0} \quad, \quad \text { so } y=y_{0}+\frac{1}{z} .
$$

In fact, this is the classical method for solving the Riccati equation (1.2). If y_{0} is a particular solution, then the substitution $y=y_{0}+\frac{1}{z}$ leads to a linear equation of the first order.

2 Main Result

Next we give a method which transforms directly the Riccati equation into a equation with separable variables. As we mentioned, the solution of that linear equation (1.5) is of the form

$$
z=c(x) e^{-v(x)}, \quad \text { where } v \in \int\left(2 a(x) y_{0}+b(x)\right) d x
$$

Now by substitute z in (1.3)-(1.4), we derive

$$
u(x) e^{v(x)}=y-y_{0} \quad, \quad \text { or } y=y_{0}+u(x) e^{v(x)}
$$

with the renotation $u(x)=\frac{1}{c(x)}$. We can state:
Theorem 2.1 Assume that the Riccati equation (1.2) has a particular solution y_{0}. Then the general solution of the Riccati equation (1.2) is of the form

$$
y=y_{0}+u(x) e^{v(x)}
$$

where $v(x) \in \int\left(2 a(x) y_{0}+b(x)\right) d x$ and $u(x)$ can be deduced by substituting in (1.2). More precisely, $u(x)$ is the general solution of the equation with separable variables

$$
\begin{equation*}
u^{\prime}(x)=a(x) e^{v(x)} u^{2}(x) \tag{2.1}
\end{equation*}
$$

Proof. Let us substitute $y=y_{0}+u(x) e^{v(x)}$ in the Riccati equation (1.2)

$$
\begin{gathered}
y_{0}^{\prime}+u^{\prime}(x) e^{v(x)}+u(x)\left(2 a(x) y_{0}+b(x)\right) e^{v(x)}= \\
=a(x)\left(y_{0}^{2}+2 u(x) y_{0} e^{v(x)}+u^{2}(x) e^{2 v(x)}\right)+b(x)\left(y_{0}+u(x) e^{v(x)}\right)+c(x) .
\end{gathered}
$$

y_{0} is particular solution, so we reduce $y_{0}^{\prime}=a(x) y_{0}^{2}+b(x) y_{0}+c(x)$ to obtain

$$
\begin{gathered}
u^{\prime}(x) e^{v(x)}+u(x)\left(2 a(x) y_{0}+b(x)\right) e^{v(x)}= \\
=a(x)\left(2 u(x) y_{0} e^{v(x)}+u^{2}(x) e^{2 v(x)}\right)+b(x) u(x) e^{v(x)} .
\end{gathered}
$$

Further, by dividing by $e^{v(x)}$ and other reductions terms, we derive

$$
u^{\prime}(x)=a(x) u^{2}(x) e^{v(x)}
$$

so we are done.
Further, we can solve the equation (2.1) with separable variables,

$$
\frac{u^{\prime}(x)}{u^{2}(x)}=a(x) \cdot e^{v(x)} \Leftrightarrow \frac{d}{d x}\left(-\frac{1}{u(x)}\right)=a(x) e^{v(x)}
$$

It follows that

$$
\frac{1}{u(x)}=-\int a(x) \cdot e^{v(x)} d x
$$

so we can state the following result which is the direct formula of the general solution of the Riccati equation (1.2):

Theorem 2.2 Assume that the Riccati equation (1.2) has a particular solution y_{0}. Then the general solution of the Riccati equation (1.2) is of the form
$y=y_{0}-\frac{e^{v(x)}}{w(x)}$ where $v(x)$ is a primitive of the function $2 a(x) y_{0}+b(x)$ and $w(x)$ is any primitive of the function $a(x) \cdot e^{v(x)}$.

Now we can remark that the solving of a Riccati equation is reduced to a direct substitution in the formula (2.2), so we do not need calculations for each example of Riccati equations; we purely can replace in the formula (2.2) in the equivalent form

$$
\begin{equation*}
y=y_{0}-\frac{e^{\int_{x_{0}}^{x}\left(2 a(s) y_{0}(s)+b(s)\right) d s}}{c+\int_{x_{0}}^{x} a(s) e^{\int_{x_{0}}^{s}\left(2 a(t) y_{0}(t)+b(t)\right) d t}} d s, c \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

3 An example

Let us consider the equation

$$
\begin{equation*}
y^{\prime}=\alpha y^{2}+\frac{\beta}{x} \cdot y+\frac{\gamma}{x^{2}}, \quad x>0 \tag{3.1}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in \mathbb{R}$ are such that

$$
(\beta+1)^{2}=4 \alpha \gamma \neq 0
$$

That type of equation has the particular solution $y_{0}=\frac{m}{x}$, where $m \in \mathbb{R}$ is the unique solution of the quadratic equation

$$
\alpha m^{2}+(\beta+1) m+\gamma=0, \quad \text { so } \quad m=-\frac{\beta+1}{2 \alpha} .
$$

Note that

$$
2 m \alpha+\beta=-1 .
$$

Using the classical way with the notation $y=\frac{m}{x}+\frac{1}{z}$, the unknown function z satisfies the linear equation

$$
z^{\prime}=\frac{1}{x} \cdot z-\alpha .
$$

After two steps, using the Lagrange's method, we obtain $z=c-\alpha \ln x$. After replace also $m=-\frac{\beta+1}{2 \alpha}$, the general solution of the equation (3.1) is

$$
\begin{equation*}
y=-\frac{\beta+1}{2 \alpha x}+\frac{1}{c-\alpha \ln x} \quad, \quad c \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Now, by using the formula (2.3) we obtain the solution directly, with $x_{0}=1$,

$$
\begin{aligned}
& y=\frac{m}{x}-\frac{e^{\int_{1}^{x}\left(\frac{2 m}{s}+\frac{\beta}{s}\right) \mathrm{d} s}}{c+\int_{1}^{x} \alpha e^{\int_{1}^{s}\left(\frac{2 m}{t}+\frac{\beta}{2}\right) \mathrm{d} t} \mathrm{~d} s}=\frac{m}{x}-\frac{e^{\int_{1}^{x}\left(\frac{2 \alpha m}{s}+\frac{\beta}{s}\right) \mathrm{d} s}}{c+\int_{1}^{x} \alpha e^{\int_{1}^{s}\left(\frac{2 m}{t}+\frac{\beta}{2}\right) \mathrm{d} t} \mathrm{~d} s}= \\
& =\frac{m}{x}-\frac{e^{\int_{1}^{x}}-\frac{1}{s} \mathrm{~d} s}{c+\int_{1}^{x} \alpha e^{\int_{1}^{s}-\frac{1}{t} \mathrm{~d} t} \mathrm{~d} s}=\frac{m}{x}-\frac{\frac{1}{x}}{c+\alpha \ln x}=\frac{m}{x}-\frac{1}{x(c+\alpha \ln x)},
\end{aligned}
$$

References

[1] V. Barbu, Ecuaţii diferenţiale, Editua Junimea, Iaşi , 1985
[2] C. Mortici, Bazele Matematicii, Editura Minus, Targoviste, 2007
[3] S. Sburlan, L. Barbu, C. Mortici, Ecuatii Diferentiale, Integrale si Sisteme Dinamice, Ed. Ex Ponto, Constanta, 2000

Cristinel Mortici
Valahia University of Târgovişte
Dept. of Mathematics
Bd. Unirii 18, 130082 Târgovişte
E-mail: cmortici@valahia.ro

[^0]: ${ }^{1}$ Received 10 Octomber 2007
 Accepted for publication (in revised form) 15 Octomber 2007

