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On a class of analytic functions related to
Hadamard products

Maslina Darus

Abstract

In this paper, we introduce a new class of analytic functions which
are analytic related to Hadamard products. Characterization prop-
erties which include coefficient bounds, growth and distortion, and
closure theorem are given. Further, results on integral transforms

are also discussed.
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1 Introduction and Preliminaries

Denote by A the class of functions of the form
(1) f(2) :z—l—Zanz"
n=2

118
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which are analytic and univalent in the open disc U = {z: z € C and |z| <

1}. Denote by S*(«) the class of starlike functions f € A of order a(0 <

Re (7:&?) Sa, 2€U

and let C'(«) be the class of convex functions f € A of order (0 < a < 1)
such that zf’ € S*(a).
If f of the form (1) and g(z) = z + ) b,2" are two functions in A, then

n=2
the Hadamard product (or convolution) of f and g is denoted by f * g and

a < 1) satifying

is given by
(2) (fxg)(2) =2+ Z anby,2".
n=2

Ruscheweyh|[5] using the convolution techniques, introduced and studied an
important subclass of A, the class of prestarlike functions of order «, which
denoted by R(«). Thus f € A is said to be prestarlike function of order
a(0 < o < 1) if fxS, € §*(r) where So(2) = ey = 2+ 255 Cal(@)2"
17, (j—20)

T (n € N {1} N :={1,2,3,...}). We note that
R(0) = C(0) and R(%) = S*(%) Juneja et.al[3] define the family D(®, ¥; «)

and ¢, (a) =

consisting of functions f € A so that

f(z) * @(2)
(3) Re(m)>a, zeU

where ®(z) = z+> 2, Tpz" and ¥(z) = 2+~ , 7,2" analytic in U such

that f(z)*«U(z) 20,7, >0,7,>0and T, >, (n > 2).

For suitable choices of & and ¥, we can easily gather the various subclasses
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of A. For example D(—= : . q) = S*(a), D(ZE2, —o:a) = C(a)

122 12 (122 (1-2)%’

and

24+ (1—-2a)22 > )
D( (—;(—z)?’*ga ) (l_z)272o¢7a) = R(O./)

Next we give a brief concept of subordination which will be used in the next

section.

Let f(z) and F(z) be analytic in U. Then we say that the function f(z) is
subordinate to F'(z) in U, if there exists an analytic function w(z) in U such
that w(z) < |z] and f(z) = F(w(z)), denoted by f < F or f(z) < F(z). If
F(z) is univalent in U, then the subordination is equivalent to f(0) = F(0)
and f(U) C F(U) (see[l]).

Now we define the following new class of analytic functions, and obtain

some interesting results.

Definition 1.Given 0 < u <1 and 0 < 8 < 1 and functions

O(z) =2+ Z T,z", W(z)==z+ Z’ynz”
n=2 n=2

analytic in U such that T, >0, v, > 0 and T,, > 7, (n > 2), we say that
feAisinD(®,V; 8, n) if f(2)*x¥(2) #0 and
—1

(1) ‘jﬁ(— <

f(2)
"1z

* P
)+ ¥(2)

forall z € U.
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We note that when =0 and § =1 — «, we have

fRea) |,
G

(5)

which implies (3).

Also denote by T' [2] the subclass of A consisting of functions of the form

(6) f(z)=2z— Z UnZn.-

n=2
Let T*(a) and Cr(«) denote the subfamilies of T" that are starlike of order «
and convex of order a.. Silverman [2] studied 7%(a) and Cp(«) and Siverman

and Silvia [4] studied Rr(a) = TNR, and obtained many interesting results.

Now let us write

Dr(®,¥;a) =D(®, U:a)NT

and

Dr(®,¥; 8, 1) =D(@,¥; 3,n) NT.

Note that Dr(®, U; «) has been extensively studied by Juneja etal [3].

2 Characterization property

First of all, we consider the geometric property for the class D(®, ¥; 3, ).

Theorem 1.The function f € D(®,V; 3, 1) if and only if

f(2) *®(2) . 1+ Bz
f(2)x¥(z) 1= pPpz

where < stands for the subordination.
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Proof. Let f € D(®,V; 3, 1), then from (4) we have

2

—1] < p?

[0n00) |

* O
M)« u(z)

B(1+p)
1 _M262'

f(2)*®(2) 14 pp?
f2)xW(z) 1 —p2p?

Obviously, this is saying that F'(z) = (f(z)*®(2))/(f(z)*¥(2)) is contained
in the disk whose center is (1+ %) /(1—p?3?) and radius is (8(1+pu))/(1—
u?3?). This also tells us that the funtion w = p(z) = (1 + 82)/(1 — ufBz)
maps the unit disk to the disk

o AHp?) | B p)
(1—p2p?)| 1= 23>

Notice also that F'(0) = p(0), G(U) C p(U), and p(z) is univalent in U, we

obtain the following conclusion

1
(CELEIWRIEEY §

Conversely, let
(2) * ®(2) . 1+ Bz
(2)*x¥(z) 1-—LPuz

then
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where w(z) is analytic in U, and w(0) = 0, |w(z)| < 1. By calculation we

can easily obtain from (7) that

£(2) * B(2) £(2) * B(2)
fewui) e e T
that is f € D(®,V; 3, n).
If u=p03=1, we have
[0 | |1 a()
G NI

It is obvious that
F2) s Bz) 1+
f(2)*x¥(z) 1—2z

Hence the proof of the theorem is complete.

We shall now make a systematic study of the class Dy (®, V; 8, u). It would
be assumed throughout that ®(z) and ¥(z) satisfy the conditions stated in
Definition 1 and that f(z) * ¥(z) # 0 for z € U.

In the following theorem, we give a necessary and sufficient condition for a

function f to be in Dp(P, V; 5, ).

Theorem 2. (Coefficient Bounds.) Let a function f € A be given by (1). If
0<u<land0< B <1,

) Z A S <,

then
f€D(@,V; 3, ).
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Proof. Assume that (8) holds true. It is sufficient to show that
f(2)x@(2) ‘ ’Mf(z) *0(2) |
o <SG

Consider

M(f) = [(f(2) * ®(2)) = (f(2) * U(2))| =B |[n(f(2) * ©(2)) + (f(2) * ¥(2))].

Then for 0 < |z| =r < 1, we have

M(f) = '— i(Tn = Yn)an?"| = B(1+ p)z — i(ﬂn +)anz"|.
That is

rM(f) = i(Tn = Vo)l " = B(L+ ) + f% BT + )|y [
and 50
) rM(f) = f%((l +B1) T = (1= B)ya)lanlr™ = B(1 + o).

The inequality in (9) holds true for all »(0 < r < 1). Therefore, letting
r — 17 in (9) we obtain

o0

M(f)=> (14 BTy — (1= B)ya)lan| — B(1+p) <0

n=0

by (8). Hence f € D(®,¥; 3, u).

Theorem 3. (Coefficient Bounds.) Let a function f be given by (6). Then
f € Dr(®,V; 3, 1) if and only if (8) is satisfied.
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Proof. Let f € Drp(®,V; 3, ) satisfies the coefficient inequality. Then

£(2)* ()
ue)

l ( ) c — l Z?:O(Tn - ’Yn)anz
10 3 =20 1| @ ‘(wr Dz — 5= (0T ym)anz"| 1
f(z) = ¥(z)

for all z € U. Since Re(z) < |z| for all z, it follows from (10) that

(1) Re{l ((/ﬂrl)zzj gn o(/ﬁ)a‘z;)an >

We choose the values z on the real axis so that

L,(z€U).

)
M is real. Upon
F(z) +W(2)
clearing the denominator in (11) and letting » — 1~ along real values leads

to the desired inequality

[e.9]

S A+ 8L — (1= B)vallan| < B(u+1).

n=2
whch is (8). That (8) implies f € Dp(P,V; 3, 1) is an immediate conse-
quence of Theorem 2. Hence the theorem.

The result is sharp for functions f given by

Blp+1)=z"
flz)=2— ,(n>2).

S (7 e (e
Corollary 1.Let a function f defined by (6) belongs to the class Dy (P,V;5,u).

Then

Blp+1)
(14 Bu)Y, — (1 — ﬁ),yn]an > 2.

For p =0 and = 1 — a, we have result obtained by Juneja[3].

an <

Corollary 2./3] Let a function f defined by (6) belongs to the class
Dr(®,V;1 — «,0). Then

— [T — ]
(12 STy, <

n=2
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Next we consider the growth and distortion theorem for the class Dy (®,V;5,u).

We shall omit the proof as the techniques are similar to various other papers.

Theorem 4. Let the function f defined by (6) be in the class Dp (P, V; 5, u).

Then

(13) 1 1

e Tty g <O < e T, S
and

(14)

R CI0S ) < () £ 1ol ot 1)

(14 B1) T = (1 = B)] [(1+Bp) T2 = (1= B)]
The bounds (13) and (15) are attained for functions given by

B+ p)
1+ B8u) Yy — (1= F)y]

Theorem 5.Let a function f be defined by (6) and

(15) f(z)=2- 22

(16) g(z) =2z— i by 2"
n=2
be in the class Dp(®,V; 3, ). Then the function h defined by
a7 M) = (L= NFE) gl == g
n=2
where ¢, = (1 — N)a, + Ab,, 0 < X <1 is also in the class Dr(P,V; 5, ).

Proof. The result follows easily from (8) and (17).
We prove the following theorem by defining functions f;(z)(j = 1,2,...m)

of the form

(18) fi(z)=2z— Zan,jz” for a,; >0, z€ U

n=2
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Theorem 6. (Closure theorem) Let the functions f;j(2)(j = 1,2...m) de-
fined by (18) be in the classes Dr(®,V; 35, ))( 1,2,...m) respectively.
Then the function h(z) defined by h(z) = z— % 3 (

n:2 i

nj)2" is in the class
1

Dr(®, W; B, 1) where
(19) B = max {f;} with 0 < g; <1.
1<j<m

Proof. Since f; € Dp(®,V; 5;,11))(j = 2,...m) by applying Theorem 2.2,
we observe that

o

DA +pwY, —(1-5 Zam

n=2

= %Z (Z[(l + ﬁN)Tn — (1 - ﬁ)/yn]amj)

ZBJ + ) < B(1+ p),

1
m

which in view of Theorem 2.2, again implies that h € Dy (P, V; 5, 1)) and

the proof is complete.

3 Integral transform of the class Dp(®, V; 3, u)

For f € A we define the integral transform

f(tz)

A(f)(2) = / NGLAGPA

where A is real valued, non-negative weight function normalized so that

fol A(t)dt = 1. Since special cases of A(t) are particularly interesting such as

A(t) = (1 + o)t¢, ¢ > —1, for which V) is known as the Bernardi operator,
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and 5
5 -
A(t) = (C;(_él)) t° (log%) ,c>—1,02>0

which gives the Komatu operator. For more details see[6)].

First we show that the class Dy (®, V; 3, u) is closed under Vy(f).

Theorem 7.Let f € Dp(®,V; 3, 1). Then Vi(f) € Dp(®,V; 5, u).

Proof. By definition, we have
(c+ 1)6/ 5—1 -1 1
V, = te(l t — E RtV dt
)\(f) )\((5) 0 ( ) Og z a
(_1)6_1<C+ 1)6 : c -1 nyn—1
= 0) Tlir(% /r t(logt)° z— Z anz"t dt

and a simple calculation gives

We need to prove that

00 0
SRS o (E2.1 TSy P,

n—=

On the other hand by Theorem 2.3, f € Dy (®, ¥; 3, 1) if and only if

< 1.

- 1+6MT — (1= B)]
2 B(1+ p)

n=2

Hence £5L < 1. Therefore (20) holds and the proof is complete.

Next we provide a starlikeness condition for functions in Dr(®, V; 3, u)

under V) (f).
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Theorem 8.Let f € Dp(P,V; 3, u). Then V\(f) is starlike of order 0 <
T < 1in |z| < Ry where

Rl = inf

n

(c+n>‘* (1 =D+ B Y — (1= B3]
c+1 (n—7)B(1+ p)

Proof. It is sufficient to prove

(21)

For the left hand side of (21) we have

> (1) () a2

AT =

[e.e]

Vx(f)(z) 1— Z(cjrr_l)aanznq
5 (0 = 1)(£2)0a, 2|

n=2

o0
L= 3 ()0, o

IA

This last expression is less than (1 — 7) since

w1 (e 1\ (A= D)A+ B Y — (1= B)l
& <(c+n) =B+ ) '

Therefore the proof is complete.

Using the fact that f is convex if and only if zf’ is starlike, we obtain the

following;:

Theorem 9.Let f € Dp(D,V; 3, 1). Then V\(f) is convez of order 0 < 7 <
1 in |z| < Ry where

R2 = inf

n

<C+n>5(1—7)[(1+ﬁu)Tn—(1—6)%J o
c+1 n(n —71)6(1 + p) '
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We omit the proof as it is easily derived.

Finally,

Theorem 10.Let f € Dyp(P,V; 3, ). Then Vi(f) is close-to-convex of or-
der 0 <1 <1 in |z| < Rs where

1

<c+n>5<1—T>[<1+ﬂu>rn—<1—ﬁm !
c+1 nB(1+ p) '

Rg = inf

n

Again we omit the proofs.
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