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Integral Means and fractional calculus
operators for comprehensive family of

univalent functions with negative
coefficients !

B. A. Frasin, G. Murugusundaramoorthy and N.
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Abstract
In this paper, we obtain the integral means inequality for the func-
tion f(z) belongs to the class UT(®, ¥, v, k) of analytic and univalent
functions with negative coefficients defined in [3] with the extremal
functions of this class. And also we derive some distortion theorems

using fractional calculus techniques for the class UT(®, ¥, ~, k).
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1 Introduction and definitions

Let A denote the class of functions of the form
(1.1) f2)=2+4) anz"
n=2

which are analytic and univalent in the open disc U = {z: z € C, |z| < 1}.

Also denote by T' the subclass of A consisting of functions of the form

(1.2) f(z)=2z=> a,2", a, >0, z€eU

n=2
introduced and studied by Silverman [16].

Following Gooodman [5, 6], Rgnning [12, 13] introduced and studied the
following subclasses
(i) A function f € A is said to be in the class S,(7, k), k—uniformly starlike

functions of order v, if it satisfies the condition

9 e

0<y<landk>0.
(ii) A function f € A is said to be in the class UCV (v, k), k—uniformly

-1

, 2 €U,

convex functions of order +, if it satisfies the condition

Zf”(Z) } Zf”(Z)

1.4 Re ¢1+ — >k , 2 €U,
Y SR R =
0<y<landk>0.

Indeed it follows from (1.3) and (1.4) that
(1.5) feUCV (v, k)< zf € Sp(v, k).

Definition 1.1 ([3]). Given v(—1 <~ < 1), k(k > 0) and functions

O(z) =z + Z Az and U(z) = 2z 4+ Z,unz”
n=2

n=2
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analytic in U, such that A\,, > 0, u,, > 0and A\, > p, forn > 2, welet f € A
is in U(®, W, a, ) if (fxU)(z) # 0 and

(f *2)(z) } ‘(f*‘b)(Z) ‘
Re ¢ =———= — >k|———~—1|,V z€U.
{(f )z TN enE)
where (*) stands for the Hadamard product.
Further let UT(®, ¥, o, 3) = U(®, ¥, o, 5) N T.

We note that, by taking suitable choice of &, ¥, o and 3 we obtain the

following subclasses studied in literature.

1. UT <ﬁ, = 7 1) = TS,(y) (Subrmanian et al., [22])

2. UT <W =, k) = S,T(,k) (Bharati et al., [1])

(1-2)37 (1—-2)2

3. UT( S —) 1) = UCT (Subrmanian et al., [21])

4. UT <(§f§;, 0 0, k) = UCT(k) (Subrmanian et al., [21])

5. UT ( G 1) — UCT(7) (Bharati et al., [1])

6. UT (gj;;, . —" k) — UCT(~, k) (Bharati et al., [1])

7. UT <ﬁ, = 7 0) = S5(v) (Silverman [16])
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8. UT <(ﬁ§?3, T O) = Kp(v) (Silverman [16])

9. UT(®,¥,7,0) = Ep(P, ¥, 7) (Juneja et al.[7]).

10. UT(®, W, 5772, 0) = Br(®, ¥, v, §) (Frasin [4]).

In fact many subclasses of T" are defined and studied to investigate coef-
ficient estimates, extreme points, convolution properties and closure prop-
erties etc. suitably choosing ®, ¥, v and k.

In this paper, we obtain integral means inequalities for functions f(z) €
UT(®,V,v,k) and also we state integral means results for the classes stud-

ied in [21, 1, 22, 16, 4] as corollaries.

For analytic functions g(z) and h(z) with ¢g(0) = h(0), g(z) is said to be
subordinate to h(z) if there exists an analytic function w(z) so that w(0) =
0, lw(z)] <1 (z€U) and g(2) = h(w(z)), we denote this subordination by
g(z) < h(2).

To prove our main results, we need the following lemmas.

Lemma 1.1 ([3]). A function f(z) € UT(®,V,v,k) for v(—1 < v < 1)
and k(k > 0) if and only if

o0

(1.1) DA +E)A = (v + F)pnlan < 1—7.

n=2

The result is sharp with the extremal functions

— L=y
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where a(y,k,n) = (1 + k) Ay — (v + E)pin, (=1 < vy < 1), k(k > 0) and
n > 2.

Lemma 1.2 ([8]). If the functions f(z) and g(z) are analytic in U with
g(z) < f(2) then

21 2

(1.3) / |g(re™)| ndb < / | f(re)|ndf n >0, z=re” and 0 <r < 1.
0 0

2 Integral mean

Applying Lemma 1.1 and Lemma 1.2, we prove the following theorem.
Theorem 2.1. Letn > 0. If f(2) e UT(®,V,v,k), -1 <~y <1, k>0 and
{o (7, k,n)}2, is non-decreasing sequence, then for z = re? and 0 <r < 1,
we have

2 2

(2.1) / | f(re™)| ndf < / | fo(re®)| nd6

0

where fo(2) = z — 0(le2)2 )

Proof. Let f(z) of the form (1.2) and fo(z) = z — -.=2_ 22 then we must

o(v,k,2)
show that

2

2
e 1—9)
1— a2t nd@ﬁ/‘l—(—z ndo.
0/ nz:; / o(v,k,2)

By Lemma 1.2, it suffices to show that

[e.9]

1 -9
1-N gt <1—- —— L
22 o7k 2)°

n=2
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Setting
2.2 1—Y a2"t=1— ——w(z).
22 2 70k, 2) ")
From (2.2) and (1.1), we obtain
|U)(Z) — (77k72) n—1
n=2 L=~
o St
=2
<l|z| <1

This completes the proof of the Theorem 2.1.
By taking different choices of ®, W, v and k in the above theorem, we
can state the following integral means results for various subclasses studied

earlier [21, 1, 22, 16, 4].

2

Corollary 2.2. Let > 0. If f(2) € UT ( L e O, 1) _ UCT,

then for z =re?; 0 <r < 1, we have

(2.3) / ‘f(rew)} ndf < / ‘92(7"€i9)‘ ndo

where go(2) = z — % :

Corollary 2.3. Letn > 0. If f(z) € UT ( 225 0, k) =UCT(k
z)2”

(1-2)3" (1
and k > 0, then for z =re"; 0 < r < 1, we have

21

(2.4) / ‘f(rew)‘ ndh < / ‘92<T6i0>‘ ndo
0 0

where go(2) = z — D -
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Corollary 2.4. Let > 0. If f(z) € UT (+— . —? 1) — UCT()

(1—2)3>

and —1 < vy < 1, then for z = re'?; 0 < r < 1, we have

21 21

(2.5) / ‘f(rew)} ndf < / ‘gg(rew)‘ ndo
0 0

where gy(2) = z — 2((13__77)) 22

Corollary 2.5. Letn > 0. If f(2) € UT (+— . — k:> — UCT (v, k),

(1—2)3>
—1<~v<1andk>0, then for z=re??; 0 <r < 1, we have

27 2T

(2.6) / ‘f(rew)} ndh < / ‘92(T€i0>‘ ndo
0 0

where go(2) = 2z — 2(5:72,?) 22 .

Corollary 2.6. Letn > 0. If f(z) e UT (ﬁ, =, " 1) =T5S,(v) and
—1 <~ <1, then for z =re'?; 0 <r < 1, we have

21 21

(2.7) / ’f(reie)‘ ndf < / ‘92(r€i9>‘ ndo
0 0

where gy(2) = 2z — %22 :

Corollary 2.7. Letn > 0. If f(z) e UT <L = " k:) = ST (v, k),

(1—2)2>
—1<~v<1andk>0, then for z =re??; 0 <r < 1, we have

2m 2m
(2.8) /‘f(rew)}ndeS/‘gg(rew)‘nde
0 0
h —,_ (A= 2
where ga(z) = 2 e 1R ?
1420

By taking v = and k = 0 in Theorem 2.1 we get the following

2(1—a)
result of Frasin and Darus [4].
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Corollary 2.8. Letn > 0. If f(z) e UT(®, T, 1;({63;‘,0) = By (9,7, a,p),

0<B<land0<a<l,then for z=re?; 0 <r <1, we have

27 27
(2.9) | f(re)| ndd < [ |ga(re)| ndo
heim=]

where go(2) = 2z — w((la—ﬁﬁ)ng and P(a, 3,2) =2(1 —a)ra — (1 + 5 — 2a) ps.
Corollary 2.9.Let n > 0. If f(z) € UT (ﬁ, = 7 O) = S5(7) and
v >0, then for z = re??; 0 < r < 1, we have

2 2T

(2.10) / ’f(reig)‘ ndf < / ‘g2(rei9)‘ ndé
0 0

where gy(2) = z — ;:—122 .

Corollary 2.10.Let n > 0. If f(z) € UT ((ﬁj% ﬁ, Y, O) = Kr(7v),
and v > 0, then for z = re’?; 0 < r < 1, we have

2 2

(2.11) / ‘f(rew)‘ ndh < / ‘gg(rew)‘ ndo

0

where gy(2) = 2z — ﬁz) :
Remark 2.11.  If we take v = 0 in Si(vy) of Corollary 2.9 and Kr(v)

of Corollary 2.10, we get the integral means results obtained by Silverman

[17].

3 Fractional Calculus

Many essentially equivalent definitions of fractional calculus (that is frac-
tional derivatives and fractional integrals) have been given in the literature

(cf., e.g., [2],[9],[11], [14], [15], [18]and[19]). We find it to be convenient to
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recall here the following definitions which are used earlier by Owa [10](and,

subsequently, by Srivastava and Owa [19]).

Definition 3.1. The fractional integral of order & s defined, for a function
f(z), by

3.1) D) = g | gt €0

where the function f(z) is analytic in a simply-connected region of the z-
plane containing the origin and the multiplicity of the the function (z —
C)¢~Lis removed by requiring the function log(z—() to be real when z—¢ > 0.
Definition 3.2. The fractional derivative of order & is defined, for a func-

tion f(z), by

32 DU =g | i 0<¢<D),

where the function f(z) is constrained, and the multiplicity of the the func-
tion (z — )~ is removed as in Definition 3.1

Definition 3.3. Under the hypotheses of Definition 3.2, the fractional
derivative of order n+ X is defined by

dm
(3.3) DI f(z) = T D:Ef(z) (0= g<limeN,).
Remark 3.4. From Definition 3.2, we have D°f(z) = f(z), which in
view of Definition 3.3 yields DO f(z) = £2DOf(2) = fi™(2). Thus,
limD4f(2) = f(2) and imD;7f(z) = f'(2) .
We need the following definition of fractional integral operator given by

Srivastava, Saigo and Owa[20].



70 B. A. Frasin, G.Murugusundaramoorthy and N.Mageshand

Definition 3.5 For real number n > 0, and 6, the fractional integral

operator ]6’7’5’62'3 defined by

T(n)

where a function f(z) is analytic in a simply-connected region of the z-plane

(34)  I[G4f(z) = LA?Z—tW_WWU+Mfﬂim1—ﬁ/@f@ﬁh

containing the origin with the order

f(z2) = O(lz]e) (2 —=0),

with € > max{0,u — 0} — 1. Here F(a,b;c; z) is the Gauss hypergeometric
function defined by

(3.5) F(a,b;c;z) = Z EZ)):((SZz”,

where (v), is the Pochhammer symbol defined by
(3.6)

(V)HZW viv+ 1D +2)-(v+n—1) (n € N)

and the multiplicity of (z — t)""' is removed by requiring log (z —t) to be
real when z —t > 0.

Remark 3.4. For = —n, we note that

L™ f(2) = DI f(2).

In order to prove our result for the fractional integral operator, we have

to recall here the following lemma due to Srivastava, Saigo and Owa [20].
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Lemma 3.7. If n >0 andn > pu—0 — 1, then

r DI'(n — 0+1
(37) Ig’f’éz" _ (n + ) (n I +0+ ) Py
’ F'n—p+Dn+n+d+1)

With aid of Lemma 3.7, we prove
Theorem 3.8. Let n >0, p <2, n+3d > =2, pn—39 < 2,u(n+4) < 3n.
Let the function f(z) defined by (1.2) be in the class UT(®,V,~, k). If

{o(7,k,n)}°°, is a non-decreasing sequence. Then we have

(3.8)

- P@—p+0)[[™ 2(1—7)(2 - p+9)
BE1O| 2 5ot 15) (1 B W@t em k) ’)
and
(3.9)

2—p+0)2 " 2(1=9)2—p+9)
T 0 0) (1 T B W@t D)o kD) 'Z')

r
12516 <

for z € Uy, where

2 (n<1),
U—{0} (1> 1).

The equalities in (3.8) and(3.9) are attained for the function f(z) given by

(3.10) Uy =

_ 2(1 —7)(2 — p+9) >
311) &) =2 e+ 0ot k)

Proof. By using Lemma 3.7, we have
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I'2—p+9)

Iwu? — 1—p
0 ) = T a1 9
N T+ DI(n—p+d6+1) .
(312) ngn—u+1fm+n+5+D%ﬂ (2 € Uo).
Letting
_T@=wl@+n+96)  yus
(3.13) =z— Zg(n)anz",
n=2
where
2 — _1(1
B11)  gm= O A )

(2= Wn1(24 7+ 0)ns
we can see that the function g(k) is non-increasing for integers n(n > 2),and

thus we have

2(2—p+9)
2-p2+n+0)

(3.15) 0<g(n) <g(2)=

From Lemma 1.1, we obtain

(3.16) 7,]{;22% Zav,knangl—
n=2 n=2
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Hence, using (3.15) and (3.16), we have

(3.17)
21 -9)(2—p+9) 2
‘G(Z)|2’Z|— |Z’ Zan_\z| 2 ,LL)(2+77+(5) (,y’ka) ’Z’ )
and
(3.18)

2(1 =9)(2—p+9) 5
G(2)] < |2 + 9(2) |2|” Zané |ZI+ @t 1000 kD 2|

Y

for z € Uy, where Uy is defined by (3.10). This completes the proof Theorem
3.8.

By using the same proof as in Theorem 3.8, we can prove
Theorem 3.9. Let the function f(z) be defined by (1.2) be in the class
UT(®,V,v,k) . If {o(y,k,n)/n}2, is a non-decreasing sequence. Then

we have
(3.19)
1149 f( ‘ T'(2—p+0) |z " (1_ 41 —=)(2—p+9) M)
T I2—-pl(2+n+0) (2=m(2+n+6)o(y,k,2)
and
(3.20)
s ; (2—p+0) |z A(1—7)(2—p+9)
I ‘—r PIRCETET) (1+<2—M>(2+n+5) C m)")

for z € Uy, where Uy is defined by (3.10). The equalities in (3.19) and (3.20)
are attained for the function f(z) given by (3.11).
Taking 1 = —n = —& Theorem 3.8, we get
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Corollary 3.10. Let the function f(z) defined by (1.2) be in the class
UT(P,V,~, k). If {o(v,k,n)}2, is a non-decreasing sequence. Then we

have

) El 21-7)
(3.21) |D*f(2)] > T2+ &) (1 2+ 8o(r,k,2) lz‘)
and

)| < A 21-9) ).
(3.22) D f(2)] < I'(2+¢) (1 i 2+ &)o(7,k,2) | |>

for € >0, z€U. The result is sharp for the function

U P 2(1 - )
(323 DA =g <1 BRGNS 'Z‘) |

Taking pn = —n = &£ in Theorem 3.9, we get
Corollary 3.11.Let the function f(z) defined by (1.2) be in the class
UT(P,V,~v, k). If {o(v,k,n)/n}, is a non-decreasing sequence. Then

we have

s 41-)
B2 D&z g (1 i141)

2-¢) —&§o(v,k,2
and
e 1-¢ —
(3.25) 1D.£f(2)] < r|(2|— 3 (1 T2 _480(3,)& 2) |Z|>

for 0 <& <1, z€U. The result is sharp for the function given by (3.23).
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Letting £ = 0 in Corollary 3.10, we have
Corollary 3.12 ([3]). Let the function f(z) defined by (1.2) be in the
class UT (P, ¥, v, k). If {o(v,k,n)}>, is a non-decreasing sequence. Then

we have

1—7 -7
(3.26) 1—m|2|§|f(2)|§1+m

for £ >0, z € U. The result is sharp for the function

2|

— 1 —n 52
(3.27) f(z) = —U(’Ya PO

Letting ¢ — 1 in Corollary 3.11,we have
Corollary 2.7 ([3]).Let the function f(z) defined by (1.2) be in the class
UT(®,V,~,k). If {o(7,k,n)/n}e, is a non-decreasing sequence. Then we

have

2 <ipe <1 20

Co(1.k,2) (7,k,2)
for 0 <& <1, z€U. The result is sharp for the function given by (3.27).

(3.28) 1 E
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