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Farthest Points in Normed Linear Spaces !

S. Elumalai and R. Vijayaragavan

Abstract

In this paper we established a characterization of farthest points
in a normed linear spaces. We also provide some application of far-
thest points in the space C(Q) and Cr(Q).
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1 Introduction

The concept of farthest points in normed linear spaces has been investigated
by Franchetti and Singer [4]. They obtained some results on characterization
and existence of farthest points in normed linear spaces in terms of bounded
linear functionals. Section 2 gives some fundamental concepts of farthest
points. A characterization of farthest points in normed linear spaces are
provided in Section 3. Section 4 delineates some applications of farthest
points. Some basic properties of farthest point operator are established in

Section 5.
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2 Preliminaries

Definition 2.1 [4]. Let G be a bounded non-empty subset of a real normed
linear space E and z € E. An element gg € G is called a farthest point to
x in G if

llgo — /] = sup [lg — ||, for all g € G.
geG

The set of all farthest points to x from G is denoted by Fg(z), for all g € G.
Example 2.2. Let £ = R?, the set G = {(x1,22) : 0 <2y <2,—1 <1y <
1} and x = (2,2). Then (0,—1) € Fg(x). If x = (1,2), then (0,—1) and
(2, —1) belong to Fg(x).

Definition 2.3. Let A be a closed convex set of a topological linear space
L. A non-empty subset M € A is said to be an extremal subset of A, if a
proper convex combination A\x + (1 — A)y,0 < A < 1, of two points x and y
of A lies in M only if both x and y are in M.

An extremal subset of A consisting of just one point is called an extremal
point of A. The set of all extremal points of A is denoted by o(A).
Definition 2.4. Let E* denote the conjugate space of E, that is, the space
of all continuous linear functionals on E, endowed with the usual vector

operations and with the norm

If1l = sup |f(z)].
el

[lz]]<1

Let Sg« represent an unit cell defined by

Sg-={f € E"||f|]| <1}.

Definition 2.5. Let Q) be a compact space and C(Q)) be the space of
all numerical continuous functions on (), endowed with the usual vector

operations and with the norm

T|| = Imax |r .
lall = max|a(q)
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We shall denote by Cr(Q) the space of all continuous real-valued functions

on ), endowed with the usual vector operations and with the norm
z|| = max |x(q)|.
ol = max(o)

The following results are required to prove the main result of this paper.
Lemma 2.6 [7]. Let M be an extremal subset of a closed convex set A in a

topological linear space L. Then
o(M)=0c(A)NM

Lemma 2.7 [7]. Let E be a normed linear space and let F' be a non-empty
convez subset of the set {x € E : ||z|| = 1}. Then the set

Mp=({f € E:Ifll =1, f(x) =1}

zeF

1s a non-empty extremal subset of the cell Sg+ endowed with weak topology
o(E* E).
Corollary 2.8 [7]. Let E be a normed linear space and x € E,x # 0. Then
the set

My ={f e E":||fl| =1, f(z) = |[z]|}
is a non-empty extremal subset of the cell S+ endowed with o(E*, F).

A characterization of farthest points is presented in the next section.

3 Characterizations of Farthest Points

Theorem 3.1. Let G be a bounded subset of a normed linear space E,x € E
and go € G. Then gy € Fg(x) if and only if there ezists an fy € E* such
that

(3.1) fo € 0(Sg-)
(3.2) folgo—1) = Sup g — ||
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Proof. Let gy € F(x). Then by the theorem 3.1[4], there exists f € E*
such that ||f|| =1,
f(go — x) = sup||g — z||. By Corollary 2.8, the set
geG

M={feE :|lfll=1,f(g —x) =Sl€1g||g—l“||}

is a non-empty extremal subset of the cell Sg+ endowed with o(E*, E). So,
by the Krein - Milman theorem, the set o(M) is non-empty and hence, by
Lemma 2.6, there exists an fy € E* such that (3.1) and (3.2) hold.
Conversely, assume that (3.1) and (3.2) hold. Then, by (3.1) and (3.2)

lgo — || > [|lg — ||, for all g € G.

Whence it follows that gy € Fg(x).
Corollary 3.2. Let G be a bounded subset of a mormed linear space E,

r € E and gy € G. Then the following statements are equivalent:
(a) go € Fo().

(b) There ezists an f € E* such that f satisfies

(3.3) |f(go— )| = Stelgllg—wH
(3.4) |f(go—2)] = [f(g—=)|, forall g €G.

(c) There exists an f € E* such that f satisfies (3.3) and
(3.5) Re[f(g0 — 9)f (g0 — )] = 0.
Proof. Let gy € Fz(x). Then by Theorem 3.1, we have (3.3) and

£ (90 — )| = [lg — || = [f(g —2)|, forall g € G.

Which proves (3.4). Thus, (a) = (b).
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To prove (b) = (c) assume that (b) holds.
Then, by (3.4),

(g0 —2)I* = [f(g = 2)I” = [f(g — 90" + |f (90 — 2) "+

+2 Ref(g — g0)f(g0 — ) >
> |f(g0 — =) + 2Ref (g — g0) f (90 — )

whence it follows that Re[f(go — 9)f(g0 — x)] > 0.
(¢) = (a) is trivial.
Let G be a non-empty bounded subset of a normed linear space F and

for each b > 0, the b extension of G denoted by G} and defined by
Gy={r e E:dz,G)=sup | z—g|<b}, b#£0.

Proposition 3.3. Let G C E, zp € E and b < sup || o — ¢ ||. Then
geG

f(x()’ G) = f('r()’ Gb)
Proof. For each z € F such that sup || z — g ||> b,
geG

(3.6) sup || z — g [|[=sup || 2 — g || +b.
geGy geG

Let z € F(G, zp). Then
sup || z =g [|[=sup [[zo —g [+ [z =20 2]
geG geqG
By (3.6),
sup || z—g [|=sup || 2 —g || +b
9geGy geq

and

sup || 2o — g ||=sup || xo — g || +b
g€Gy geG
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Hence

sup ||z —g| = sup|z—gl +b
geGy geqG
= |lz—zo || +sup | zo—g |l +b
geG

= [[z—2o | +sup || 2o —g |
geGy

which implies F(G, z) C F(Gs, o).

Let z € F(Gy, xg), z # x9. Then

sup ||z —g|[=[lz—o || +sup [[z0—g [|> b
geGy geGy,
Therefore,
sup || z—g || = sup [|z—g| —b
geG geGy
= sup [|[zo—g |+l z—zo [l b
9€Gy

= lz—ao | +sup [ zo—g |
geG

which implies F (G, z9) C F(G, o).

Hence the result follows.

Some applications of farthest points are explored in the next section.

4 Applications of Farthest Points in the
Spaces C(Q) and Cr(Q).

Theorem 4.1. Let E = C(Q) (Q compact), G be a bounded subset of
E,x € E and gy € G. Then gy € Fg(z) if and only if there exists a Radon

measure [ (real or complex) on Q such that

(4.1) Q) =1,
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(4.2) e o),

(43)  golg) — (q) = [sign i <q>} supmax |g(g) — 2(q)] ¢ € S(),

m geG 9€Q

dup
dlp

by changing its values on a set of |u| - measure zero, in (4.3) is taken this

where (4.2) is meant in the sense that can be made continuous on ()

continuous function < and S(p) is the carrier of the measure .

d| |
Proof. By theorem 3.1 [4], we have gy € Fg(z) if and only if there exists a

Radon measure p on @ such that we have (4.1) and

(4.4) /Q l90(q) — 2(0))di(q) = sup max|g(q) — x(g)|

geG €@

We shall now show that these conditions are equivalent to (4.1)-(4.3). As-
sume first that we have (4.1) and (4.4). Then from (4.4), (4.1) and z—go # 0
it follows that

dp 90(q) — z(q)

q =
d|p| SupmaX|9() z(q)|
geq €@

(4.5) lu|— a.e. on @

Indeed, assume the contrary, that is that there exists a set A C ) with
|p|(A) > 0, such that

dp 90(q) — z(q)

4.6 q) £ 22
(4.6) d|pl sup || g — ||
geG

|| — a.e. on A.

Then

dp
Re(d| o <q>—x<q>])<§gg||g—xu il aue. on A,

since otherwise, by taking into account that we have

(17) |1 U= ae on @
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there would exist a set A; C A with |u|(A;) > 0 such that

g sl < Re (d—”<q>[go<q> - x(q)])

d|pl
< \d“m[ (@) <>]]
>~ |57 79)golq) — (g
dlp]
< g0 — ||
< supllg — | \p| — a.e on Ay,
geG

d
which implies that ﬁ(q) [90(q) — z(q)] is real and positive |u| — a.e on Ay,
i

hence equal to ||go — z|| |p| a.e. on Ay, and thus

d
S (9)lgo(q) — 2(q)] = sup |lg — ]| = ae. on Ay
d|:u| geG
So
sup|lg —z|] —————
du geC ~ go(q) — x(q)

|| — a.e on Ay |

[ q f— f—
d|p 90(q) —x(q)  supllg — ]
geG
which contradicts the hypothesis. Consequently, we obtain

Re /Q oo(@) — o(@)ldulg) = Re /Q 90(a) —x(qn%(q)dw(q)

~ [ Re (g
= [ re (into) - st ) e

< /Q sup |lg — zldlul (g)

geG

= sup|lg — =],
geG

which contradicts (4.4). Hence we obtain (4.5).

By changing the values of ﬁ so as to have (4.5) every where on @), we
1
will have (4.2), whence, taking into account (4.7), there follow the relations

i

(4.8) I

<q>' —1 (geSw),
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and thus, by (4.5) (every where on (), we obtain (4.3).
Conversely, assume that we have (4.1) - (4.3). Then by (4.3), (4.2), (4.7)
and (4.1), it follows that

= su —x sl nd—u
[ wto) = @ity = supllg =il [ [senghrto)| dute

. dp
= supllg—all | |senglto)| @)

=sup||g—x||/\ o) duli

= supllg—:v|| (@
= supHg—-’rH,
geG

that is (4.4), which completes the proof.

Theorem 4.2. Let E = Cg(Q) (Qcompact), G be a bounded subset of
E,x € E and g0 € G. Then g9 € Fg(x) if and only if there exist two
disjoint sets ngg and Y, closed in Q, and a Radon measure p on Q, with

the following properties:

(4.9) ul(Q) =1,
1 1S non-decreasing on Y;;, non-increasing on Y, and
(4.10) S(p) CYy i UY, (S(u) — the carrier of ),
sup max|g(q) — x(q)| for q €Yy
(4.11)  golq) —(g) =4 ="
—supmax|g(q) — z(q)| for g€ Y, .
geG q€Q

Proof. By Theorem 4.1, we have gy € Fg(z) if and only if there exists a
real Radon measure p on ) such that we have (4.1) and (4.4). We shall
show that these conditions are equivalent to (4.9) - (4.11).
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Assume that we have (4.1) and (4.4). Now we define

(4.12) Yo = {q € Q : golq) — x(q) = supmax|g(q) — x(Q)I} 7

QEG qu

(4.13) Y, = {q € Q: go(g) — x(q) = —supmax|g(q) — ﬂf(q)l} :

geG 1€Q
Then, Y, and Y are disjoint and closed in @ and we have (4.11).
To prove (4.10), let pu be decreasing on Y,". Then there would exist a set
A CY,b with |u|(A) > 0, such that pu(A) < |u|(A). So

[ (oot0) = 2@ldnta) = suplg — ol

< [pl(A4)sup|lg — =]
geG

— [ suplg - slidlelta).
A geG
Whence, taking into account (4.1),
/ [90(q) — z(q)]du(q) < / sup ||g — x||d|u|(q) = sup ||lg — =],
Q Q 9€G geG

which contradicts (4.4). Hence p is non-decreasing on Y.
Similarly it can be shown that 4 is non-increasing on Y, .
If there exists a go € S(u) such that go ¢ Y,7 UY, , then

go~’

|90(q0) — 2(q0)| < sup|lg — =[],
geG
then, taking an open neighbourhood U of ¢y such that
190(q0) — x(q)] < sup lg ==l (¢ €),

We would have |p|(U) > 0 (since go € S(u)) and

[ ana) = ()i t/mo — w()ld(@)

< /émmg—ﬂwmu>
U

e
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Whence, by (4.1),

/ loo(a) — 2(@)]dule) < / sup |lg — ldul(e)
Q Q 9€G

= sup|lg — ||,
geG

which contradicts (4.4). Thus (4.1) and (4.4) imply (4.9) - (4.11).
Conversely, assume that there exist two disjoint closed sets Y;g and Y
in (Q and a real Radon measure p on @ such that we have (4.9) - (4.11).
Then, by (4.10), (4.11) and (4.9), we have
Lt —s@lnta) = [ swpmalofa) ~a(a)ldnto
Q S

Ny geG 9€Q

w [ (= swmaxlata) - a(a) ) duto
S()NYyg geG 9€Q

= /supmax]g(q)—ﬁf(QHdW‘((l)
Q

geG €@

= sup max —x(q)l,
geg nay l9(q) — x(q)|

which gives (4.4). Thus (4.9)-(4.11) imply (4.1) and (4.4).

5 Operator F; and Farthest Approximations

Let E be a normed linear space, G be a nonempty bounded subset of £ and
D(F¢) denote domain of F. Then define a mapping Fg : D(Fg) — G by
Fg(z) € Fo(x) (x € D(Fg)). In general D(Fg) # E.

Theorem 5.1. Let E be a normed linear space and G be a monempty
bounded subset of E. Then

() (llz = Fa()ll = [ly = Fa)ll| < |l =yl

2) llz =yl < lz = Fo(@)[| + [ly = Fa(y)]]
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(3) llz = Fe(z)l| = |||

(4) If Gy is a nonempty subset of G, then ||x — Fg(x)|| > ||z — Fo, (2)|],
for all x € (D(Fg) N D(Fg,))

Proof. (1) By definition of farthest points, we have

|z = Fa(@)[| = |le = Fe@)ll = llz—y+y— Fa)ll
> Ny = Fa@ll = llz —yll

= |z =yl =2 lly = FaW)l| — |z — Fa(2)]]

interchanging x and y, we have

|z =yl = llz = Fa(2)]] = [ly = Fa(y)ll

hence
lz — Fe ()| = lly — Fe@)Il| < llz —yl|
also
(2) |z = Fo(a)ll = [le = Fe)Il = [z —y+y— Fa(y)ll

> lz =yl = lly = Fa)ll

= |z —yl| < [lz = Fa(@)|| + [ly — Fa(y)]]

(3) By definition of farthest points, we have
|z = Fa(x)[| = |l — gl|, for all g € G.

In particular
o = Fa(@)| = [|«]], if 0eG

(4 lz = Fe(x)ll = supllz—g]|
geG
> sup ||z — gl|, since G; C G
9eGy

= |lx = Fg,(2)||, for all x € (D(Fg) N D(Fg,))
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Theorem 5.2. Let E be a normed linear space, G be a nonempty bounded
subset of E and gy € G. Then the set Fy;*(go) is closed and x € F;"(go) =
azx + (1 —a)go € F;'(g0) (a-scalar).

Proof. Let z,, € F;'(go) and z € F such that

lim z, = z.
n—oo

Then, since norm is a continuous function and gg € Fg(z,), we have
Jim i, -l > Jim e, gl forallge G

= [l (o= go)l| =[] (o, — )], forallg € G

= ||z — gol| >l —gll, forall g € G

= g0 € Fg(x) = © € Fg'(g)
which proves that F;*(go) is closed.

Now let = € F;'(go) be arbitrary and « be an arbitrary scalar and let
y=azr+(1—a)g.

If =0, then y = gy € F;'(g0). If @ # 0 then for every g € G, by
taking into account that z € F;*(go),

ly =gl = llax+(1—a)g — gl

1
—(1 =gy —
allr — ( CY)go ql|

IA

allz = gol|

= ||ax + (1 - a)go — gol|

[y — gol|

whence it follows that gy € Fa(y) if y € F5'(g0).
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