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Farthest Points in Normed Linear Spaces 1
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Abstract

In this paper we established a characterization of farthest points

in a normed linear spaces. We also provide some application of far-

thest points in the space C(Q) and CR(Q).
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1 Introduction

The concept of farthest points in normed linear spaces has been investigated

by Franchetti and Singer [4]. They obtained some results on characterization

and existence of farthest points in normed linear spaces in terms of bounded

linear functionals. Section 2 gives some fundamental concepts of farthest

points. A characterization of farthest points in normed linear spaces are

provided in Section 3. Section 4 delineates some applications of farthest

points. Some basic properties of farthest point operator are established in

Section 5.
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2 Preliminaries

Definition 2.1 [4]. Let G be a bounded non-empty subset of a real normed

linear space E and x ∈ E. An element g0 ∈ G is called a farthest point to

x in G if

||g0 − x|| = sup
g∈G

||g − x||, for all g ∈ G.

The set of all farthest points to x from G is denoted by FG(x), for all g ∈ G.

Example 2.2. Let E = R2, the set G = {(x1, x2) : 0 ≤ x1 ≤ 2,−1 ≤ x2 ≤

1} and x = (2, 2). Then (0,−1) ∈ FG(x). If x = (1, 2), then (0,−1) and

(2,−1) belong to FG(x).

Definition 2.3. Let A be a closed convex set of a topological linear space

L. A non-empty subset M j A is said to be an extremal subset of A, if a

proper convex combination λx + (1− λ)y, 0 < λ < 1, of two points x and y

of A lies in M only if both x and y are in M.

An extremal subset of A consisting of just one point is called an extremal

point of A. The set of all extremal points of A is denoted by σ(A).

Definition 2.4. Let E∗ denote the conjugate space of E, that is, the space

of all continuous linear functionals on E, endowed with the usual vector

operations and with the norm

||f || = sup
x∈E
||x||≤1

|f(x)|.

Let SE∗ represent an unit cell defined by

SE∗ = {f ∈ E∗ : ||f || ≤ 1}.

Definition 2.5. Let Q be a compact space and C(Q) be the space of

all numerical continuous functions on Q, endowed with the usual vector

operations and with the norm

||x|| = max
q∈Q

|x(q)|.
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We shall denote by CR(Q) the space of all continuous real-valued functions

on Q, endowed with the usual vector operations and with the norm

||x|| = max
q∈Q

|x(q)|.

The following results are required to prove the main result of this paper.

Lemma 2.6 [7]. Let M be an extremal subset of a closed convex set A in a

topological linear space L. Then

σ(M) = σ(A) ∩ M

Lemma 2.7 [7]. Let E be a normed linear space and let F be a non-empty

convex subset of the set {x ∈ E : ||x|| = 1}. Then the set

MF =
⋂

x∈F

{f ∈ E∗ : ||f || = 1, f(x) = 1}

is a non-empty extremal subset of the cell SE∗ endowed with weak topology

σ(E∗, E).

Corollary 2.8 [7]. Let E be a normed linear space and x ∈ E, x 6= 0. Then

the set

Mx = {f ∈ E∗ : ||f || = 1, f(x) = ||x||}

is a non-empty extremal subset of the cell SE∗ endowed with σ(E∗, E).

A characterization of farthest points is presented in the next section.

3 Characterizations of Farthest Points

Theorem 3.1. Let G be a bounded subset of a normed linear space E, x ∈ E

and g0 ∈ G. Then g0 ∈ FG(x) if and only if there exists an f0 ∈ E∗ such

that

f0 ∈ σ(SE∗)(3.1)

f0(g0 − x) = sup
g∈G

||g − x||(3.2)
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Proof. Let g0 ∈ FG(x). Then by the theorem 3.1[4], there exists f ∈ E∗

such that ||f || = 1,

f(g0 − x) = sup
g∈G

||g − x||. By Corollary 2.8, the set

M = {f ∈ E∗ : ||f || = 1, f(g0 − x) = sup
g∈G

||g − x||}

is a non-empty extremal subset of the cell SE∗ endowed with σ(E∗, E). So,

by the Krein - Milman theorem, the set σ(M) is non-empty and hence, by

Lemma 2.6, there exists an f0 ∈ E∗ such that (3.1) and (3.2) hold.

Conversely, assume that (3.1) and (3.2) hold. Then, by (3.1) and (3.2)

||g0 − x|| ≥ ||g − x||, for all g ∈ G.

Whence it follows that g0 ∈ FG(x).

Corollary 3.2. Let G be a bounded subset of a normed linear space E,

x ∈ E and g0 ∈ G. Then the following statements are equivalent:

(a) g0 ∈ FG(x).

(b) There exists an f ∈ E∗ such that f satisfies

|f(g0 − x)| = sup
g∈G

||g − x||(3.3)

|f(g0 − x)| ≥ |f(g − x)| , for all g ∈ G.(3.4)

(c) There exists an f ∈ E∗ such that f satisfies (3.3) and

Re[f(g0 − g)f(g0 − x)] ≥ 0.(3.5)

Proof. Let g0 ∈ FG(x). Then by Theorem 3.1, we have (3.3) and

|f(g0 − x)| ≥ ||g − x|| ≥ |f(g − x)| , for all g ∈ G.

Which proves (3.4). Thus, (a) ⇒ (b).
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To prove (b) ⇒ (c) assume that (b) holds.

Then, by (3.4),

|f(g0 − x)|2 ≥ |f(g − x)|2 = |f(g − g0)|
2 + |f(g0 − x)|2+

+2 Ref(g − g0)f(g0 − x) ≥

≥ |f(g0 − x)|2 + 2Ref(g − g0)f(g0 − x)

whence it follows that Re[f(g0 − g)f(g0 − x)] ≥ 0.

(c) ⇒ (a) is trivial.

Let G be a non-empty bounded subset of a normed linear space E and

for each b > 0, the b extension of G denoted by Gb and defined by

Gb = {x ∈ E : d(x,G) = sup ‖ x − g ‖≤ b}, b 6= 0.

Proposition 3.3. Let G ⊂ E, x0 ∈ E and b ≤ sup
g∈G

‖ x0 − g ‖. Then

F(x0, G) = F(x0, Gb).

Proof. For each z ∈ E such that sup
g∈G

‖ z − g ‖≥ b,

sup
g∈Gb

‖ z − g ‖= sup
g∈G

‖ z − g ‖ +b.(3.6)

Let z ∈ F(G, x0). Then

sup
g∈G

‖ z − g ‖= sup
g∈G

‖ x0 − g ‖ + ‖ z − x0 ‖≥ b

By (3.6),

sup
g∈Gb

‖ z − g ‖= sup
g∈G

‖ z − g ‖ +b

and

sup
g∈Gb

‖ x0 − g ‖= sup
g∈G

‖ x0 − g ‖ +b
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Hence

sup
g∈Gb

‖ z − g ‖ = sup
g∈G

‖ z − g ‖ +b

= ‖ z − x0 ‖ + sup
g∈G

‖ x0 − g ‖ +b

= ‖ z − x0 ‖ + sup
g∈Gb

‖ x0 − g ‖

which implies F(G, x0) ⊆ F(Gb, x0).

Let z ∈ F(Gb, x0), z 6= x0. Then

sup
g∈Gb

‖ z − g ‖=‖ z − x0 ‖ + sup
g∈Gb

‖ x0 − g ‖≥ b

Therefore,

sup
g∈G

‖ z − g ‖ = sup
g∈Gb

‖ z − g ‖ −b

= sup
g∈Gb

‖ x0 − g ‖ + ‖ z − x0 ‖ −b

= ‖ z − x0 ‖ + sup
g∈G

‖ x0 − g ‖

which implies F(Gb, x0) ⊆ F(G, x0).

Hence the result follows.

Some applications of farthest points are explored in the next section.

4 Applications of Farthest Points in the

Spaces C(Q) and CR(Q).

Theorem 4.1. Let E = C(Q) (Q compact), G be a bounded subset of

E, x ∈ E and g0 ∈ G. Then g0 ∈ FG(x) if and only if there exists a Radon

measure µ (real or complex) on Q such that

(4.1) |µ|(Q) = 1,
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(4.2)
dµ

d|µ|
∈ C(Q),

(4.3) g0(q) − x(q) =

[

sign
dµ

d|µ|
(q)

]

sup
g∈G

max
q∈Q

|g(q) − x(q)| q ∈ S(µ),

where (4.2) is meant in the sense that dµ

d|µ|
can be made continuous on Q

by changing its values on a set of |µ| - measure zero, in (4.3) is taken this

continuous function dµ

d|µ|
and S(µ) is the carrier of the measure µ.

Proof. By theorem 3.1 [4], we have g0 ∈ FG(x) if and only if there exists a

Radon measure µ on Q such that we have (4.1) and

(4.4)

∫

Q

[g0(q) − x(q)]dµ(q) = sup
g∈G

max
q∈Q

|g(q) − x(q)|

We shall now show that these conditions are equivalent to (4.1)-(4.3). As-

sume first that we have (4.1) and (4.4). Then from (4.4), (4.1) and x−g0 6= 0

it follows that

(4.5)
dµ

d|µ|
(q) =

g0(q) − x(q)

sup
g∈G

max
q∈Q

|g(q) − x(q)|
|µ|− a.e. on Q

Indeed, assume the contrary, that is that there exists a set A ⊂ Q with

|µ|(A) > 0, such that

(4.6)
dµ

d|µ|
(q) 6=

g0(q) − x(q)

sup
g∈G

‖ g − x ‖
|µ|− a.e. on A.

Then

Re

(

dµ

d|µ|
(q)[g0(q) − x(q)]

)

< sup
g∈G

||g − x|| |µ|− a.e. on A,

since otherwise, by taking into account that we have

(4.7)

∣

∣

∣

∣

dµ

d|µ|
(q)

∣

∣

∣

∣

= 1 |µ|− a.e on Q,
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there would exist a set A1 ⊂ A with |µ|(A1) > 0 such that

sup
g∈G

||g − x|| ≤ Re

(

dµ

d|µ|
(q)[g0(q) − x(q)]

)

≤

∣

∣

∣

∣

dµ

d|µ|
(q)[g0(q) − x(q)]

∣

∣

∣

∣

≤ ||g0 − x||

≤ sup
g∈G

||g − x|| |µ| − a.e on A1,

which implies that
dµ

d|µ|
(q)[g0(q)−x(q)] is real and positive |µ| − a.e on A1,

hence equal to ||g0 − x|| |µ| a.e. on A1, and thus

dµ

d|µ|
(q)[g0(q) − x(q)] = sup

g∈G

||g − x|| |µ|− a.e. on A1

So

dµ

d|µ|
(q) =

sup
g∈G

||g − x||

g0(q) − x(q)
=

g0(q) − x(q)

sup
g∈G

||g − x||
|µ|− a.e on A1 ,

which contradicts the hypothesis. Consequently, we obtain

Re

∫

Q

[g0(q) − x(q)]dµ(q) = Re

∫

Q

[g0(q) − x(q)]
dµ

d|µ|
(q)d|µ|(q)

=

∫

Q

Re

(

[g0(q) − x(q)]
dµ

d|µ|
(q)

)

d|µ|(q)

<

∫

Q

sup
g∈G

||g − x||d|µ|(q)

= sup
g∈G

||g − x||,

which contradicts (4.4). Hence we obtain (4.5).

By changing the values of
dµ

d|µ|
so as to have (4.5) every where on Q, we

will have (4.2), whence, taking into account (4.7), there follow the relations

(4.8)

∣

∣

∣

∣

dµ

d|µ|
(q)

∣

∣

∣

∣

= 1 (q ∈ S(µ)),
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and thus, by (4.5) (every where on Q), we obtain (4.3).

Conversely, assume that we have (4.1) - (4.3). Then by (4.3), (4.2), (4.7)

and (4.1), it follows that
∫

Q

[g0(q) − x(q)]dµ(q) = sup
g∈G

||g − x||

∫

Q

[

sign
dµ

d|µ|
(q)

]

dµ(q)

= sup
g∈G

||g − x||

∫

Q

[

sign
dµ

d|µ|
(q)

]

dµ

d|µ|
(q)d|µ|(q)

= sup
g∈G

||g − x||

∫

Q

∣

∣

∣

∣

dµ

d|µ|
(q)

∣

∣

∣

∣

d|µ|(q)

= sup
g∈G

||g − x|| |µ|(Q)

= sup
g∈G

||g − x||,

that is (4.4), which completes the proof.

Theorem 4.2. Let E = CR(Q) (Qcompact), G be a bounded subset of

E, x ∈ E and g0 ∈ G. Then g0 ∈ FG(x) if and only if there exist two

disjoint sets Y +
g0

and Y −
g0

closed in Q, and a Radon measure µ on Q, with

the following properties:

(4.9) |µ|(Q) = 1,

µ is non-decreasing on Y +
g0

, non-increasing on Y −
g0

and

(4.10) S(µ) ⊂ Y +
g0

∪ Y −
g0

(S(µ) − the carrier of µ),

(4.11) g0(q) − x(q) =











sup
g∈G

max
q∈Q

|g(q) − x(q)| for q ∈ Y +
g0

−sup
g∈G

max
q∈Q

|g(q) − x(q)| for q ∈ Y −
g0

.

Proof. By Theorem 4.1, we have g0 ∈ FG(x) if and only if there exists a

real Radon measure µ on Q such that we have (4.1) and (4.4). We shall

show that these conditions are equivalent to (4.9) - (4.11).



18 S. Elumalai and R. Vijayaragavan

Assume that we have (4.1) and (4.4). Now we define

(4.12) Y +
g0

=

{

q ∈ Q : g0(q) − x(q) = sup
g∈G

max
q∈Q

|g(q) − x(q)|

}

,

(4.13) Y −
g0

=

{

q ∈ Q : g0(q) − x(q) = − sup
g∈G

max
q∈Q

|g(q) − x(q)|

}

.

Then, Y +
g0

and Y −
g0

are disjoint and closed in Q and we have (4.11).

To prove (4.10), let µ be decreasing on Y +
g0

. Then there would exist a set

A ⊂ Y +
g0

with |µ|(A) > 0, such that µ(A) < |µ|(A). So
∫

A

[g0(q) − x(q)]dµ(q) = sup
g∈G

||g − x||µ(A)

< |µ|(A) sup
g∈G

||g − x||

=

∫

A

sup
g∈G

||g − x||d|µ|(q),

Whence, taking into account (4.1),
∫

Q

[g0(q) − x(q)]dµ(q) <

∫

Q

sup
g∈G

||g − x||d|µ|(q) = sup
g∈G

||g − x||,

which contradicts (4.4). Hence µ is non-decreasing on Y +
g0

.

Similarly it can be shown that µ is non-increasing on Y −
g0

.

If there exists a q0 ∈ S(µ) such that q0 /∈ Y +
g0

∪ Y −
g0

, then

|g0(q0) − x(q0)| < sup
g∈G

||g − x||,

then, taking an open neighbourhood U of q0 such that

|g0(q0) − x(q)| < sup
g∈G

||g − x|| (q ∈ U),

We would have |µ|(U) > 0 (since q0 ∈ S(µ)) and
∫

U

[g0(q) − x(q)]dµ(q) ≤

∫

U

|g0(q) − x(q)|d|µ|(q)

<

∫

U

sup
g∈G

||g − x||d|µ|(q)
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Whence, by (4.1),
∫

Q

[g0(q) − x(q)]dµ(q) <

∫

Q

sup
g∈G

||g − x||d|µ|(q)

= sup
g∈G

||g − x||,

which contradicts (4.4). Thus (4.1) and (4.4) imply (4.9) - (4.11).

Conversely, assume that there exist two disjoint closed sets Y +
g0

and Y −
g0

in Q and a real Radon measure µ on Q such that we have (4.9) - (4.11).

Then, by (4.10), (4.11) and (4.9), we have
∫

Q

[g0(q) − x(q)]dµ(q) =

∫

S(µ)∩Y +
g0

sup
g∈G

max
q∈Q

|g(q) − x(q)|dµ(q)

+

∫

S(µ)∩Y −
g0

(

− sup
g∈G

max
q∈Q

|g(q) − x(q)|

)

dµ(q)

=

∫

Q

sup
g∈G

max
q∈Q

|g(q) − x(q)|d|µ|(q)

= sup
g∈G

max
q∈Q

|g(q) − x(q)|,

which gives (4.4). Thus (4.9)-(4.11) imply (4.1) and (4.4).

5 Operator FG and Farthest Approximations

Let E be a normed linear space, G be a nonempty bounded subset of E and

D(FG) denote domain of FG. Then define a mapping FG : D(FG) → G by

FG(x) ∈ FG(x) (x ∈ D(FG)). In general D(FG) 6= E.

Theorem 5.1. Let E be a normed linear space and G be a nonempty

bounded subset of E. Then

(1)
∣

∣

∣
||x − FG(x)|| − ||y − FG(y)||

∣

∣

∣
≤ ||x − y||

(2) ||x − y|| ≤ ||x − FG(x)|| + ||y − FG(y)||
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(3) ||x − FG(x)|| ≥ ||x||

(4) If G1 is a nonempty subset of G, then ||x − FG(x)|| ≥ ||x − FG1
(x)||,

for all x ∈ (D(FG) ∩ D(FG1
))

Proof. (1) By definition of farthest points, we have

||x − FG(x)|| ≥ ||x − FG(y)|| = ||x − y + y − FG(y)||

≥ ||y − FG(y)|| − ||x − y||

⇒ ||x − y|| ≥ ||y − FG(y)|| − ||x − FG(x)||

interchanging x and y, we have

||x − y|| ≥ ||x − FG(x)|| − ||y − FG(y)||

hence
∣

∣

∣
||x − FG(x)|| − ||y − FG(y)||

∣

∣

∣
≤ ||x − y||

also

(2) ||x − FG(x)|| ≥ ||x − FG(y)|| = ||x − y + y − FG(y)||

≥ ||x − y|| − ||y − FG(y)||

⇒ ||x − y|| ≤ ||x − FG(x)|| + ||y − FG(y)||

(3) By definition of farthest points, we have

||x − FG(x)|| ≥ ||x − g||, for all g ∈ G.

In particular

||x − FG(x)|| ≥ ||x||, if 0 ∈ G

(4) ||x − FG(x)|| = sup
g∈G

||x − g||

≥ sup
g∈G1

||x − g||, since G1 ⊂ G

= ||x − FG1
(x)||, for all x ∈ (D(FG) ∩ D(FG1

))
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Theorem 5.2. Let E be a normed linear space, G be a nonempty bounded

subset of E and g0 ∈ G. Then the set F−1
G (g0) is closed and x ∈ F−1

G (g0) ⇒

αx + (1 − α)g0 ∈ F−1
G (g0) (α-scalar).

Proof. Let xn ∈ F−1
G (g0) and x ∈ E such that

lim
n→∞

xn = x.

Then, since norm is a continuous function and g0 ∈ FG(xn), we have

lim
n→∞

||xn − g0|| ≥ lim
n→∞

||xn − g||, for all g ∈ G

⇒ || lim
n→∞

(xn − g0)|| ≥ || lim
n→∞

(xn − g)||, for all g ∈ G

⇒ ||x − g0|| ≥ ||x − g||, for all g ∈ G

⇒ g0 ∈ FG(x) ⇒ x ∈ F−1
G (g0)

which proves that F−1
G (g0) is closed.

Now let x ∈ F−1
G (g0) be arbitrary and α be an arbitrary scalar and let

y = αx + (1 − α)g0.

If α = 0, then y = g0 ∈ F−1
G (g0). If α 6= 0 then for every g ∈ G, by

taking into account that x ∈ F−1
G (g0),

||y − g|| = ||αx + (1 − α)g0 − g||

= α||x − (1 −
1

α
)g0 − g||

≤ α||x − g0||

= ||αx + (1 − α)g0 − g0||

= ||y − g0||

whence it follows that g0 ∈ FG(y) if y ∈ F−1
G (g0).
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