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Abstract

Application for the control in the steel bars using the ultrasounds

method
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1 The problem,s demand

In the system of quality insurance AQ04 for the production of nuclear cen-

trals equipment ,the control of primar materials receiving is essential.

Problem: A company receives steel bars of different diameters but of

the same length for the production of ”Screws couple Fideri”and we want

to find out the possible fissures in their inside.The controll procedure that

system AQ04 demands is the ultrasounds one(Cod ASME 82101) which
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consists in the covering of the surfaces with a thick substance (for ex: glyc-

erine) and the emission of a sound with a frequency between 2-10 Mhz in the

left part of the bar.The machine which measures and controlls is connected

to a process computer and it has two sensors which can be moved up and

down on the bar’s surfaces.If there are not fissures ,the signal is linear and

uniform otherwise it is interrupted.From a case study of the specialists we

have the following parameters dynamical system :















x′ + α · x + y2 + z2 = 0

y′ + γ · y − x · y − β · z = 0; α, β, γ ∈ ℜ; α, β > 0

z′ + γ · z − x · z + β · z = 0

(1.1)

There are two main methods of symplifying the parameters dynamical sys-

tem study.First is the ”Method of normal forms” which has its roots in

the licence paper of H.Poincare(1929).This method consists in finding a

coordinates system in which the dynamical system has in a certain way

the easiest form.The other one is the ”Manifold method ” introduced by

E.Hopf(1970).In the situation demanded by our problem we are interested

only in the dissypativity cases which means the ones with potential energy

links.

2 Analytic study

2.1 The dynamical system is dissipative

It will also be sufficient for the proof of global solvability.Let us introduce

a new unknown function u = x + α/2 + γ.Then the system (1.1) can be

rewritten in the form:
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u
′

+ α · u + y2 + z2 = α(α/2 − γ)

y′ + 1/2 · α · y − u · y − β · z = 0

z′ + 1/2 · α · z − z · u + β · y = 0

(1.2)

These equations implies that :

d

dt
(u2 + y2 + z2) + α · (u2 + y2 + z2) = 2 · α · u(α/2 − γ) − u2 · α

on any interval of existence of solutions.Hence,

d
dt

(u2 + y2 + z2) + α · (u2 + y2 + z2) ≤ α(α/2 − γ)2

Using Gronwall’s lema (continuous case) we obtain:

u(t)2 + y(t)2 + z(t)2 ≤
exp(−α · t) · (u(0)2 + y(0)2 + z(0)2) + (α/2 − γ)2(1 − exp(−α · t)).

Firstly ,this equations enables us to prove the global solvability of prob-

lem (1.1)for any initial condition and, secondly,it means that the set:

B0 = {(u, y, z) : (u + α/2 − γ)2 + y2 + z2 ≤ 1 + (α/2 − γ)2}

is absorbing for dynamical system generated by the Cauchy problems for

(1.1).It is also a connected compact set in ℜ3.

Because α > 0 then exp(−α · t) → ∞ when t → ∞ implies that St(.) =

exp(−t(.)) is evolution semigroup of dynamical dissipative system(1.1) and:

lim(u(t)2 + y(t)2 + z(t)2) = (α/2 − γ).

Thus the set B0 is a positively invariant set for (ℜ3, St) ,that means

St(B0) ⊆ B0 for every ν ∈ B0.This is obviously because exp(−t)(ν) ≤
ν.Further more (1.1) is generalised dissipative dynamical system because

for any v = (u, y, z)

(f(v), v) = α/2(‖v‖2 + (u − α/2 + γ)2 − (α/2 − γ)2) < 0 if only if

‖v‖ > γ − α/2.
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2.2 The structure of global attractor

In order to describe the structure of the global attractor A ,the following

assertions is the main result.

Lemma 1.Let a dynamical system (ℜ3, St) be asymptotically compact.

Then for any bounded set B of ℜ3 the ω−limit set ω(B) is a nonempty

compact invariant set.

Theorem 1.Assume that a dynamical system (ℜ3, St) is dissipative and

asymptotically compact.Let B be a bounded absorbing set of the system

(ℜ3, St).Then the set A = ω(B) is a nonempty compact set and is a global

attractor of the dynamical system (ℜ3, St).The attractor A is a connected

set in ℜ3.

(for more details see [2] pag 140).

Noted that Theorem 1 along with Lemma 1 gives the folowing crite-

rion: a dynamical system possesses a compact global attractor if and only if

it is asymptotically compact. We introduce the polar coordinates:

y(t) = r(t) · cos(φ(t)); z(t) = r(t) · sin(φ(t)); φ(t) = −β · t + φ0.Hence ,

the system (1.2) can be rewritten in the following form:







x′ + α · x + r2 = 0

r′ + γ · r − x · r = 0
; α, β ∈ ℜ (1.3)

which has a stationary point in {x = 0, r = 0} for all α > 0 and γ ∈ R.

If γ < 0 then one more stationary point {x = γ, r =
√−α · γ}occurs in

system (1.3).It corresponds to a periodic trajectory of the original problem

(1.1).

We show using Poincare’s method that the point (0,0) is a stable node

of system (1.3) when γ > 0 and it is saddle when γ < 0.We compute:
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A = J(F )(0,0) =





α 2 · r
−r γ − x





(0,0)

=





α 0

0 γ





Hence det(A) = α · γ; trace(A) = α + γ; Obviously (trace(A))2 > 4 ·
det(A).

We observe that if γ > 0 then det(A) > 0 and (0,0) is stable node,otherwise

if γ < 0 then det(A) < 0 and (0,0) is saddle point.

In the same way we study the nature of stationary point

{x = γ, r =
√−α · γ}.We compute :

A = J(F )(γ,
√
−α·γ) =





α 2 · √−α · γ
−√−α · γ 0





hence, det(A) = −2 ·α · γ; trace(A) = α.Obviously (trace(A))2 > 4 · det(A)

if only if α + 8 · γ > 0.

Further more if γ < 0 then det(A) > 0 and (γ,
√−α · γ) is stable nod

,otherwise if γ > 0 (γ,
√−α · γ) is saddle point.

If γ < −α/8 and α 6= 0 then (γ,
√−α · γ) is focus (for α = 0 is centre).

A) If γ > 0 then (1.3) implies that

1
2
· d

dt
· (x2 + r2) + min(α, γ)(x2 + r2) ≤ 0

Using again Gronwall’s lema we obtain:

x(t)2 + r(t)2 ≤ (x(0)2 + r(0)2) exp(−2 min(α, γ) · t)

Due min(α, γ) > 0 implies exp(−2 min(α, γ) · t) → ∞ if t → ∞ then

x(t)2 + r(t)2 ≤ 0 hence, the global attractor of the system (ℜ3, St) con-

sists of the single stationary exponentially attracting point (0, 0, 0).

B)If γ = 0 then min(α, γ) = 0 hence,
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x(t)2 + r(t)2 ≤ (x(0)2 + r(0)2), det(A) = 0; (trace(A))2 = α2 > 0

then global attractor of Cauchy problem (1.1) consists of the single station-

ary point (0, 0, 0) but it is not exponentially attracting because it is a saddle

point.

C)Now we consider the case γ < 0.Let us again refer to problem (1.3).It

is clear that the line r = 0 is a stable manifold of the stationary

{x = 0, r = 0}Moreover ,it is obvious that if r(t0) > 0 ,then the value

r(t) remains positive for all t > t0. Therefore ,the Lyapunov’s function :

V (x, r) = 1
2
(x − γ)2 + 1

2
· r2 + γ · α · ln r (1.4)

is defined on all the trajectories, the initial point of which does not lie

on the line r = 0.Simple calculation show that :

d
dt

(V (x(t), r(t)) + α(x(t) − γ)2 = 0 (1.5)

and

V (x, r) ≥ V (γ,
√−α · γ) + 1

2
((x − γ)2 + (r −√−α · γ)2) (1.6)

therewith V (γ,
√−α · γ) = (1/2)α · |γ| · ln(e/(α · |γ|)).Equation (1.5) implies

that the function V (x, r) does not increase along the trajectories. Therefore,

any semitrajectory{(x(t); r(t)), t ∈ ℜ+} starting from the point {x0, r0; r0 6=
0} of the system (ℜ2 × ℜ+, St) generated by equation (1.3) possesses the

property V (x(t), r(t)) ≤ V (x0, r0) for t ≥ 0. Therewith, equation (1.4)

implies that this semitrajectory can not approach the line r = 0 at the

distance less then

exp{[1/(α · γ)] · V (x0, r0)}.
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Hence ,this semitrajectories tends to
−
y = {x = γ, r =

√−α · γ}. More-

over, for any ξ ∈ ℜ the set:

Bξ = {y = (x, r) : V (x, r) ≤ ξ}

is uniformly attracted to
−
y, i.e. for any ε > 0 there exists t0 = t0(ξ, ε) such

that

StBξ ⊂ {y :
∣

∣

∣y − −
y
∣

∣

∣ ≤ ε}.

Indeed ,if it is not true,then there exists ε0 > 0, a sequence tn → ∞,

and zn ∈ Bε such that
∣

∣

∣
Stn · zn − −

y
∣

∣

∣
> ε0. The monotonicity of V (y) and

property (1.6) implies that

V (St · z) ≥ V (Stn · zn) ≥ V (γ,
√−α · γ) + 1

2
ε2
0

for all 0 ≤ t ≤ tn. Let z be a limit point of sequence {zn}. Then after passing

to the limit we find out that:

V (St · z) ≥ V (γ,
√−α · γ) + 1

2
ε2
0; t ≥ 0

with z /∈ {r = 0}.Thus ,the least inequality is impossible since

St · z → −
y = {x = γ, r =

√−α · γ}

3 The qualitative behavior of solutions

For showing the qualitative behavior of solutions of Cauchy’s problem (1.3)

on the semiplan,we generate a script using Matlab 7.0.

In the figure 1 we represent the trajectories in cases: a) α = 10;

γ = −0.0625 stable nod; b)α = 10; γ = −6.25 focus.
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